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BiG-AMP Motivation

Four Important High Dimensional Inference Problems

1 Matrix Completion (MC):

Recover low-rank matrix Z

from noise-corrupted incomplete observations Y = PΩ

(
Z +W

)
.

2 Robust Principle Components Analysis (RPCA):

Recover low-rank matrix Z and sparse matrix S

from noise-corrupted observations Y = Z + S +W .

3 Dictionary Learning (DL):

Recover (possibly overcomplete) dictionary A and sparse matrix X

from noise-corrupted observations Y = AX +W .

4 Non-negative Matrix Factorization (NMF):

Recover non-negative matrices A and X

from noise-corrupted observations Y = AX +W .

The following generalizations may also be of interest:

RPCA, DL, or NMF with incomplete observations.
RPCA or DL with structured sparsity.
Any of the above with non-additive corruptions (e.g., one-bit or phaseless Y ).
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BiG-AMP Contributions

Contributions

We propose a novel unified approach to these matrix-recovery problems that
leverages the recent framework of approximate message passing (AMP).

While previous AMP algorithms have been proposed for the linear model:

Infer x ∼
∏

n
px(xn) from y = Φx + w

with AWGN w and known Φ. [Donoho/Maleki/Montanari’10]

or the generalized linear model:

Infer x ∼
∏

n
px(xn) from y ∼

∏

m
py|z(ym|zm)

with hidden z = Φx and known Φ. [Rangan’10]

our work tackles the generalized bilinear model:

Infer A ∼
∏

m,n
pa(amn) and X ∼

∏

n,l
px(xnl) from Y ∼

∏

m,l
py|z(yml|zml)

with hidden Z = AX . [Schniter/Cevher’11]

In addition, we propose methods to select the rank of Z , to estimate the
parameters of pa, px, py|z, and to handle non-separable priors on A,X ,Y |Z .
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BiG-AMP Contributions

Outline

1 Bilinear Generalized AMP (BiG-AMP)

Background on AMP
BiG-AMP heuristics
Example configurations/applications

2 Practicalities

Adaptive damping
Parameter tuning
Rank selection
Non-separable priors

3 Numerical results:

Matrix completion
Robust PCA
Dictionary learning
Hyperspectral unmixing (via NMF)
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BiG-AMP Description

Bilinear Generalized AMP (BiG-AMP)

BiG-AMP is a Bayesian approach that uses approximate message passing
(AMP) strategies to infer (Z ,A,X ).

Generalized Linear:

py|z(y1|·)

py|z(y2|·)

py|z(yM |·)

x1

x2

x3

x4

px

px

px

px

Generalized Bilinear:

l

k

mn

xnl py|z(yml|·)amk
px pa

In AMP, beliefs are propagated on a loopy factor graph using approximations
that exploit certain blessings of dimensionality:

1 Gaussian message approximation (motivated by central limit theorem),
2 Taylor-series approximation of message differences.

Rigorous analyses of GAMP for CS (with large iid sub-Gaussian Φ) reveal a
state evolution whose fixed points are optimal when unique. [Javanmard/Montanari’12]
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BiG-AMP Heuristics

BiG-AMP sum-product heuristics
x1

x2

xN

a1

a2

aN

pa
1←1 px

1→1

px
1←N

...
...

1. Message from ith node of Z to jth node of X :

px
i→j(xj) ∝

∫

{an}Nn=1
,{xn}n 6=j

py|z

(
yi
∣
∣

zi|xj ≈ N via CLT!
︷ ︸︸ ︷∑

n
anxn

)(∏

n
pa
i←n(an)

)(
∏

n 6=j
px
i←n(xn)

)

≈

∫

zi

py|z(yi|zi)N
(
zi; ẑi(xj), ν

z
i (xj)

)
≈ N (exact for AWGN!)

(A similar thing then happens with the messages from Z to A.)
To compute ẑi(xj), ν

z
i (xj), the means and variances of px

i←n & pa
i←n suffice,

and thus we have Gaussian message passing!

2. Although Gaussian, we still have 4MLN messages
to compute (too many!). Exploiting similarity among
the messages {px

i←j}
M
i=1, we employ a Taylor-series

approximation whose error vanishes as M → ∞.
(Same for {pa

i←j}
L
i=1 with L → ∞.) In the end, we

only need to compute O(ML) messages! px
xN

py|z(y1|·)

py|z(y2|·)

py|z(yM |·)

px
1→1(x1)

px
M←N

...
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BiG-AMP Configurations

Example Configurations

1 Matrix Completion (MC):

Recover low-rank Z = AX from Y = PΩ(Z +W ).

aml ∼ N (0, 1), xnl ∼ N (µx, vx), and yml|zml ∼

{
N (zml, vw) (m, l) ∈ Ω
110 (m, l) /∈ Ω

2 Robust PCA (RPCA):

a) Recover low-rank Z = AX from Y = Z +E.
amn ∼ N (0, 1), xnl ∼ N (µx, vx), yml|zml ∼ GM2(λ, zml, vw+vs, zml, vw)

b) Recover low-rank Z = AX and sparse S from Y = [A I][XT
S

T]T +W .
amn ∼ N (0, 1), xnl ∼ N (µx, vx), sml ∼ BG(λ, 0, vs), yml|zml ∼ N (zml, vw)

3 Dictionary Learning (DL):

Recover dictionary A and sparse X from Y = AX +W .
amn ∼ N (0, 1), xnl ∼ BG(λ, 0, vx), and yml|zml ∼ N (zml, vw)

4 Non-negative Matrix Factorization (NMF):

Recover non-negative A and X (up to perm/scale) from Y = AX +W .
amn ∼ N+(0, µa), xnl ∼ N+(0, µx), and yml|zml ∼ N (zml, vw)
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BiG-AMP Configurations

Example Configurtions (cont.)

5 One-bit Matrix Completion (MC):

Recover low-rank Z = AX from Y = PΩ(sgn(Z +W )).

aml ∼ N (0, 1), xnl ∼ N (µx, vx), and yml|zml ∼

{
probit (m, l) ∈ Ω
110 (m, l) /∈ Ω

. . . leveraging previous work on one-bit/classification GAMP [Ziniel/Schniter’13]

6 Phaseless Matrix Completion (MC):

Recover low-rank Z = AX from Y = PΩ(abs(Z +W )).
aml ∼ N (0, 1), xnl ∼ N (µx, vx), and

pyml|zml
(y|z) =

{

exp
(
− |y|

2+|z|2

vw

)
I0
( |y||z|

vw

)
(m, l) ∈ Ω

110 (m, l) /∈ Ω
. . . leveraging previous work on phase-retrieval GAMP [Schniter/Rangan’12]

7 and so on . . .
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Practicalities Adaptive Damping

Adaptive Damping

The heuristics used to derive GAMP hold in the large system limit:
M,N,L → ∞ with fixed M/N , M/L.

In practice, M,N,L are finite and the rank N is often very small!

To prevent BiG-AMP from diverging, we damp the updates using an
adjustable step-size parameter β ∈ (0, 1].

Moreover, we adapt β by monitoring (an approximation to) the cost function
minimized by BiG-AMP and adjusting β as needed to ensure decreasing cost,
leveraging similar methods from GAMP [Rangan/Schniter/Riegler/Fletcher/Cevher’13].

Ĵ(t) =
∑

n,l

D
(

p̂xnl|Y

(
·
∣
∣Y

)∥∥
∥ pxnl

(·)
)

← KL divergence between posterior & prior

+
∑

m,n

D
(

p̂amn|Y

(
·
∣
∣Y

)∥∥
∥ pamn(·)

)

−
∑

m,l

EN (zml;p̄ml(t);ν
p
ml

(t))

{
log pyml|zml

(yml | zml)
}
.
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Practicalities Parameter Tuning

Parameter Tuning via EM

We treat the parameters θ that determine the priors px, pa, py|z as
deterministic unknowns and compute (approximate) ML estimates using
expectation-maximization (EM), as done for GAMP in [Vila/Schniter’13].

Taking X , A, and Z to be the hidden variables, the EM recursion becomes

θ̂
k+1

= argmax
θ

E
{

log pX ,A,Z ,Y (X ,A,Z ,Y ;θ)
∣

∣

∣
Y ; θ̂

k
}

= argmax
θ

{

∑

n,l

E
{

log pxnl
(xnl;θ)

∣

∣

∣
Y ; θ̂

k
}

+
∑

m,n

E
{

log pamn
(amn;θ)

∣

∣

∣
Y ; θ̂

k
}

+
∑

m,l

E
{

log pyml|zml
(yml | zml;θ)

∣

∣

∣
Y ; θ̂

k
}

}

For tractability, the θ-maximization is performed one variable at a time.
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Practicalities Rank Selection

Rank Selection

In practice, the rank of Z (i.e., # columns in A and rows in X) is unknown.

We propose two methods for rank selection:

1 Penalized log-likelihood maximization:

N̂ = argmax
N=1,...,N

2 log pY |Z (Y | ÂNX̂N ; θ̂N )− η(N),

where η(N) penalizes the effective number of parameters under rank N (e.g.,
BIC, AIC). Although ÂN , X̂N , θ̂N are ideally ML estimates under rank N , we
use EM-BiG-AMP estimates.

2 Rank contraction (adapted from LMaFit [Wen/Ying/Zhang’12]):
Run EM-BiG-AMP at maximum rank N and then set N̂ to the location of the
largest gap between singular values, but only if the gap is sufficiently large. If
not, run EM-BiG-AMP and check again.

For matrix completion we advocate the first strategy (with the AICc rule),
while for robust PCA we advocate the second strategy.
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Practicalities Non-separable Priors

Non-Separable Priors

As described until now, BiG-AMP is limited to separable priors pA, pX , and
pY |Z (i.e., statistically independent elements).

We circumvent this by augmenting our model with random variables that
ensure conditional independence, and then use “turbo AMP” [Schniter’10]

Example: to facilitate dependence within each column of A, we introduce S

such that A|S ∼
∏

m,n pa|s(amn|smn). Similarly, we introduce D for X :

amn
py|z(yml|·) xkl

smn

dkl

pa|s px|d

Markov chain Generalized bilinear model Markov field

n

m

k

l
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Numerical Results Matrix Completion

Numerical Results for Matrix Completion

We compared several state-of-the-art techniques:

Inexact Augmented Lagrange Multipler (IALM) [Lin/Chen/Wu/Ma’10]

– a nuclear-norm based convex-optimization method

GROUSE [Balzano/Nowak/Recht’10]

– gradient descent on the Grassmanian manifold

LMaFit [Wen/Ying/Zhang’12]

– a non-convex approach based on non-linear successive over-relaxation

VSBL [Babacan/Luessi/Molina/Katsaggalos’12]

– a variational Bayesian approach.

to two variations on our proposed techniques:

EM-BiG-AMP

– BiG-AMP setup for Matrix Completion, with EM-adjusted µx, vx, vw.

BiG-AMP Lite

– A simplified version, based on Gaussian priors and uniform variances.
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Numerical Results Matrix Completion

Matrix Completion: Phase Transitions

The following plots show empirical probability that NMSE < −100 dB (over 10
realizations) for noiseless completion of an M×L matrix with M=L=1000.
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Note that BiG-AMP-Lite and EM-BiG-AMP have the best phase transitions.
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Numerical Results Matrix Completion

Matrix Completion: Runtime to NMSE=-100 dB

20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

rank N

sampling ratio |Ω|/ML = 0.05

ru
n
ti
m

e
(s

ec
)

20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

 

 

Matrix ALPS
GROUSE
VSBL
LMaFit
IALM
BiG−AMP Lite
BiG−AMP
EM−BiG−AMP

rank N

sampling ratio |Ω|/ML = 0.1

ru
n
ti
m

e
(s

ec
)

Although LMaFit is the fastest algorithm at small rank N , BiG-AMP-Lite’s
superior complexity-scaling-with-N eventually wins out.

BiG-AMP runs 1 to 2 orders-of-magnitude faster than IALM and VSBL.
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Numerical Results Matrix Completion

Collaborative Filtering: MovieLens 100k

M=943 users, L=1682 movies,
|R|=100k ratings ∈ {1, 2, 3, 4, 5}.

Goal: from (incomplete) training
subset Ω, predict test ratings R \Ω.

Metric: normalized mean absolute error

NMAE = 1
4|R\Ω|

∑

(m,l)∈R\Ω

|zml − ẑml|.
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Our experiments show that LMaFit overfits due to rank over-estimation.

VSBL does very well, mainly because its heavy-tailed (student-t) priors are a
good match to this dataset.

EM-BiG-AMP suffers with an AWGN model, but with an additive Laplacian
noise model, it matches VSBL and even does better at high undersampling.
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Numerical Results Robust PCA

Numerical Results for Robust PCA

We several state-of-the-art RPCA techniques

Inexact Augmented Lagrange Multipler (IALM) [Lin/Chen/Wu/Ma’10]

– a nuclear-norm and ℓ1-based convex-optimization method

GRASTA [He/Balzano/Lui’11]

– gradient descent on the Grassmanian manifold

LMaFit [Wen/Ying/Zhang’12]

– a non-convex approach based on non-linear successive over-relaxation

VSBL [Babacan/Luessi/Molina/Katsaggalos’12]

– a variational Bayesian approach.

to two variations on our proposed techniques:

BiG-AMP-1

– BiG-AMP under the RPCA model using BG noise.

EM-BiG-AMP-2

– BiG-AMP using AWGN, BG signal, and EM-adjusted λ, vs, µx, vx, vw.
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Numerical Results Robust PCA

Robust PCA: Phase Transitions

Empirical probability of NMSE < −80 dB over 10 realizations for noiseless
recovery of the low-rank component of a 200×200 outlier-corrupted matrix.

VSBL

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ra
n
k
N

outlier fraction λ

GRASTA

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

outlier fraction λ

IALM−1

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

outlier fraction λ

LMaFit

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

outlier fraction λ

BiG−AMP−1

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

outlier fraction λ

EM−BiG−AMP−2

 

 

0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

ra
n
k
N

outlier fraction λ

As before, the BiG-AMP methods yield the best phase transitions.
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Numerical Results Robust PCA

Robust PCA: Video Surveillance

EM-BiG-AMP-2 accurately extracted the low-rank background Z and the sparse
foreground S from the “Mall” video sequence Y = Z + S +W .

original background foreground

Phil Schniter (OSU) BiG-AMP Inference Oct. 10, 2013 19 / 31



Numerical Results Dictionary Learning

Numerical Results for Dictionary Learning

We compared several state-of-the-art techniques

K-SVD [Aharon/Elad/Bruckstein’06]

– the standard; a generalization of K-means clustering

SPAMS [Mairal/Bach/Ponce/Sapiro’10]

– a highly optimized online approach

ER-SpUD [Spielman/Wang/Wright’12]

– the recent breakthrough on provably exact dictionary recovery

to our proposed technique:

EM-BiG-AMP

– BiG-AMP under AWGN, BG signal, and EM-adjusted λ, µx, vx, vw.
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Numerical Results Dictionary Learning

Square Dictionary Recovery: Phase Transitions

Mean NMSE over 10 realizations for recovery of an N×N dictionary from
L=5N logN examples with sparsity K:
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Noiseless case: EM-BiG-AMP’s phase transition curve is much better than
that of K-SVD and SPAMS and almost as good as ER-SpUD(proj)’s.

Noisy case: EM-BiG-AMP is robust to noise, while ER-SpUD(proj) is not.
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Numerical Results Dictionary Learning

Square Dictionary Recovery: Runtime to NMSE=-60 dB
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BiG-AMP runs within a factor-of-5 from the fastest approach (SPAMS).

BiG-AMP runs orders-of-magnitude faster than ER-SpUD(proj).
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Numerical Results Dictionary Learning

Overcomplete Dictionary Recovery: Phase Transitions

Mean NMSE over 10 realizations for recovery of an M×(2M) dictionary from
L=5N logN=10M log(2M) examples with sparsity K:
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Noiseless case: EM-BiG-AMP’s phase transition curve is much better than
that of K-SVD and SPAMS. Note: ER-SpUD not applicable when M 6= N .

Noisy case: EM-BiG-AMP is again robust to noise.
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Hyperspectral Unmixing / Nonnegative Matrix Factorization

In Hyperspectral Imaging (HSI), sensors capture M wavelengths per pixel, over a
scene of L pixels comprised of N materials.

We model the received HSI data Y as

Y = AX +W ∈ R
M×L
+ ,

where the nth column of A ∈ R
M×N
+ is the spectrum

of the nth material, the lth column of X ∈ R
N×L
+

describes the abundance of materials at the lth pixel
(and thus must sum to one), and W is additive noise.

spectrum at one pixel
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We then jointly estimate A and X from the noisy observations Y .

– Standard unmixing algs (e.g., VCA [Nascimento’05], FSNMF [Gillis’12])
assume the existence of pure-pixels, which may not occur in practice.

– Furthermore, they do not exploit spectral coherence, spatial coherence, and
sparsity, which do occur in practice.

– Recent Bayesian approaches to unmixing (e.g., SCU [Mittelman’12]) exploit
spatial coherence using Dirichlet processes, albeit at very high complexity.
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EM-BiG-AMP for HSI Unmixing

To enforce non-negativity we place non-negative Gaussian Mixture (NNGM)
prior on amn, and to encourage sparsity a Bernoulli-NNGM prior on xnl.

– We then use EM to learn the (B)NNGM parameters.

To exploit spectral coherence we employ a hidden Gauss-Markov chain across
each column in A, and to exploit spatial coherence we employ an Ising model
to capture the support across each row in X .

– We use EM to learn the Gauss-Markov and Ising parameters.

To enforce the sum-to-one constraint on each column of X , we augment both
Y and A with a row of random variables with mean one and variance zero.

NNGM prior
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EM-BiG-AMP for HSI Unmixing

amn
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Inference on the bilinear sub-graph is tackled using the BiG-AMP algorithm.

Inference on the Gauss-Markov and Ising subgraphs are tackled using standard
soft-input/soft-output belief propagation methods.

Messages are exchanged between the three sub-graphs according to the sum-product
algorithm, akin to “turbo” decoding in modern communication receivers [Schniter’10].
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Numerical Results: Pure-Pixel Synthetic Data

Pure pixel abundance maps X of size L = 50×50
were generated with N = 5 materials residing in
equal-sized spatial strips.

Endmember spectra A were taken from a
reflectance library.

AWGN-corrupted observations had SNR = 30 dB.

RGB view of data in 2D

Averaging performance over 10 realizations . . .

Â runtime X̂ runtime Total runtime NMSE
Â

NMSE
X̂

EM-BiG-AMP – – 5.57 sec -57.4 dB -108.6 dB
VCA + UCLS 0.05 sec 0.0007 sec 0.05 sec -39.6 dB -12.0 dB
VCA + FCLS 0.05 sec 4.08 4.13 sec -39.6 dB -30.5 dB

FSNMF + UCLS 0.002 sec 0.0008 sec 0.002 sec -23.4 dB -6.8 dB
FSNMF + FCLS 0.002 sec 3.97 sec 3.97 sec -25.3 dB -12.5 dB

SCU – – 2808 sec -30.6 dB -20.5 dB

EM-BiG-AMP’s runtime is comparable to VCA+FCLS and FSNMF+FCLS,
and 2-3 orders of magnitude faster than SCU.
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Results: SHARE 2012 dataset

RGB EM-BiG-AMP FSNMF+FCLS

RGB VCA+FCLS SCU

Data consisted of
M=360 spectral
bands, ranging
from 400-2450nm,
taken over scene
of L = 150×100
pixels.

EM-BiG-AMP
gives estimated
abundance maps
with higher
constrast,
suggesting better
unmixing.

The lack of
ground-truth
prevents a
quantitative
comparison.
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Conclusion

BiG-AMP = approximate message passing for the generalized bilinear model.

A novel approach to matrix completion, robust PCA, dictionary learning,
non-negative matrix factorization, etc.

Includes mechanisms for adaptive dampling, parameter tuning, model-order
selection, non-separable priors.

Competitive with the best current algorithms for each application.

Best phase transitions for MC, RPCA, overcomplete DL.
Runtimes not far from the fastest algorithms.

Currently working on generalizations of BiG-AMP to parameteric models
(e.g., Toeplitz matrices), as well as various applications of BiG-AMP.
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