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1 Fundamentals of Multirate Signal Processing

• Upsampling: The operation of “upsampling” by factor L ∈ N describes the insertion of
L−1 zeros between every sample of the input signal. This is denoted by “↑L” in block
diagrams, as below.

x[m] y[n]↑L

Formally, upsampling can be expressed in the time domain as

y[n] =

{

x
[

n
L

]
when n

L ∈ Z

0 else.

In the z-domain,

Y (z) =
∑

n

y[n]z−n =
∑

n: n
L
∈Z

x
[

n
L

]
z−n =

∑

k

x[k]z−kL = X
(
zL
)
,

and substituting z = ejω for the DTFT,

Y (ejω) = X(ejωL). (1)

As shown below, upsampling compresses the DTFT by a factor of L along the ω axis.
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• Downsampling: The operation of “downsampling” by factor M ∈ N describes the process

of keeping every M th sample and discarding the rest. This is denoted by “↓M” in block
diagrams, as below.

x[m] y[n]↓M

Formally, downsampling can be written as

y[n] = x[nM ].

In the z domain,

Y (z) =
∑

n

y[n]z−n

=
∑

n

x[nM ]z−n

=
∑

m

x[m]




1

M

M−1∑

p=0

ej 2π
M

pm





︸ ︷︷ ︸

=

8

>

>

>

<

>

>

>

:

1 when m is a
multiple of M

0 else

z−m/M

=
1

M

M−1∑

p=0

∑

m

x[m]
(
e−j 2π

M
pz1/M

)−m

=
1

M

M−1∑

p=0

X
(
e−j 2π

M
pz1/M

)
.

Translating to the frequency domain,

Y (ejω) =
1

M

M−1∑

p=0

X
(

ej ω−2πp

M

)

. (2)

As shown below, downsampling expands each 2π-periodic repetition of X(ejω) by a factor
of M along the ω axis, and reduces the gain by a factor of M . If x[m] is not bandlimited
to π/M , aliasing may result from spectral overlap.

Note: When performing a frequency-domain analysis of systems with up/downsamplers,
it is strongly recommended to carry out the analysis in the z-domain until the last step,
as done above. Working directly in the ejω-domain can easily lead to errors.
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• Interpolation: Interpolation is the process of upsampling and filtering a signal to increase
its effective sampling rate. To be more specific, say that x[m] is an (unaliased) T -sampled
version of xc(t) and v[n] is an L-upsampled version of x[m]. If we filter v[n] with an
ideal π/L-bandwidth lowpass filter (with DC gain L) to obtain y[n], then y[n] will be a
T/L-sampled version of xc(t). This process is illustrated below.

x[m]
v[n]

y[n]LPF π
L

DC gain L

↑L

We justify our claims about interpolation using frequency-domain arguments. From the
sampling theorem, we know that T -sampling xc(t) to create x[n] yields

X(ejω) =
1

T

∑

k

Xc

(

j
(ω − 2πk

T

))

After upsampling by factor L, (1) implies

V (ejω) =
1

T

∑

k

Xc

(

j
(ωL − 2πk

T

))

=
1

T

∑

k

Xc

(

j
(ω − 2π

L k

T/L

)
)

Lowpass filtering with cutoff π
L and gain L yields

Y (ejω) =
L

T

∑

k: k
L
∈Z

Xc

(

j
(ω − 2π

L k

T/L

)
)

=
L

T

∑

l

Xc

(

j
(ω − 2πl

T/L

))

since spectral copies with indices other than k = lL (for l ∈ Z) are removed. Clearly,
this process yields a T/L-sampled version of xc(t). The figure below illustrates these
frequency-domain arguments for L = 2.
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x[m]
v[n]

y[n]

|X(ejω)| |V (ejω)| |Y (ejω)|

000 πππ π
2 2π2π2π

11 2

LPF π
2

DC gain 2

↑2

• Application of Interpolation—Oversampling in CD Players:

The digital audio signal on a CD is a 44.1 kHz sampled representation of a continuous
signal with bandwidth 20 kHz. With a standard ZOH-DAC, the analog reconstruction
filter would have passband edge at 20 kHz and stopband edge at 24.1 kHz. (See the figure
below.) With such a narrow transition band, this would be a difficult (and expensive)
filter to build.

ω
Ω
2π

Ω
2π

0 0 020k 20k

24.1k

44.1k 44.1kπ 2π

|X(ejω)| |Xz(jΩ)| |Hr(jΩ)|

If digital interpolation is used prior to reconstruction, the effective sampling rate can be
increased and the reconstruction filter’s transition band can be made much wider, resulting
in a much simpler (and cheaper) analog filter. The figure below illustrates the case of
interpolation by 4. The reconstruction filter has passband edge at 20 kHz and stopband
edge at 156.4 kHz, resulting in a much wider transition band and therefore an easier filter
design.

ω
Ω
2π

Ω
2π

0 0 0

20k

20k 156.4k 156.4k

176.4k176.4kπ 2π

|X(ejω)| |Xz(jΩ)| |Hr(jΩ)|

• Decimation: Decimation is the processing of filtering and downsampling a signal to de-
crease its effective sampling rate, as illustrated below. The filtering is employed to prevent
aliasing that might otherwise result from downsampling.

x[m]
v[m]

y[n]LPF π
M

DC gain 1

↓M

To be more specific, say that
xc(t) = xl(t) + xb(t),

where xl(t) is a lowpass component bandlimited to 1
2MT Hz and xb(t) is a bandpass com-

ponent with energy between 1
2MT and 1

2T Hz. If sampling xc(t) with interval T yields an
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unaliased discrete representation x[m], then decimating x[m] by factor M will yield y[n],
an unaliased MT -sampled representation of lowpass component xl(t).

We offer the following justification of the previously described decimation procedure. From
the sampling theorem, we have

X(ejω) =
1

T

∑

k

Xl

(

j
(ω − 2πk

T

))

+
1

T

∑

k

Xb

(

j
(ω − 2πk

T

))

The bandpass component Xb(jΩ) is then removed by π/M -lowpass filtering, giving

V (ejω) =
1

T

∑

k

Xl

(

j
(ω − 2πk

T

))

Finally, downsampling yields

Y (ejω) =
1

MT

M−1∑

p=0

∑

k

Xl

(

j
( ω−2πp

M − 2πk

T

)
)

=
1

MT

M−1∑

p=0

∑

k

Xl

(

j
(ω − 2π(kM + p)

MT

))

=
1

MT

∑

l

Xl

(

j
(ω − 2πl

MT

))

which is clearly a MT -sampled version of xl(t). A frequency-domain illustration for M = 2
appears below.

x[m]
v[m]

y[n]

|X(ejω)| |V (ejω)| |Y (ejω)|

000 ππ π
2

π
2 2π2π2π

11 1/2

LPF π
2

DC gain 1

↓2

• Resampling with Rational Factor: Interpolation by L and decimation by M can be com-

bined to change the effective sampling rate of a signal by the rational factor L
M . This

process is called “resampling” or “sample-rate conversion”. Rather than cascading an
anti-imaging filter for interpolation with an anti-aliasing filter for decimation, we imple-
ment one filter with the minimum of the two cutoffs ( π

L , π
M ) and the multiplication of the

two DC gains (L and 1), as illustrated below.

↑L ↓MLPF min{ π
L , π

M }

DC gain L
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• Digital Filter Design for Interpolation and Decimation: First we treat filter design for in-
terpolation. Consider an input signal x[n] that is ω0-bandlimited in the DTFT domain.
If we upsample by factor L to get v[m], the desired portion of V (ejω) is the spectrum in
[
− π

L , π
L

)
, while the undesired portion is the remainder of [−π, π). Noting from the figure

below that V (ejω) has zero energy in the regions

[
2kπ + ω0

L
,
2(k+1)π − ω0

L

)

, k ∈ Z

the anti-imaging filter can be designed with transition bands in these regions (rather
than passbands or stopbands). For a given number of taps, the additional degrees of
freedom offered by these transition bands allows for better responses in the passbands
and stopbands. The resulting filter design specifications are shown in the bottom subplot
below.
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L

2π
L

2π+ω0
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2π+ω0

L
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L

4π−ω0

L

4π−ω0

L

4π
L

4π
L

4π+ω0

L

4π+ω0

L

5π
L

5π
L

6π−ω0

L

6π−ω0

L

desired

desireddesired

. . .

. . .

Next we treat filter design for decimation. Say that the desired spectral component of the
input signal is bandlimited to ω0

M < π
M and we have decided to downsample by M . The

goal is to minimally distort the input spectrum over
[
−ω0

M , ω0

M

)
, i.e., the post-decimation

spectrum over [−ω0, ω0). Thus, we must not allow any aliased signals to enter [−ω0, ω0).
To allow for extra degrees of freedom in the filter design, we do allow aliasing to enter the
post-decimation spectrum outside of [−ω0, ω0) within [−π, π). Since the input spectral
regions which alias outside of [−ω0, ω0) are given by

[
2kπ + ω0

M
,
2(k+1)π − ω0

M

)

, k ∈ Z

(as shown in the figure below), we can treat these regions as transition bands in the filter
design. The resulting filter design specifications are illustrated in the middle subplot below.
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We now consider the effect of the passband and stopband ripples in H(ejω). If we assume
that |X(ejω)| = 1, as in the figure above, then, in the worst case, a height-δs ripple
from each of the M − 1 stopbands could alias onto a height-δp ripple from the passband.
Remembering that decimation results in an amplitude reduction of 1

M , this yields a worst-
case post-decimation ripple of

1

M

(
δp + (M − 1)δs

)
.

Thus, it might be advantageous to choose δs ≪ δp when M is large. When δs = δp = δ,
however, the post-decimation ripple reduces to δ.

• The Noble Identities: The Noble identities (illustrated in the two block diagrams below)
describe when it is possible to reverse the order of upsampling/downsampling and filtering.
We prove the Noble identities showing the equivalence of each pair of block diagrams.

The Noble identity for interpolation can be depicted as follows:

↑L↑L x[n]x[n]
v1[m] v2[n]

y[m]y[m] H(z)H(zL) ⇔

For the left side of the preceding diagram, we have

Y (z) = H(zL)V1(z) where V1(z) = X(zL)

= H(zL)X(zL)

while for the right side,

Y (z) = V2(z
L) where V2(z) = H(z)X(z)

= H(zL)X(zL)

Thus we have established the Noble identity for interpolation.
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The Noble identity for decimation can be depicted as follows:

↓M ↓Mx[n] x[n]
v1[m] v2[n]

y[m] y[m]H(z) H(zM )⇔

For the left side of the preceding diagram, we have

Y (z) = H(z)V1(z)

= H(z)
1

M

M−1∑

k=0

X(e−j 2π
M

kz
1

M )

while for the right side,

Y (z) =
1

M

M−1∑

k=0

V2(e
−j 2π

M
kz

1

M ) where V2(z) = X(z)H(zM )

=
1

M

M−1∑

k=0

X(e−j 2π
M

kz
1

M )H(e−j 2π
M

Mkz
M
M )

= H(z)
1

M

M−1∑

k=0

X(e−j 2π
M

kz
1

M )

Thus we have established the Noble identity for decimation. Note that the impulse response
of H(zL) is the L-upsampled impulse response of H(z).

• Polyphase Interpolation: Recall the standard interpolation procedure illustrated below.

x[n] y[m]H(z)↑L

Note that this procedure is computationally inefficient because the lowpass filter operates
on a sequence that is mostly composed of zeros. Through the use of the Noble identities,
it is possible to rearrange the preceding block diagram so that operations on zero-valued
samples are avoided.

In order to apply the Noble identity for interpolation, we must transform H(z) into its
upsampled polyphase components Hp(z

L), p = 0, . . . , L−1.

H(z) =
∑

n

h[n]z−n

=
∑

k

L−1∑

p=0

h[kL + p]z−(kL+p) via k := ⌊n
L⌋, p := 〈n〉L

=
L−1∑

p=0

(
∑

k

hp[k]z−kL

)

z−p via hp[k] := h[kL+p]

=
L−1∑

p=0

Hp(z
L)z−p
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Above, ⌊·⌋ denotes the floor operator and 〈·〉M the modulo-M operator. Note that the pth

polyphase filter hp[k] is constructed by downsampling the “master filter” h[n] at offset p.
Using the upsampled polyphase components, the preceding block diagram can be redrawn
as below.

x[n] y[m]

+

+

z−1

z−1

z−1

...
...

...

H0(z
L)

H1(z
L)

HL−1(z
L)

↑L

Applying the Noble identity for interpolation to the figure above yields the figure below.
The ladder of upsamplers and delays on the right below accomplishes a form of parallel-
to-serial conversion.

x[n] y[m]

+

+

z−1

z−1

z−1

...
...

...
...

H0(z)

H1(z)

HL−1(z) ↑L

↑L

↑L

• Polyphase Decimation: Recall the standard decimation method illustrated below.

x[n] y[m]H(z) ↓M

Note that this procedure is computationally inefficient because it discards the majority
of the computed filter outputs. Through the use of the Noble identities, it is possible to
rearrange the block diagram above so that filter outputs are not discarded.

In order to apply the Noble identity for decimation, we must transform H(z) into its
upsampled polyphase components Hp(z

M ), p = 0, . . . ,M − 1, defined previously in the
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context of polyphase interpolation.

H(z) =
∑

n

h[n]z−n

=
∑

k

M−1∑

p=0

h[kM + p]z−kM−p via k := ⌊ n
M ⌋, p := 〈n〉M

=

M−1∑

p=0

(
∑

k

hp[k]z−kM

)

z−p via hp[k] := h[kM+p]

=

M−1∑

p=0

Hp(z
M )z−p

Using these upsampled polyphase components, the preceding block diagram can be re-
drawn as below.

x[n] y[m]+

z−1

z−1

z−1

...
...

H0(z
M )

H1(z
M )

HM−1(z
M )

↓M

Applying the Noble identity for decimation to the figure above yields the figure below.
The ladder of delays and downsamplers on the left below accomplishes a form of serial-to-
parallel conversion.

x[n] y[m]+

z−1

z−1

z−1

...
... ...

H0(z)

H1(z)

HM−1(z)↓M

↓M

↓M

c©P. Schniter, 2002 10



• Computational Savings of Polyphase Interpolation/Decimation: Assume that we design
FIR LPF H(z) with N taps, requiring N multiplies per output. For standard decimation
by factor M , we have N multiplies per intermediate sample and M intermediate samples
per output, giving NM multiplies per output.

For polyphase decimation, we have N
M multiplies per branch and M branches, giving a

total of N multiplies per output. The assumption of N
M multiplies per branch follows from

the fact that h[n] is downsampled by M to create each polyphase filter. Thus, we conclude
that the standard implementation requires M times as many operations as its polyphase
counterpart. (For decimation we count multiplies per output, rather than per input, to
avoid confusion, since only every M th input produces an output.)

From this result, it appears that the the number of multiplications required by polyphase
decimation is independent of the decimation rate M . However, it should be remembered
that the length N of the π

M -lowpass FIR filter H(z) will typically be proportional to M .
This is suggested by, e.g., the Kaiser FIR-length approximation formula

N ≈
−10 log10(δpδs) − 13

2.324∆ω

where ∆ω is the transition bandwidth in radians, and δp and δs are the passband and
stopband ripple levels. Recall that, to preserve a fixed signal bandwidth, the transition
bandwidth ∆ω will be linearly proportional to the cutoff π

M , so that N will be linearly
proportional to M . In summary, polyphase decimation by factor M requires N multiplies
per output, where N is the filter length, and where N is linearly proportional to M .

Using similar arguments for polyphase interpolation, we could find essentially the same
result. Polyphase interpolation by factor L requires N multiplies per input, where N is
the filter length, and where N is linearly proportional to the interpolation factor L. (For
interpolation we count multiplies per input, rather than per output, to avoid confusion,
since M outputs are generated in parallel.)

• A Group-Delay Interpretation of Polyphase Filters: Previously, polyphase interpolation
and decimation were derived from the Noble identities and motivated for reasons of com-
putational efficiency. Here we present a different interpretation of the (ideal) polyphase
filter.

Assume that H(z) is an ideal lowpass filter with gain L, cutoff π
L , and constant group

delay of d:

H(ejω) =

{

Le−jdω ω ∈ [− π
L , π

L)

0 ω ∈ [−π,− π
L) ∪ [ π

L , π)

Recall that the polyphase filters are defined as

hp[k] = h[kL + p] for p = 0, . . . , L−1.

In other words, hp[k] is an advanced (by p samples) and downsampled (by factor L) version
of h[n].

h[n] zp
v[n]

↓L hp[k]
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The DTFT of the pth polyphase filter impulse response is then

Hp(z) =
1

L

L−1∑

l=0

V (e−j 2π
L

lz
1

L ) where V (z) = H(z)zp

=
1

L

L−1∑

l=0

e−j 2π
L

lpz
p

L H(e−j 2π
L

lz
1

L )

Hp(e
jω) =

1

L

L−1∑

l=0

ej(ω−2πl
L )pH(ej ω−2πl

L )

=
1

L
ej ω

L
pH(ej ω

L ) for |ω| ≤ π

= e−j d−p

L
ω for |ω| ≤ π

Thus, the ideal pth polyphase filter has a constant magnitude response of one and a constant
group delay of d−p

L samples. The implication is that if the input to the pth polyphase filter
is the unaliased T -sampled representation x[n] = xc(nT ), then the output of the filter
would be the unaliased T -sampled representation yp[n] = xc

(
(n− d−p

L )T
)
.

nT
xc(t)

xc(nT )
xc

(
(n− d−p

L )T
)

Hp(z)

The block diagram below shows the role of polyphase interpolation filters assuming zero-
delay (i.e., d = 0) processing for simplicity. Essentially, the pth filter interpolates the
waveform p

L -way between consecutive input samples. The L polyphase outputs are then
interleaved to create the output stream. Assuming that xc(t) is bandlimited to 1

2T Hz,
perfect polyphase filtering yields a perfectly interpolated output. In practice, we use causal
FIR approximations of the polyphase filters hp[k] (which correspond to some causal FIR
approximation of the master filter h[n]).

H0(z)

H1(z)

HL−1(z)

...
...

...
...

nT
xc(t)

xc(nT ) xc

(
(n+ 0

L)T
)

xc

(
(n+ 1

L)T
)

xc

(
(n+ L−1

L )T
) z−1

z−1

z−1

+

+

↑L

↑L

↑L xc

(
m
L T
)
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• Polyphase Resampling with a Rational Factor: Recall that resampling by rational rate L
M

can be accomplished through the following three-stage process.

↑L ↓MLPF min{ π
L , π

M }

DC gain L

If we implemented the upsampler/LPF pair with a polyphase filterbank, we would still
waste computations due to eventual downsampling by M . Alternatively, if we implemented
the LPF/downsampler pair with a polyphase filterbank, we would waste computations by
feeding it the (mostly-zeros) upsampler output. Thus, we need to examine this problem
in more detail.

Assume for the moment that we implemented the upsampler/LPF pair with a polyphase
filterbank, giving the architecture below.

x[n] y[m]
v0[n]

v1[n]

vL−1[n]

q[l]

+

+

z−1

z−1

z−1

...
...

...
...

...

H0(z)

H1(z)

HL−1(z)

↓M

↑L

↑L

↑L

Keeping the “parallel-to-serial” interpretation of the upsampler/delay ladder in mind, the
input sequence to the decimator q[l] has the form

. . . , v0[0], v1[0], v2[0], . . . , vL−1[0],

v0[1], v1[1], v2[1], . . . , vL−1[1],

v0[2], v1[2], v2[2], . . . , vL−1[2], . . .

leading to the observation that

q[l] = v〈l〉L
[
⌊ l

L⌋
]

y[m] = q[mM ]

= v〈mM〉L

[
⌊mM

L ⌋
]

=
∑

k

h〈mM〉L[k] x
[
⌊mM

L ⌋−k
]

Thus, to calculate the resampled output at output index m, we should calculate only the
output of branch number 〈mM〉L at input time index ⌊mM

L ⌋. No other branch outputs
are calculated, so that no computations are wasted. The resulting structure is depicted
below.
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x[n] x[nm] y[m]Hpm(z)

at output index m use:

branch pm = 〈mM〉L
input index nm = ⌊mM

L ⌋.

y[m] =
∑

k

hpm[k]x[nm−k]

An equally-efficient structure could be obtained if we implemented the LPF/downsampler
using an M -branch polyphase decimator which was fed with the proper sequence of input
samples. However, this structure is not as elegant: rather than computing the output of one

particular polyphase branch per output sample, we would need to add all branch outputs,
but where each branch output was calculated using a particular subset of polyphase taps.

• Computational Savings of Polyphase Resampling: Recall the standard (non-polyphase)
resampler below.

↑L ↓MLPF min{ π
L , π

M }

For simplicity, assume that L > M . Since the length of an FIR filter is inversely propor-
tional to the transition bandwidth (recalling Kaiser’s formula), and the transition band-
width is directly proportional to the cutoff frequency, we model the lowpass filter length
as N = RL, where R is a constant that determines the filter’s (and thus the resampler’s)
performance (independent of L and M). To compute one output point, we require M filter
outputs, each requiring N = RL multiplies, giving a total of MRL multiplies per output.

In the polyphase implementation, calculation of one output point requires the computation
of only one polyphase filter output. With N = RL master filter taps and L branches, the
polyphase filter length is R, so that only R multiplies are required per output. Thus, the
polyphase implementation saves a factor of LM multiplies over the standard implementa-
tion!

• Example: CD to DAT rate conversion: Digital audio signals stored on compact digital
discs (CDs) are sampled at 44.1 kHz, while those stored on digital audio tapes (DATs) are
sampled at 48 kHz. Conversion from CD to DAT requires a rate change of

L
M = 48000

44100 = 160
147

Assuming that the audio signal is bandlimited to 20 kHz, we design our master lowpass
filter with transition bands

[(

2k + 20
22.05

)
π

160 ,
(

2(k + 1) − 20
22.05

)
π

160

)

, k ∈ Z

Keeping the passband and stopband ripple levels below −96 dB requires a filter with a
length N ≈ 10000, implying that the standard polyphase resampler will require about
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NM = 1.5 million multiplications per output, or 70 billion multiplications per second!
If the equivalent polyphase implementation is used instead, we require only N/L ≈ 62
multiplies per output, or 3 million multiplications per second.

• Polyphase Resampling with Arbitrary (Non-Rational or Time-Varying) Rate: Though we

have derived a computationally efficient polyphase resampler for rational factors Q = L
M ,

the structure will not be practical to implement for large L, such as might occur when
the desired resampling factor Q is not well approximated by a ratio of two small integers.
Furthermore, we may encounter applications in which Q is chosen on-the-fly, so that
the number L of polyphase branches cannot be chosen a priori. Fortunately, a slight
modification of our existing structure will allow us to handle both of these cases.

Say that our goal is to produce the Q
T -rate samples xc(m

T
Q) given the 1

T -rate samples

xc(nT ), where we assume that xc(t) is bandlimited to 1
2T and Q can be any positive real

number. Consider, for a moment, the outputs of polyphase filters in an ideal zero-delay
L-branch polyphase interpolation bank (as in the block diagram below).

H0(z)

H1(z)

HL−1(z)

...
...

...
...

nT
xc(t)

xc(nT ) xc

(
(n+ 0

L)T
)

xc

(
(n+ 1

L)T
)

xc

(
(n+ L−1

L )T
) z−1

z−1

z−1

+

+

↑L

↑L

↑L xc

(
m
L T
)

We know that, at time index n, the pth and (p+1)th filter outputs equal

xc

(
(n + p

L)T
)

and xc

(
(n + p+1

L )T
)

respectively. Because the highest frequency in xc(t) is limited to 1
2T , the waveform cannot

not change abruptly, and therefore cannot change significantly over a very small time
interval. In fact, when L is large, the waveform is nearly linear in the time interval
between t = (n + p

L)T and t = (n + p+1
L )T , so that, for any α ∈ [0, 1),

xc

(

(n + p+α
L )T

)

= xc

(

(1 − α)(n + p
L)T + α(n + p+1

L )T
)

≈ (1 − α)xc

(

(n + p
L)T

)

+ α xc

(

(n + p+1
L )T

)

This suggests that we can closely approximate xc(t) at any t ∈ R by linearly interpolating
adjacent-branch outputs of a polyphase filterbank with a large-enough L. The details are
worked out below.

Assume an ideal L-branch polyphase filterbank with d-delay master filter and T -sampled
input, giving access to xc

(
(n + p−d

L )T )
)

for n ∈ Z and p ∈ 0 . . . L−1. By linearly in-
terpolating branch outputs p and p+1 at time n, we are able to closely approximate
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xc

(
(n + p−d+α

L )T )
)

for any α ∈ [0, 1). We would like to approximate y[m] = xc(m
T
Q − dT

L )
in this manner—note the inclusion of the master filter delay. So, for a particular m, Q, d,
and L, we would like to find n ∈ Z, p ∈ 0 . . . L−1, and α ∈ [0, 1) such that

(

n +
p − d + α

L

)

T = m
T

Q
− d

T

L

nL + p + α =
mL

Q

=

(
m

Q

)

L

=

(⌊
m

Q

⌋

+

〈
m

Q

〉

1

)

L

=

⌊
m

Q

⌋

L +

⌊〈
m

Q

〉

1

L

⌋

+

〈〈
m

Q

〉

1

L

〉

1

=

⌊
m

Q

⌋

︸ ︷︷ ︸

∈ Z

L +

⌊〈
m

Q

〉

1

L

⌋

︸ ︷︷ ︸

∈ 0 . . . L − 1

+

〈
mL

Q

〉

1
︸ ︷︷ ︸

∈ [0, 1)

Thus, we have found suitable n, p, and α. Making clear the dependence on output time
index m, we write

nm =

⌊
m

Q

⌋

pm =

⌊〈
m

Q

〉

1

L

⌋

αm =

〈
mL

Q

〉

1

and generate output y[m] ≈ xc(m
T
Q − dT

L ) via

y[m] = (1−αm)
∑

k

hpm[k]x[nm−k] + αm

∑

k

hpm+1[k]x[nm−k]

The arbitrary rate polyphase resampling structure is summarized in the diagram below.

x[n] x[nm] y[m]+

1−αmHpm(z)

αmHpm+1(z)

at output index m, use

branch pm = ⌊〈m
Q 〉1L⌋

input index nm = ⌊m
Q ⌋

weight αm = 〈mL
Q 〉1.

y[m] = (1−αm)
∑

k hpm[k]x[nm−k]
+αm

∑

k hpm+1[k]x[nm−k]
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Note that our structure refers to polyphase filters Hpm(z) and Hpm+1(z) for pm ∈ 0 . . . L−1.
This specifies the standard polyphase bank {H0(z), . . . ,HL−1(z)} plus the additional filter
HL(z). Ideally the pth filter has group delay d−p

L , so that HL(z) should advance the input
one full sample relative to H0(z), i.e., HL(z) = zH0(z). There are a number of ways to
design/implement the additional filter.

1. Design a master filter of length LR + 1 (where R is the polyphase filter length), and
then construct

hp[k] = h[kL + p] for p ∈ 0 . . . L.

Note that hL[k] = h0[k + 1] for 0 ≤ k ≤ R − 2.

2. Set HL(z) = H0(z) and advance the input stream to the last filter by one sample
(relative to the other filters).

In certain applications the rate of resampling needs to be adjusted on-the-fly. The arbitrary
rate resampler easily facilitates this requirement by replacing Q with Qm in the definitions
for nm, pm, and αm.

Polyphase filter design follows either an indirect approach, where a master filter with DC
gain L and cutoff frequency min{ π

L , Qπ
L } is designed and later split into polyphase filters,

or a direct approach, where each filter is independantly designed to approximate an ideal
fractional-delay filter. For the direct approach, we require that Q ≥ 1 (or Q ≈ 1) since
the otherwise the filterbank would not perform the necessary anti-aliasing function.

Finally, it should be emphasized that L, the number of branches, must be chosen large
enough so that the errors due to linear interpolation are negligible. (As such, it is not
a function of Q.) If we instead use a more sophisticated interpolation method, e.g., La-
grange interpolation involving more than two branch outputs, then fewer polyphase filters
would be necessary for the same overall performance, reducing the storage requirements
for polyphase filter taps. On the other hand, combining the outputs of more branches
requires more computations per output point. In the end, we have a tradeoff between
storage and computation.

• Multi-stage Interpolation: In the single-stage interpolation structure illustrated below, the
required impulse response of H(z) can be very long for large L.

x[n] y[m]↑L H(z)

Significant computational savings may result from breaking the interpolation into multiple
stages. In two-stage interpolation (illustrated below), we choose interpolation factors L1

and L2 such that L1L2 = L and the filter pair {G(z), F (z)} so that the overall performance
meets some ripple specifications.

x[n]
v[l] u[l] w[m]

y[m]↑L1 ↑L2 F (z)G(z)

Below we describe a general approach to the design of two-stage interpolators. Multi-stage
interpolators with more than two stages can be designed using similar principles.
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Consider the role of G(z) to be the suppression of unwanted spectral images caused by
L1-upsampling. Assuming that G(z) is designed correctly, F (z) needs only to suppress the
images caused by the L2-upsampling. Assuming an input signal bandlimited to ω0, design
of G(z) proceeds in accordance with the figure below. Note that this is a straightforward
filter design for interpolation factor L1.

|X(ejω)|

|V (ejω)|

|G(ejω)|

ω

ω

ω
0

0

0

π 2π2π−ω0ω0

ω0

L1

ω0

L1

π
L1

π
L1

2π−ω0

L1

2π−ω0

L1

2π
L1

2π
L1

2π+ω0

L1

2π+ω0

L1

3π
L1

3π
L1

4π−ω0

L1

4π−ω0

L1

4π
L1

4π
L1

4π+ω0

L1

4π+ω0

L1

5π
L1

5π
L1

6π−ω0

L1

6π−ω0

L1

desired

desireddesired

. . .

. . .

For design of F (z), consider that u[l] has been upsampled by factor L2 to produce w[m];
we want to filter out the unwanted spectral images in w[m]. The design procedure for F (z)
is very similar to the design procedure for G(z) except that the upsampler input (u[l]) now
has bandwidth L2

ω0

L = ω0

L1
. This procedure is illustrated in the next figure, were we used

the fact that L = L1L2.

|U(ejω)|

|W (ejω)|

|F (ejω)|

ω

ω

ω
0

0

0

π 2π2π− ω0

L1

ω0

L1

ω0

L

ω0

L

π
L2

π
L2 2πL1−ω0

L

2πL1−ω0

L

2π
L2

2π
L2

2πL1+ω0

L

2πL1+ω0

L

3π
L2

3π
L2

4πL1−ω0

L

4πL1−ω0

L

4π
L2

4π
L2

4πL1+ω0

L

4πL1+ω0

L

5π
L2

5π
L2

6πL1−ω0

L

6πL1−ω0

L

desired

desireddesired

. . .

. . .
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We now address the ripple specifications on F (z) and G(z) relative to those on H(z).
Because ripple from the passbands of G(z) and F (z) could add constructively, we set the
passband ripple requirements for each filter equal to half of the total allowable passband
ripple δp, i.e., that of H(z). It is sufficient to set the stopband ripple requirements for each
filter equal to the total allowable stopband ripple δs, i.e., that of H(z), if we assume that
the none of the transition-band gains exceed the passband gain.

In multi-stage interpolation, it is common to choose a small value for L1 (e.g., L1 = 2).
This choice will become more clear later, when we consider the computational savings of
multi-stage interpolation.

• Example of Multi-stage Interpolation: Let us first examine the computational savings of
multi-stage interpolation through a simple example. Say that we have input signal with
bandwidth ω0 = 0.9π radians, and that we require an interpolation factor L = 30 with
maximum passband ripple δp = 0.002 and stopband ripple δs = 0.001.

With the one-stage interpolator below,

x[n] y[m]↑30 H(z)

Kaiser’s formula approximates the required FIR filter length to be

Nh ≈
−10 log10(δpδs) − 13

2.3∆ω
≈ 900,

where we have chosen ∆ω = 2π−2ω0

L as the width of the first transition band (i.e., ignoring
the other transition bands for this rough approximation). Thus, a polyphase implementa-
tion of this one-stage interpolator would cost about 900 multiplies per input sample.

With the two-stage interpolator below,

x[n] y[m]↑2 ↑15 F (z)G(z)

the transition band in G(z) has center ω = π
2 and width 2π−2ω0

2 = 0.1π rad. Likewise, the
transition bands in F (z) have width 4π−2ω0

30 = 2.2
30 π rad. Plugging these specifications into

the Kaiser length approximation, we obtain

Ng ≈ 64 and Nf ≈ 88.

Already we see that it will be computationally easier to design two filters of lengths 64 and
88 than it would be to design one length-900 filter. Note that the filter-length reductions
of this structure result from the fact that the transition bands in both F (z) and G(z) are
much wider than the transition band in H(z).

The computational savings also carry over to the operation of the two-stage structure.
Using a cascade of two single-stage polyphase interpolators to implement the two-stage
scheme, we find that the first interpolator would require Ng ≈ 64 multiplies per input
point x[n], while the second would require Nf ≈ 88 multiplies per output of G(z). Since
G(z) outputs two points per input x[n], the two-stage structure would require a total of

≈ 64 + 2 · 88 = 240
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multiplies per input x[n]. Clearly this is a significant savings over the 900 multiplies
required by the one-stage polyphase structure. Note that it was advantageous to choose
the first upsampling ratio (L1) as a small number, else the second stage of interpolation
would need to operate at higher rate and the total number of multiplications per input

point x[n] would increase.

• Computational Savings of Multistage Interpolation: Let us now ask the general question:
How much computation does a two-stage interpolator require relative to a one-stage in-
terpolator as a function of input signal bandwidth ω0, overall interpolation factor L, and
first-stage interpolation factor L1? Answering this question would tell us exactly how to
pick the two-stage factors {L1, L2} and when to use a single stage instead.

For the two structures below (where L = L1L2),

x[n] y[m]↑L H(z)

x[n] y[m]↑L1 ↑L2 F (z)G(z)

recall the first-transition-band specifications:

filter band center band width ∆

H(z) π
L

2π−2ω0

L

G(z) π
L1

2π−2ω0

L1

F (z) π
L2

2πL1−2ω0

L

Also recall that the passband ripple for G and F must be half that of H, say δp, while
the stopband ripple is the same as that for H, say δs. Kaiser’s formula approximates the
required lengths of H, G and F to be

Nh ≈
−10 log10(δsδp) − 13

2.3∆h
=

β

2.3(2π − 2ω0)
L

Ng ≈
−10 log10(δsδp/2) − 13

2.3∆g
=

β + 3

2.3(2π − 2ω0)
L1

Nf ≈
−10 log10(δsδp/2) − 13

2.3∆f
=

β + 3

2.3(2πL1 − 2ω0)
L

using β := −10 log10(δsδp)− 13 for brevity. Assuming a polyphase implementation of each
interpolation stage, the one-stage structure would require Nh multiplies per input point,
while the two-stage structure would require Ng + L1Nf multiplies per input point. This
yields the ratio

R2(ω0, L, L1, β) :=
two-stage mults per input

one-stage mults per input

=

β+3
2.3(2π−2ω0)L1 + β+3

2.3(2πL1−2ω0)LL1

β
2.3(2π−2ω0)L

=
β + 3

β

(
1

L
+

π − ω0

πL1 − ω0

)

L1
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Below we plot R−1
2 (ω0, L, L1, β) as a function of ω0 for L = 30, β = 44 (from δp =

0.002 and δs = 0.001), and different choices of L1. (Note: R−1
2 > 1 favors a two-stage

implementation.) Note that the choice L1 = 2 is optimal for high-bandwidth signals, while
the choice L1 = 3 is slightly better for low-bandwidth signals. If we were forced to choose
a single value, we would be safe with L1 = 2. For all ω0 tested, the two-stage structure
has lower implementation complexity than the one-stage structure.
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11
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R
−
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2

ω0/π

• Multi-stage Decimation: In the single-stage decimation structure illustrated below, the
required impulse response of H(z) can be very long for large M .

x[n] y[m]↓MH(z)

Significant computational savings may result from breaking the decimation into multiple
stages. In two-stage decimation (illustrated below), we choose decimation factors M1 and
M2 such that M1M2 = M and the filter pair {F (z), G(z)} so that the overall performance
meets some ripple specifications.

x[n]
v[l]u[l]w[n]

y[m]↓M1 ↓M2F (z) G(z)

Below we describe a general approach to the design of two-stage decimators for the case
where the input signal has equal energy at all frequencies, and where we intend that
the input signal components at ω ∈ [−ω0

M , ω0

M ) are to be preserved through decimation
(manifesting at ω ∈ [−ω0, ω0) in the decimated output signal). This approach can be
easily extended to design multi-stage decimators with more than two stages.

Consider that F (z) is an anti-aliasing filter for M1-downsampling of the full-bandwidth
signal x[n]. Assuming that F (z) has been designed properly, G(z) then functions as an
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anti-aliasing filter for M2-downsampling of the full-bandwidth signal u[l]. Hence, the
multi-stage design problem can be decoupled into two single-stage design problems.

Assuming that we want to preserve the input signal components in ω ∈ [−ω0

M , ω0

M ), design of
F (z) proceeds in accordance with the following figure. Note that this is a straightforward
filter design for decimation factor M1.

|X(ejω)|

|U(ejω)|

|F (ejω)|

ω

ω

ω
0

0

0

ω0

M2

π
2π−

ω0
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M
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M

π
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π
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2πM2−ω0
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M
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M

desireddesired

desired
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. . .

The objective of G(z) is to anti-alias filter the signal u[l]. The design procedure for G(z)
is identical to the design procedure for F (z) except that the input signal (u[l]) now has
bandwidth ω0

M2
. As illustrated in the following figure, this is a straightforward filter design

for decimation factor M2.
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|G(ejω)|
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π
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π
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We now address the ripple specifications on F (z) and G(z). Recall that, after the first
decimation stage, the input signal components at frequency ω ∈ [−ω0

M , ω0

M ) will be corrupted
by worst-case ripples of

1

M1

(
δf,p + (M1 − 1)δf,s

)
,

where δf,p and δf,s denote the passband and stopband ripples of F (z). Since this spectral
region will occupy the passband of G(z), the first-stage output ripples will, in the worst
case, (approximately) add to the passband ripples of G(z). If we assume that the signal
components within the stopband of G(z) have equal energy as the signal components in the
passband, then after two stages of decimation, the input signal components at frequencies
ω ∈ [−ω0

M , ω0

M ) will be corrupted by worst-case ripples of

1

M2

(
1

M1

(
δf,p + (M1 − 1)δf,s

)
+ δg,p + (M2 − 1)δg,s

)

≈
δf,p

M
+

δf,s + δg,p

M2
+

(M2 − 1)δg,s

M2
,

where the approximation holds when M1 ≫ 1, and where δg,p and δg,s denote the passband
and stopband ripples of G(z). The previous expression suggests that the ripples in G(z)
have a greater effect than those in F (z), and that stopband ripples have a greater effect
than passband ripples.

In multi-stage decimation, it is common to choose a small value for M2 (e.g., M2 = 2)
since, by putting the bulk of the decimation in the first stage, the second stage can operate
at a very low rate. As with the case of interpolation, one could analyze the computational
savings precisely for various choices of M2.
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