Signal Processing and Communication

An Overview for Prospective Students

Prof. Phil Schniter

http://www.ece.osu.edu

Overview

• What is “Signal Processing and Communication”? How does it differ from other areas of ECE?
• What career options are there?
• What is the curriculum like at OSU?
Areas within ECE:

1. Physics
 - Solid State Electronics
 - Electromagnetics & Optics

2. Circuits
 - Circuits & Electronics
 - Power Systems
 - Computer Systems & Networks

3. Systems
 - Signal Processing & Communication
 - Control Systems

Solid State Devices

- Building blocks for circuits
- Semiconductor lasers
 - fiber optics, CD read/write
- Micro-machines
- IC fabrication

100 micrometers
Electromagnetics & Optics

- Antennas
 - mobile, satellite
- Radar
 - weather, navigation, defense
- Emission regulation
 - compatibility, safety
- Lasers, fiber optics

Circuits and Electronics

- “Chips”
- Building blocks for electronic systems
- Analog, digital, and microwave circuits
- Mixed-signal ICs
Power Systems

- Energy conversion
 - hydro, wind, solar, heat
- Energy distribution
- Energy storage
 - smart batteries

Computer Systems & Networks

- Computer architecture
 - Parallel computers
 - Super-computers
- Processor design
 - Pentium, G5
- Computer networks
 - INTERNET, WWW
Control Systems

- Manufacturing and Process Control
- Spacecraft/Missiles
- Aviation
- Automotive
- Disk Drives
- Robotics

Signal Processing

- Digital audio
 - CD, MP3, AAC, Surround sound
- Digital video
 - DVD, HDTV
- Biomedical
 - MRI, ECG, EEG
- Speech recognition/synth
- Noise Control
- Radar processing
- Sensor Networks
Example: MP3 Audio

• Amazing feat: throw out $>90\%$ of the “bits” and still get CD-quality audio!
• How does it work?

Communication Systems

• Wireless
 – Mobile phones, WiFi
• Wireline
 – dialup, DSL, cable
• Satellite Communication
 – GPS, space exploration
• Digital Television
• Bluetooth
• Sensor Networks
Example: Wireless Digital Comm

- The wireless mobile channel includes complicated time-varying distortion plus noise.
- The system gets more interesting with multiple users and multiple antennas per user.

SP/Comm versus Other Areas:

- **System-level approach**: design block diagrams and algorithms versus circuits and devices.
- **Top of the food chain**: our engineers specify design requirements to digital & analog circuit designers and software engineers.
- Requires/builds an intuitive relationship with math and probability.
- (Control Systems has a similar flavor.)
Careers in SP/Comm

• Focus Areas
 – Algorithm design
 – System engineering
 – DSP software/hardware

• Positions
 – Product development
 – Research & Design
 – Consulting
 – Management
 – Academics

• Example Applications
 – Communication systems
 – Speech, Audio
 – Video
 – Biomedical
 – Radar, Sonar
 – Sensor networks
 – Geophysical

OSU Courses in SP/Comm
My personal story…

- Early fascination with audio (Dolby, MP3).
- Discovered Signal Processing as an undergrad (Univ of Illinois, Urbana-Champaign).
- Stayed for M.S. in SP and Control Systems, jaded by “too much theory/math”.
- Worked at Tektronix in OR as a systems engineer & algorithm designer for digital TV/comm test equipment. Learned to appreciate theory/math!
- Ph.D. at Cornell with SP/Comm focus.
- Stayed in academics for reasons of freedom, intellectual stimulation, and the opportunity to teach/mentor.

Thanks for your time!

- SP/Comm is important.
 - It has revolutionized the world we live in, and will continue to do so for the foreseeable future.
- SP/Comm is a hot area.
 - Lots of good jobs out there.
- SP/Comm is fun.
 - Challenging, exciting work.