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Abstract

In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple

measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vec-

tors that share a common support are recovered from undersampled noisy measurements. The algorithm,

AMP-MMV, is capable of exploiting temporal correlations inthe amplitudes of non-zero coefficients, and

provides soft estimates of the signal vectors as well as the underlying support. Central to the proposed

approach is an extension of recently developed approximatemessage passing techniques to the amplitude-

correlated MMV setting. Aided by these techniques, AMP-MMVoffers a computational complexity that

is linear in all problem dimensions. In order to allow for automatic parameter tuning, an expectation-

maximization algorithm that complements AMP-MMV is described. Finally, a detailed numerical study

demonstrates the power of the proposed approach and its particular suitability for application to high-

dimensional problems.

I. INTRODUCTION

As the field of compressive sensing (CS) [1]–[3] matures, researchers have begun to explore numerous

extensions of the classical sparse signal recovery problem, in which a signal with few non-zero coefficients

is reconstructed from a handful of incoherent linear measurements. One such extension, known as

the multiple measurement vector(MMV) problem, generalizes the sparse signal recovery, orsingle

measurement vector(SMV), problem to the case where a group of measurement vectors has been obtained

from a group of signal vectors that are assumed to be jointly sparse, sharing a common support. Such a

problem has many applications, including magnetoencephalography [4], [5], direction-of-arrival estimation

[6] and parallel magnetic resonance imaging (pMRI) [7].
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Mathematically, givenT length-M measurement vectors, the traditional MMV objective is to recover

a collection of length-N sparse vectors{x(t)}Tt=1, whenM < N . Each measurement vector,y(t), is

obtained as

y(t) = Ax(t) + e(t), t = 1, . . . , T, (1)

whereA is a known measurement matrix ande(t) is corrupting additive noise. The unique feature of the

MMV problem is the assumption that the support of each sparsesignal vectorx(t) is identical.

A straightforward approach to solving the MMV problem is to break it apart into independent SMV

problems and apply one of the many SMV algorithms. While simple, this approach ignores valuable

structure in the signal that can be exploited to provide improved recovery performance. Indeed, under

mild conditions, the probability of recovery failure can bemade to decay exponentially as the number

of timesteps grows when taking into account the joint sparsity [8]. A number of algorithms tailored to

the MMV problem have been proposed to take advantage of this structure.

Algorithms developed for the MMV problem are oftentimes intuitive extensions of SMV algorithms,

and therefore share a similar taxonomy. Among the differenttechniques that have been proposed are

mixed-norm minimization methods [5], [9]–[11], greedy pursuit methods [5], [12], [13], and Bayesian

methods [6], [14]–[16]. Also of note are techniques that transform the MMV probleminto a block-sparse

SMV problem [16], [17]. Existing literature suggests that greedy pursuit techniques are outperformed by

mixed-norm minimization approaches, which in turn are surpassed by Bayesian methods [5], [14], [16].

In addition to work on the MMV problem, related work has been performed on a similar problem

sometimes referred to as the “dynamic CS” problem [18]–[22]. The dynamic CS problem also shares the

trait of working with multiple measurement vectors, but instead of joint sparsity, considers a situation in

which the support of the signal changes slowly over time.

In recent work, Donoho, Maleki, and Montanari proposed an SMV algorithm known asapproximate

message passing(AMP) that combines the speed of iterative thresholding techniques with the reconstruc-

tive power of linear programs [23]. Although originally formulated to solve the basis pursuit [24] problem,

it was later extended to consider arbitrary signal priors [25]. In [22], we proposed a message passing

algorithm for the dynamic CS problem that employs AMP withinthe “turbo” framework proposed in [26].

In this work we propose a similarly inspired algorithm for the MMV problem (1). As we subsequently

show, results in the dynamic CS domain do not always translate to the MMV domain, perhaps somewhat

surprisingly. For instance, while increased temporal correlation of signal amplitudes can be beneficial in

the dynamic CS problem, it is detrimental in the MMV problem.
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The primary contribution of this work is the development of an approximate message passing algorithm,

which we will refer to as AMP-MMV, that performs inference ona probabilistic signal model enforcing

joint sparsity of the signal vectors. Ours joins a handful ofMMV algorithms that also account for temporal

correlations in the amplitudes of the non-zero coefficients(cf. [11], [16]), which we model as Gauss-

Markov random processes. Incorporating this temporal correlation structure is crucial, not only because

many real-world signals possess such structure, but because the performance of MMV algorithms is

particularly sensitive to this structure [8], [14], [16], [27].

Furthermore, we discuss an oracle bound for our problem based on a support-aware Kalman smoother

(SKS), and show that it can be straightforwardly implemented through an appropriate message passing

algorithm operating on a similar graphical model to that used by AMP-MMV. The connection between

AMP-MMV and the SKS is further explored through a numerical study, and examples are given where

it is shown that AMP-MMV often performs near the oracle bound. To our knowledge, ours is the first

work to explicitly compare against the SKS in the context of the MMV problem.

Since our probabilistic signal model relies on a set of hyperparameters that may not be known in

practice, we describe a principled method of learning all ofthe hyperparameters from the data using an

expectation-maximization (EM) algorithm [28]. Importantly, our EM algorithm makes use of information

that has already been obtained in the process of executing AMP-MMV, making the EM procedure highly

efficient.

Finally, we present the a detailed numerical study of AMP-MMV, that includes a comparison against

the SKS, as well as three state-of-the-art MMV algorithms. This study demonstrates that AMP-MMV

performs well under a variety of challenging settings, and that it is especially suitable for application to

high-dimensional problems. In what represents a less-explored direction for the MMV problem, we also

consider a case in which a different measurement matrix is used at each timestep, as in [6]. Such a scenario

may occur in communication over sparse channels [29], or in situations where the measurement vectors

are acquired simultaneously, but in different channels governed by distinct measurement processes, such

as pMRI [30]. Our empirical results suggest that, when it is possible, substantial performance gains can

be obtained by varying the measurement matrix.

The remainder of this work is organized as follows: In Section II we describe our probabilistic signal

model and in SectionIII we discuss oracle-aided estimation using the SKS. In Section IV, we provide a

description of AMP-MMV, discussing key aspects of its implementation. Then, in SectionV, we describe

our EM approach to learning the hyperparameters. The results of our numerical study are presented in

SectionVI, and a conclusion follows in SectionVII .
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A. Notation

Boldfaced lower-case letters, e.g.,a, denote vectors, while boldfaced upper-case letters, e.g., A, denote

matrices. The lettert is strictly used to index a timestep,t = 1, 2, . . . , T , the lettern is strictly used to

index the coefficients of a signal,n = 1, . . . , N , and the letterm is strictly used to index the measurements,

m = 1, . . . ,M . The superscript(t) indicates a timestep-dependent quantity, while a superscript without

parentheses, such ask, indicates a quantity whose value changes according to somealgorithmic iteration

indexk. Subscripted variables such asx(t)n are used to denote thenth element of the vectorx(t). Similarly,

if S denotes a set of indices, thenx(t)
S denotes the sub-vector ofx(t) consisting of only the elements

whose indices are inS. Themth row of the matrixA is denoted byaTm. An M -by-M identity matrix

is denoted byI
M

, a length-N vector of ones is given by1
N

andD(a) designates a diagonal matrix

of appropriate dimension whose diagonal entries are given by the elements of the vectora. Finally,

CN (a; b,C) refers to the complex normal distribution that is a functionof the vectora, with meanb

and covariance matrixC.

II. SIGNAL MODEL

In this section, we elaborate on the signal model outlined inSectionI, and make precise our modeling

assumptions. Quite frequently, the collection of measurement vectors form a time-series, thus we adopt

a temporal convention for the MMV problem, without loss of generality. Our signal model, as well as

our algorithm, will be presented in the context of complex-valued signals, but can be easily modified to

accommodate real-valued signals.

As noted in SectionI, we consider the linear measurement model (1), in which the signalx(t) ∈ CN

at timestept is observed asy(t) ∈ CM through the linear operatorA ∈ CM×N . We assumee(t) ∼

CN (0, σ2eIM
) is circularly symmetric complex white Gaussian noise. We use S , {n|x

(t)
n 6= 0} to

denote the indices of the time-invariant support of the signal, which is assumed to be suitably sparse1,

i.e., |S| ≤M .

Our approach to specifying a prior distribution for the signal, p({x(t)}Tt=1), is motivated by a desire

to separate the support,S, from the amplitudes of the non-zero, or “active,” coefficients. To accomplish

1If the signal being recovered is not itself sparse, it is assumed that there exists a known basis, incoherent with the measurement

matrix, in which the signal possesses a sparse representation. Without loss of generality, we will assume the underlying signal

is sparse in the canonical basis.
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this, we decompose each coefficientx
(t)
n as the product of two hidden variables:

x(t)n = sn · θ
(t)
n ⇔ p(x(t)n |sn, θ

(t)
n ) =







δ(x
(t)
n − θ

(t)
n ) sn = 1,

δ(x
(t)
n ) sn = 0,

(2)

wheresn ∈ {0, 1} is a binary variable that indicates support set membership,andθ(t)n ∈ C is a variable

that provides the amplitude of coefficientx(t)n . When sn = 0, x(t)n = 0 andn /∈ S, and whensn = 1,

x
(t)
n = θ

(t)
n and n ∈ S. To model the sparsity of the signal, we treat eachsn as a Bernoulli random

variable with Pr{sn = 1} = λn < 1.

In order to model the temporal correlation of signal amplitudes, we treat the evolution of amplitudes

over time as stationary first-order Gauss-Markov random processes. Specifically, we assume thatθ
(t)
n

evolves according to the following linear dynamical systemmodel:

θ(t)n = (1− α)(θ(t−1)
n − ζ) + αw(t)

n + ζ, (3)

whereζ ∈ C is the mean of the amplitude process,w
(t)
n ∼ CN (0, ρ) is a circularly symmetric white

Gaussian perturbation process, andα ∈ [0, 1] is a scalar that controls the correlation ofθ(t)n across time.

At one extreme,α = 0, the random process is perfectly correlated(θ
(t)
n = θ

(t−1)
n ), while at the other

extreme,α = 1, the amplitudes evolve independently over time. Note that the binary support vector,s, is

independent of the amplitude random process,{θ(t)}Tt=1, which implies that there are hidden amplitude

“trajectories”,{θ(t)n }Tt=1, associated with inactive coefficients. Consequently,θ
(t)
n should be thought of as

the conditional amplitude ofx(t)n , conditioned onsn = 1.

Under our model, the prior distribution of any signal coefficient, x(t)n , is a Bernoulli-Gaussian or

“spike-and-slab” distribution:

p(x(t)n ) = (1− λn)δ
(

x(t)n
)

+ λnCN
(

x(t)n ; ζ, σ2
)

, (4)

whereδ(·) is the Dirac delta function andσ2 ,
αρ
2−α is the steady-state variance ofθ(t)n . We note that

whenλn < 1, (4) is an effective sparsity-promoting prior due to the point mass atx(t)n = 0.

III. T HE SUPPORT-AWARE KALMAN SMOOTHER

Prior to describing AMP-MMV in detail, we first motivate the type of inference we wish to perform.

Suppose for a moment that we are interested in obtaining a minimum mean square error (MMSE)

estimate of{x(t)}Tt=1, and that we have access to an oracle who can provide us with the support,S. With

this knowledge, we can concentrate solely on estimating{θ(t)}Tt=1, since, conditioned onS, an MMSE

estimate of{θ(t)}Tt=1 can provide an MMSE estimate of{x(t)}Tt=1. For the linear dynamical system of
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(3), the support-aware Kalman smoother (SKS) provides the appropriate oracle-aided MMSE estimator

of {θ(t)}Tt=1 [31]. The state-space model used by the SKS is:

θ(t) = (1− α)θ(t−1) + αζ1
N
+ αw(t), (5)

y(t) = AD(s)θ(t) + e(t), (6)

wheres is the binary support vector associated withS. If θ̂
(t)

is the MMSE estimate returned by the

SKS, then an MMSE estimate ofx(t) is given byx̂(t) = D(s)θ̂
(t)

.

The state-space model (5), (6) provides a useful interpretation of our signal model. In the context of

Kalman smoothing, the state vectorθ(t) is only partially observable (due to the action ofD(s) in (6)).

SinceD(s)θ(t) = x(t), noisy linear measurements ofx(t) are used to infer the stateθ(t). However, since

only thoseθ(t)n for which n ∈ S are observable, and thus identifiable, they are the only oneswhose

posterior distributions will be meaningful.

Since the SKS performs optimal MMSE estimation, given knowledge of the true signal support, it

provides a useful lower bound on the achievable performanceof any support-agnostic Bayesian algorithm

that aims to perform MMSE estimation of{x(t)}Tt=1.

IV. T HE AMP-MMV A LGORITHM

In SectionII we decomposed each signal coefficient,x
(t)
n , as the product of a binary support variable,sn,

and an amplitude variable,θ(t)n . We now develop an algorithm that infers a marginal posterior distribution

on each variable, enabling both soft estimation and soft support detection.

The statistical structure of the signal model from SectionII becomes apparent from a factorization of

the posterior joint pdf of all random variables. If we defineȳ to be the collection of all measurement

vectors,{y(t)}Tt=1, and definēx and θ̄ similarly, then the posterior joint distribution factors as follows:

p(x̄, θ̄, s|ȳ) ∝
T
∏

t=1

(

M
∏

m=1

p(y(t)m |x(t))

N
∏

n=1

p(x(t)n |θ(t)n , sn)p(θ
(t)
n |θ(t−1)

n )

)

N
∏

n=1

p(sn), (7)

where ∝ indicates equality up to a normalizing constant, andp(θ(1)n |θ
(0)
n ) , p(θ

(1)
n ). A convenient

graphical representation of this decomposition is given bya factor graph [32], which is an undirected

bipartite graph that connects the pdf “factors” of (7) with the variables that make up their arguments.

The factor graph for the decomposition of (7) is shown in Fig.1. The factor nodesare denoted by

filled squares, while thevariable nodesare denoted by circles. In the figure, the signal variable nodes at

timestept, {x(t)n }Nn=1, are depicted as lying in a plane, or “frame”, with successive frames stacked one

after another. Since during inference the measurements{y
(t)
m } are known observations and not random
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Fig. 1: Factor graph representation of the decomposition ofp(x̄, θ̄, s|ȳ) in (7).

Factor Distribution Functional Form

g
(t)
m

(

x(t)
)

p
(

y
(t)
m |x(t)

)

CN
(

y
(t)
m ;aTmx(t), σ2

e

)

f
(t)
n

(

x
(t)
n , sn, θ

(t)
n

)

p
(

x
(t)
n |sn, θ

(t)
n

)

δ
(

x
(t)
n − snθ

(t)
n

)

hn
(

sn
)

p
(

sn
) (

1− λn
)(1−sn)(

λn
)sn

d
(1)
n

(

θ
(1)
n

)

p
(

θ
(1)
n

)

CN
(

θ
(1)
n ; ζ, σ2

)

d
(t)
n

(

θ
(t)
n , θ

(t−1)
n

)

p
(

θ
(t)
n |θ(t−1)

n

)

CN
(

θ
(t)
n ; (1− α)θ

(t−1)
n + αζ, α2ρ

)

TABLE I: The factors, underlying distributions, and functional forms associated with the signal model of SectionII .

variables, they do not appear explicitly in the factor graph. The connection between the frames occurs

through the amplitude and support indicator variables, providing a graphical representation of the temporal

correlation in the signal. For visual clarity, these{θ(t)n }Tt=1 and sn variable nodes have been removed

from the graph for the intermediate indexn, but should in fact be present at every indexn = 1, . . . , N .

The factor nodes in Fig.1 have all been assigned alphabetic labels for clarity. The correspondence

between these factor labels and the distributions they represent, as well as the functional form of the

distributions, is presented in TableI.

A natural approach to performing statistical inference on signal models that possess a convenient factor

graph representation is belief propagation [33]. In belief propagation, the messages exchanged between

connected nodes of the graph represent probability distributions. In cycle-free graphs, belief propagation

can be viewed as an instance of the sum-product algorithm, allowing one to obtain an exact posterior

marginal distribution for each unobserved variable, givena collection of observed variables. When the

factor graph contains cycles, the same rules that define the sum-product algorithm can still be applied,

however convergence is no longer guaranteed [32]. Despite this, there exist many problems to which
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loopy belief propagation [34] has been successfully applied, including inference on Markov random elds

[35], LDPC decoding [36], and compressed sensing [23], [26], [37]–[40].

We now proceed with a high-level description of AMP-MMV, an algorithm that follows the sum-

product methodology, while leveraging recent advances in message approximation [23]. In what follows,

we useνa→b(·) to denote a message that is passed from nodea to a connected nodeb.

A. Message Scheduling

Since the factor graph of Fig.1 contains many cycles there are a number of valid ways to schedule, or

sequence, the messages that are exchanged in the graph. We will describe two message passing schedules

that empirically provide good convergence behavior and straightforward implementation. We refer to these

two schedules as theparallel message scheduleand theserial message schedule. In both cases, messages

are first initialized to agnostic values, and then iteratively exchanged throughout the graph according to

the chosen schedule until either convergence occurs, or a maximum number of allowable iterations is

reached.

Conceptually, both message schedules can be decomposed into four distinct phases, differing only in

which messages are initialized and the order in which the phases are sequenced. We label each phase

using the mnemonics(into), (within), (out), and (across). In phase(into), messages are passed from

the sn and θ(t)n variable nodesinto frame t. Loosely speaking, these messages convey current beliefs

about the values ofs andθ(t). In phase(within), messages are exchangedwithin frame t, producing an

estimate ofx(t) using the current beliefs abouts andθ(t) together with the available measurementsy(t).

In phase(out), the estimate ofx(t) is used to refine the beliefs abouts andθ(t) by passing messages

out of frame t. Finally, in phase(across), messages are sent fromθ(t)n to eitherθ(t+1)
n or θ(t−1)

n , thus

conveying informationacrosstime about temporal correlation in the signal amplitudes.

The parallel message schedule begins by performing phase(into) in parallel for each framet = 1, . . . , T

simultaneously. Then, phase(within) is performed simultaneously for each frame, followed by phase

(out). Next, information about the amplitudes is exchanged between the different timesteps by performing

phase(across) in the forward direction, i.e., messages are passed fromθ
(1)
n to θ(2)n , and then fromθ(2)n

to θ(3)n , proceeding untilθ(T )n is reached. Finally, phase(across) is performed in the backward direction,

where messages are passed consecutively fromθ
(T )
n down to θ(1)n . At this point, a single iteration of

AMP-MMV has been completed, and a new iteration can commencestarting with phase(into). In this

way, all of the available measurements,{y(t)}Tt=1, are used to influence the recovery of the signal at each

timestep.
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The serial message schedule is similar to the parallel schedule except that it operates on frames in a

sequential fashion, enabling causal processing of MMV signals. Beginning at the initial timestep,t = 1,

the serial schedule first performs phase(into), followed by phases(within) and(out). Outgoing messages

from the initial frame are then used in phase(across) to pass messages fromθ(1)n to θ(2)n . The messages

arriving at θ(2)n , along with updated beliefs about the value ofs, are used to initiate phase(into) at

timestept = 2. Phases(within) and (out) are performed for frame2, followed by another round of

phase(across), with messages being passed forward toθ
(3)
n . This procedure continues until phase(out)

is completed at frameT . Until now, only causal information has been used in producing estimates of

the signal. If the application permits smoothing, then message passing continues in a similar fashion, but

with messages now propagating backward in time, i.e., messages are passed fromθ(T )n to θ(T−1)
n , phases

(into), (within), and(out) are performed at frameT −1, and then messages move fromθ(T−1)
n to θ(T−2)

n .

The process continues until messages arrive atθ
(1)
n , at which point a singleforward/backward passhas

been completed. We complete multiple such passes, resulting in a smoothed estimate of the signal.

B. Implementing the Message Passes

Space constraints prohibit us from providing a full derivation of all the messages that are exchanged

through the factor graph of Fig.1. Most messages can be derived by straightforward application of the

rules of the sum-product algorithm. Therefore, in this sub-section we will restrict our attention to a

handful of messages in the(within) and (out) phases whose implementation requires a departure from

the sum-product rules for one reason or another.

To aid our discussion, in Fig.2 we summarize each of the four phases, focusing primarily on a

single coefficient indexn at some intermediate framet. Arrows indicate the direction that messages are

moving, and only those nodes and edges participating in a particular phase are shown in that phase.

For the (across) phase we show messages being passed forward in time, and omita graphic for the

corresponding backwards pass. The figure also introduces the notation that we adopt for the different

variables that serve to parameterize the messages. Certainvariables, e.g.,⇀η(t)n and↼

η(t)n , are accented with

directional arrows. This is to distinguish variables associated with messages moving in one direction

from those associated with messages moving in another. For Bernoulli message pdfs, we show only the

nonzero probability, e.g.,λn = νhn→sn(sn = 1).

Phase(within) entails using the messages transmitted fromsn andθ(t)n to f (t)n to compute the messages

that pass betweenx(t)n and the{g(t)m } nodes. Inspection of Fig.2(b) reveals a dense interconnection

between the{x(t)n } and {g
(t)
m } nodes. As a consequence, applying the standard sum-productrules to
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Fig. 2: A summary of the four message passing phases, including message notation and form.

compute theν
g
(t)
m →x

(t)
n

(·) messages would result in an algorithm that required the evaluation of multi-

dimensional integrals that grew exponentially in number inboth N and M . Since we are strongly

motivated to apply AMP-MMV to high-dimensional problems, this approach is clearly infeasible. Instead,

we turn to a recently developed algorithm known asapproximate message passing(AMP).

A complete description of AMP is beyond the scope of this work, and we refer the interested reader

to [23], [25]. For the purposes of this discussion, we simply note that AMP is an efficient means of

performing inference on the factor graph in Fig.2(b), given generic signal priors, and is specified by

steps (A4) - (A8) in Table II . A recent theoretical analysis of AMP [40] shows that in the large-system

limit (i.e., M , N → ∞ with M /N fixed), the behavior of AMP is governed by a state evolution whose

fixed points, when unique, correspond to MMSE-optimal signal estimates.

From AMP’s viewpoint,ν
f
(t)
n →x

(t)
n

(·) is the “prior distribution” forx(t)n , which takes the Bernoulli-

Gaussian form

ν
f
(t)
n →x

(t)
n

(x(t)n ) = (1−
↼

π(t)n )δ(x(t)n ) +
↼

π(t)n CN (x(t)n ;
↼

ξ(t)n ,
↼

ψ(t)
n ). (8)

This “prior” determines the AMP soft-thresholding functions defined in (D1) - (D4) of Table II . The

derivation of these thresholding functions closely follows those outlined in [26], which considered the

special case of a zero-mean Bernoulli-Gaussian prior.

After using AMP to implement phase(within), we must pass messages out of framet in order to

update our beliefs about the values ofs andθ(t) in the (out) phase. Applying the sum-product algorithm
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% Define soft-thresholding functions:

Fnt(φ; c) , (1 + γnt(φ; c))−1
(↼

ψ
(t)
n φ+

↼

ξ
(t)
n c

↼

ψ
(t)
n +c

)

(D1)

Gnt(φ; c) , (1 + γnt(φ; c))−1
( ↼

ψ
(t)
n c

↼

ψ
(t)
n +c

)

+ γnt(φ; c)|Fn(φ; c)|2 (D2)

F′
nt(φ; c) ,

∂
∂φ

Fnt(φ, c) = 1
c

Gnt(φ; c) (D3)

γnt(φ; c) ,
(

1−
↼
π
(t)
n

↼
π
(t)
n

)(↼

ψ
(t)
n +c
c

)

× exp
(

−
[↼

ψ
(t)
n |φ|2+

↼

ξ
(t) ∗
n cφ+

↼

ξ
(t)
n cφ∗−c|

↼

ξ
(t)
n |2

c(
↼

ψ
(t)
n +c)

])

(D4)

% Begin passing messages . . .
for t = 1, . . . , T, ∀n :

% Execute the (into) phase . . .

↼
π
(t)
n =

λn·
∏

t′ 6=t

⇀
π
(t′)
n

(1−λn)·
∏

t′ 6=t
(1−

⇀
π
(t′)
n )+λn·

∏
t′ 6=t

⇀
π
(t′)
n

(A1)

↼

ψ
(t)
n =

⇀
κ
(t)
n ·

↼
κ
(t)
n

⇀
κ
(t)
n +

↼
κ
(t)
n

(A2)

↼

ξ
(t)
n =

↼

ψ
(t)
n ·

(⇀
η
(t)
n

⇀
κ
(t)
n

+
↼
η
(t)
n

↼
κ
(t)
n

)

(A3)

% Initialize AMP-related variables . . .

∀m : z1mt = y
(t)
m ,∀n : µ1nt = 0, and c1t = 100 ·

∑N
n=1 ψ

(t)
n

% Execute the (within) phase using AMP . . .

for i = 1, . . . , I, ∀n,m :

φint =
∑M
m=1 A

∗
mnz

i
mt + µint (A4)

µi+1
nt = Fnt(φint; c

i
t) (A5)

vi+1
nt = Gnt(φint; c

i
t) (A6)

ci+1
t = σ2e + 1

M

∑N
n=1 v

i+1
nt (A7)

zi+1
mt = y

(t)
m − aTmµi+1

t +
zi
mt

M

∑N
n=1 F′

nt(φ
i
nt; c

i
t) (A8)

end

x̂
(t)
n = µI+1

nt % Store current estimate of x(t)n (A9)

% Execute the (out) phase . . .
⇀
π
(t)
n =

(

1 +
( ↼

π
(t)
n

1−
↼
π
(t)
n

)

γnt(φInt; c
I+1
t )

)−1
(A10)

(
⇀

ξ
(t)

n ,
⇀

ψ
(t)

n ) = taylor approx(↼π(t)
n , φInt, c

I
t ) (A11)

% Execute the (across) phase from θ
(t)
n to θ(t+1)

n . . .

⇀
η
(t+1)
n = (1− α)

( ⇀
κ
(t)
n

⇀

ψ
(t)
n

⇀
κ
(t)
n +

⇀

ψ
(t)
n

)(⇀
η
(t)
n

⇀
κ
(t)
n

+
⇀

ξ
(t)
n

⇀

ψ
(t)
n

)

+ αζ (A12)

⇀
κ
(t+1)
n = (1− α)2

( ⇀
κ
(t)
n

⇀

ψ
(t)
n

⇀
κ
(t)
n +

⇀

ψ
(t)
n

)

+ α2ρ (A13)

end

TABLE II: Message update equations for executing a single forward pass using the serial message schedule.

rules to compute the messageν
f
(t)
n →θ

(t)
n

(·) results in the expression

νexact
f
(t)
n →θ

(t)
n

(θ(t)n ) , (1−
↼

π(t)n )CN (0;φint, c
i
t) +

↼

π(t)n CN (θ(t)n ;φint, c
i
t), (9)

which is an improper distribution due to the constant (w.r.t. θ(t)n ) term CN (0;φint, c
i
t). This behavior is a

consequence of the conditional signal model (2). In particular, whensn = 0, x(t)n provides no information

about the value ofθ(t)n . Roughly speaking, the termCN (0;φint, c
i
t) corresponds to the distribution ofθ(t)n

conditioned on the casesn = 0.
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As a means of circumventing the improper message pdf above, we will regard our original signal

model, in whichsn ∈ {0, 1}, as the limiting case of a signal model in whichsn ∈ {ε, 1} with ε → 0.

For any fixed, positiveε, ν
f
(t)
n →θ

(t)
n

(·) is given by the proper pdf

νmod
f
(t)
n →θ

(t)
n

(θ(t)n ) = (1− Ω(
↼

π(t)n )) CN (θ(t)n ; 1
ε
φint,

1
ε2
cit) + Ω(

↼

π(t)n ) CN (θ(t)n ;φint, c
i
t), (10)

where

Ω(π) ,
ε2π

(1− π) + ε2π
. (11)

Equation (10) is a binary Gaussian mixture density. Whenε ≪ 1, the first Gaussian component is

extremely broad, and conveys little information about the possible value ofθ(t)n . The second component

is a more informative Gaussian whose mean,φint, and variance,cit, are determined by the product of the

messages
{

ν
g
(t)
m →x

(t)
n

(·)
}N

n=1
. The relative mass assigned to each Gaussian component is a function of

the incoming activity probability↼π(t)n (see (8)). Note that, in the limitε → 0, Ω(·) becomes a simple

indicator function:

lim
ε→0

Ω(π) =











0 if 0 ≤ π < 1,

1 if π = 1.

(12)

When implementing AMP-MMV, we therefore fixε at a small positive value, e.g.,ε = 1 × 10−7. If

desired, (10) could then be used as the outgoing message, however this would present a further difficulty.

Propagating a Gaussian mixture along a given edge would result in an exponential growth in the number

of mixture components that would need to be propagated alongsubsequent edges. To avoid this outcome,

we collapse our binary Gaussian mixture to a single Gaussiancomponent, an approach sometimes referred

to asGaussian sum approximation[41], [42]. Since, forε ≪ 1, Ω(·) behaves nearly like the indicator

function in (12), one of the two Gaussian components will typically have negligible mass. For this reason,

collapsing the mixture to a single Gaussian appears justifiable.

To carry out the collapsing, we perform a second-order Taylor series approximation of− log νmod
f
(t)
n →θ

(t)
n

(θ
(t)
n )

with respect toθ(t)n about the point2 φint. This provides the mean,
⇀

ξ
(t)

n , and variance,
⇀

ψ
(t)

n , of the single

Gaussian that serves asν
f
(t)
n →θ

(t)
n

(·). (See Fig.2.) In AppendixA we summarize the Taylor approximation

procedure, and in TableIII provide the pseudocode function,taylor approx, for computing
⇀

ξ
(t)

n and
⇀

ψ
(t)

n .

With the exception of the messages discussed above, all the remaining messages can be derived using

the standard sum-product algorithm rules [32]. For convenience, we summarize the results in TableII ,

where we provide a pseudocode implementation of a single forward pass of AMP-MMV using the serial

2For technical reasons, the Taylor series approximation is performed inR2 instead ofC.
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function (
⇀

ξ,
⇀

ψ) = taylor approx(↼π, φ, c)

% Define useful variables:

a , ε2(1 −Ω(
↼
π)) (T1)

ā , Ω(
↼
π) (T2)

b , ε2

c
|(1− 1

ε
)φ|2 (T3)

dr , − 2ε2

c
(1 − 1

ε
)φr (T4)

di , − 2ε2

c
(1− 1

ε
)φi (T5)

% Compute outputs:
⇀

ψ = (a2e−b+aā+ā
2eb)c

ε2a2e−b+aā(ε2+1−
1
2
cd2

r
)+ā2eb

(T6)

⇀

ξr = φr −
1
2

⇀

ψ−ae−b
dr

ae−b+ā
(T7)

⇀

ξi = φi −
1
2

⇀

ψ
−ae−b

di

ae−b+ā
(T8)

⇀

ξ =
⇀

ξr + j
⇀

ξi (T9)

return (
⇀

ξ,
⇀

ψ)

TABLE III: Pseudocode function for computing a single-Gaussian approximation of (10).

message schedule. Inspection of the pseudocode reveals that the overall per-iteration complexity of AMP-

MMV is linear in all problem dimensions, that is,O(TNM) flops3, reflecting the substantial complexity

reduction that comes from AMP.

V. ESTIMATING THE MODEL PARAMETERS

The signal model of SectionII depends on the parameters{λn}
N
n=1, ζ, α, ρ, andσ2e . While some of these

parameters may be known accurately from prior information,it is likely that many will require tuning. To

this end, we develop an expectation-maximization (EM) algorithm that couples with the message passing

procedure described in SectionIV-A to provide a means of learning all of the model parameters while

simultaneously estimating the signalx̄ and its supports.

The EM algorithm [28] is an appealing choice for performing parameter estimation for several reasons.

First and foremost, the EM algorithm is a well-studied and principled means of parameter estimation.

At every EM iteration, the data likelihood function is guaranteed to increase until convergence to a local

maximum of the likelihood function occurs [28]. For multimodal likelihood functions, local maxima

will, in general, not coincide with the global maximum likelihood (ML) estimator, however a judicious

initialization can help in ensuring the EM algorithm reaches the global maximum [43]. The second

appealing feature of the EM algorithm lies in the fact that itis an iterative procedure. When using

3Fast implicitA operators can provide significant computational savings inhigh-dimensional problems; implementing a Fourier

transform as a fast Fourier transform (FFT) subroutine, forexample, would drop AMP-MMV’s complexity fromO(TNM) to

O(TN log2 N).
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AMP-MMV as a smoother, there are already multiple rounds of message passing taking place, thus the

EM algorithm is readily incorporated as an auxiliary procedure. Finally, the expectation step of the EM

algorithm relies on quantities that have already been computed in the process of executing AMP-MMV,

and so the EM procedure is highly efficient.

We let Γ , {λ, ζ, α, ρ, σ2e} denote the set of all model parameters, and letΓk denote the set of

parameter estimates at thekth EM iteration. Here we have assumed that the binary support indicator

variables share a common activity probability,λ, i.e., Pr{sn = 1} = λ ∀n. For all parameters exceptσ2e

we uses and θ̄ as the so-called “missing” data of the EM algorithm, while for σ2e we usex̄.

For the first iteration of AMP-MMV, the model parameters are initialized based on either prior signal

knowledge, or according to some heuristic criteria. Using these parameter values, AMP-MMV performs

either a single iteration of the parallel message schedule,or a single forward/backward pass of the

serial message schedule, as described in SectionIV-A . Upon completing this first iteration, approximate

marginal posterior distributions are available for each ofthe underlying random variables, e.g.,p(x
(t)
n |ȳ),

p(sn|ȳ), andp(θ(t)n |ȳ). Additionally, belief propagation can provide pairwise joint posterior distributions,

e.g., p(θ(t)n , θ
(t−1)
n |ȳ), for any variable nodes connected by a common factor node [44]. With these

marginal, and pairwise joint, posterior distributions, itis possible to perform the iterative expectation

and maximization steps required to maximizep(ȳ|Γ) in closed-form. We adopt a Gauss-Seidel scheme,

performing coordinate-wise maximization, e.g.,

λk+1 = argmax
λ

Es,θ̄|ȳ

[

log p(ȳ, s, θ̄)
∣

∣ȳ, λ,Γk\{λk}
]

,

wherek is the iteration index common to both AMP-MMV4 and the EM algorithm.

In TableIV we provide the EM parameter update equations for our signal model. In practice, we found

that the robustness and convergence behavior of our EM procedure were improved if we were selective

about which parameters we updated on a given iteration. For example, the parametersα andρ are tightly

coupled to one another, since var{θ
(t)
n |θ

(t−1)
n } = α2ρ. Consequently, if the initial choices ofα andρ are

too small, it is possible that the EM procedure will overcompensate on the first iteration by producing

revised estimates of both parameters that are too large. This leads to an oscillatory behavior in the EM

updates that can be effectively combated by avoiding updating bothα andρ on the same iteration.

4Note that within a single AMP-MMV iteration there are multiple iterations of AMP taking place to implement the(within)

phase at each frame.
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% Define key quantities obtained from AMP-MMV at iteration k:

E[sn|ȳ] =
λn

∏
T

t=1
⇀
π
(t)
n

λn

∏
T
t=1

⇀
π
(t)
n

+(1−λn)
∏

T
t=1(1−

⇀
π
(t)
n

)
(Q1)

ṽ
(t)
n , var{θ(t)n |ȳ} =

(

1
⇀
κ
(t)
n

+ 1
⇀

ψ
(t)
n

+ 1
↼
κ
(t)
n

)−1

(Q2)

µ̃
(t)
n , E[θ(t)n |ȳ] = ṽ

(t)
n ·

(

⇀
η
(t)
n

⇀
κ
(t)
n

+
⇀

ξ
(t)
n

⇀

ψ
(t)
n

+
↼
η
(t)
n

↼
κ
(t)
n

)

(Q3)

v
(t)
n , var

{

x
(t)
n

∣

∣ȳ
}

% See (A6) of Table II

µ
(t)
n , E

[

x
(t)
n

∣

∣ȳ
]

% See (A5) of Table II

% EM update equations:

λk+1 = 1
N

∑N
n=1 E[sn|ȳ] (E1)

ζk+1 =
(

N(T−1)

ρk
+ N

(σ2)k

)−1 (
1

(σ2)k

∑N
n=1 µ̃

(1)
n

+
∑T
t=2

∑N
n=1

1
αkρk

(

µ̃
(t)
n − (1 − αk)µ̃

(t−1)
n

)

)

(E2)

αk+1 = 1
4N(T−1)

(

b−
√

b2 + 8N(T − 1)c
)

(E3)

where:

b , 2
ρk

∑T
t=2

∑N
n=1 Re

{

E[θ(t)n
∗
θ
(t−1)
n |ȳ]

}

−Re{(µ̃
(t)
n − µ̃

(t−1)
n )∗ζk} − ṽ

(t−1)
n − |µ̃

(t−1)
n |2

c , 2
ρk

∑T
t=2

∑N
n=1 ṽ

(t)
n + |µ̃

(t)
n |2 + ṽ

(t−1)
n + |µ̃

(t−1)
n |2

−2Re
{

E[θ(t)n
∗
θ
(t−1)
n |ȳ]

}

ρk+1 = 1
(αk)2N(T−1)

∑T
t=2

∑N
n=1 ṽ

(t)
n + |µ̃

(t)
n |2

+(αk)2|ζk|2 − 2(1 − αk)Re
{

E[θ(t)n
∗
θ
(t−1)
n |ȳ]

}

−2αkRe
{

µ̃
(t)∗
n ζk

}

+ 2αk(1 − αk)Re
{

µ̃
(t−1)∗
n ζk

}

+(1− αk)(ṽ
(t−1)
n + |µ̃

(t−1)
n |2) (E4)

σ2 k+1
e = 1

TM

(

∑T
t=1 ‖y

(t) −Aµ(t)‖2 + 1
T
N
v(t)

)

(E5)

TABLE IV: EM algorithm update equations for the signal modelparameters of SectionII .

VI. N UMERICAL STUDY

In this section we describe the results of an extensive numerical study that was conducted to explore

the performance characteristics and tradeoffs of AMP-MMV.MATLAB
R©

code was written5 to implement

both the parallel and serial message schedules of SectionIV-A , along with the EM parameter estimation

procedure of SectionV. The primary computational burden of executing AMP-MMV involves performing

matrix-vector products withA andAH , allowing AMP-MMV to be easily applied in problems where the

measurement matrix is never stored explicitly, but rather is implemented implicitly through subroutines.

For comparison to AMP-MMV, we tested two other Bayesian algorithms for the MMV problem,

MSBL [14] and T-MSBL6 [16], which have been shown to offer “best in class” performanceon the

MMV problem7. We also included a recently proposed greedy algorithm designed specifically for highly

5Code available atece.osu.edu/∼schniter/turboAMPmmv.

6Code available atdsp.ucsd.edu/∼zhilin/Software.html.

7Since MSBL and T-MSBL were derived for real-valued signals,we likewise ran a real-valued version of AMP-MMV.

ece.osu.edu/~schniter/turboAMPmmv
dsp.ucsd.edu/~zhilin/Software.html
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correlated signals, subspace-augmented MUSIC8 (SA-MUSIC), which has been shown to outperform

MMV basis pursuit and several correlation-agnostic greedymethods [13]. Finally, we implemented the

support-aware Kalman smoother (SKS), which, as noted in Section III , provides a lower bound on the

achievable MSE of any algorithm. To implement the SKS, we took advantage of the fact that̄y, x̄, and

θ̄ are jointly Gaussian, conditioned on the support,s, and thus Fig.1 becomes a Gaussian graphical

model. Consequently, the sum-product algorithm yields closed-form expressions (i.e., no approximations

are required) for each of the messages traversing the graph.Therefore, it is possible to obtain the desired

posterior means (i.e., MMSE estimates ofx̄) despite the fact that the graph is loopy [45, Claim 5].

Three performance metrics were considered throughout our tests. The first metric, which we refer to

as the time-averaged normalized MSE (TNMSE), is defined as

TNMSE(x̄, ˆ̄x) ,
1

T

T
∑

t=1

‖x(t) − x̂(t)‖22
‖x(t)‖22

,

where x̂(t) is an estimate ofx(t). For AMP-MMV, (A9) of Table II was used to producêx(t), which

corresponds to an MMSE estimate ofx(t) under AMP-MMV’s posteriorsp(x(t)n |ȳ). The second metric,

intended to gauge the accuracy of the recovered support, is the normalized support error rate (NSER),

NSER(S, Ŝ) ,
|S \ Ŝ|+ |Ŝ \ S|

|S|
,

whereS is the set of indices of the true support of the signal, andŜ is an estimate of the support. The

NSER is the sum of the misdetections and false positives, normalized by the number of true positives, and

will always be a number in the interval[0, N
K
], whereK , |S|. To obtain support estimates for MSBL,

T-MSBL, and AMP-MMV, we adopted the technique utilized in [16] of identifying theK amplitude

trajectories with the largestℓ2 norms as the support set. Note that this is an optimistic means of identifying

the support, as it assumes that one is aware of the value ofK a priori. For this reason, we obtained an

additional non-oracle-aided support estimate for AMP-MMVby examining the posteriors on the binary

support variables, constructinĝS as Ŝ = {n
∣

∣p(sn|ȳ) >
1
2}. The third and final metric is runtime, which

is an important metric given the prevalence of high-dimensional datasets.

In all simulations, AMP-MMV was given imperfect knowledge of the signal model parameters, and

refined the initial parameter choices according to the EM update procedure given in TableIV. In particular,

the noise variance was initialized atσ2e = 1 × 10−3. The remaining parameters were initialized using

simple heuristics that made use of sample statistics derived from the available measurements,ȳ. In the

8Code obtained through personal correspondence with authors.
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course of running simulations, we monitored the residual energy,
∑T

t=1 ‖y
(t) − Ax̂(t)‖22, and would

automatically switch the schedule, e.g., from parallel to serial, and/or change the maximum number of

iterations whenever the residual energy exceeded a noise variance-dependent threshold. Furthermore, the

final values of the messages from the initial schedule would be used to “warm-start” the latter schedule

in the event the threshold was exceeded. The SKS was given perfect parameter and support knowledge.

Both MSBL and T-MSBL were configured in accordance with suggested settings recommended by the

codes’ authors. Finally, SA-MUSIC was given the true value of K, and upon generating an estimate of

the support,Ŝ, a conditional MMSE signal estimate was produced, e.g.,x̂(t) = E[x(t)|Ŝ,y(t)]. Unless

otherwise stated, the measurement matrices were i.i.d. random Gaussian matrices with unit-norm columns.

A. Performance Versus Sparsity,M/K

As a first experiment, we studied how performance changes as afunction of the measurements-to-

active-coefficients ratio,M/K. For this experiment, a signal of dimensionN = 5000 was generated

according to the real-valued equivalent of the signal modelof SectionII . T = 4 measurement vectors,

each of lengthM = 1563, were acquired, with additive white Gaussian noise added toyield an SNR

of 25 dB. The stationary variance of the amplitude process was setat σ2 ,
αρ
2−α = 1. The activity

probability,λ, was swept over the range[0.096, 0.22]. SinceN andM were fixed, this implies that the

ratio of measurements-to-active-coefficients,M/K, ranged from1.42 to 3.26.

In Fig. 3, we plot the performance when the temporal correlation of the amplitudes is1− α = 0.90.

For AMP-MMV, two traces appear on the NSER plot, with the© marker corresponding to theK-largest-

trajectory-norm method of support estimation, and the△ marker corresponding to the support estimate

obtained from the posteriorsp(sn|ȳ). We see that, whenM/K ≥ 2, the TNMSE performance of both

AMP-MMV and T-MSBL is almost identical to that of the oracle-aided SKS. However, whenM/K < 2,

every algorithm’s support estimation performance (NSER) degrades, and the TNMSE consequently grows.

Indeed, whenM/K < 1.50, all of the algorithms perform poorly compared to the SKS, although T-MSBL

performs the best of the four. We also note the superior NSER performance of AMP-MMV over much

of the range, even when usingp(sn|ȳ) to estimateS (and thus not requiring apriori knowledge ofK).

From the runtime plot we see the tremendous efficiency of AMP-MMV. Over the region in which AMP-

MMV is performing well (and thus not cycling through multiple schedule configurations in vain), we

see that AMP-MMV’s runtime is more than one order-of-magnitude faster than SA-MUSIC, and two

orders-of-magnitude faster than either T-MSBL or MSBL.

In Fig. 4 we repeat the same experiment, but with the increased amplitude correlation1 − α = 0.99.



18

1.5 2 2.5 3

10
−2

10
−1

α = 0.1  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

N
or

m
al

iz
ed

 S
up

po
rt

 E
rr

or
 R

at
e 

(N
S

E
R

)

 

 

T−MSBL
MSBL
SA−MUSIC
AMP−MMV
AMP−MMV [p(s

n
| y)]

1.5 2 2.5 3

−25

−20

−15

−10

−5

α = 0.1  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

T
im

es
te

p−
A

ve
ra

ge
d 

N
or

m
al

iz
ed

 M
S

E
 (

T
N

M
S

E
) 

[d
B

]

 

 

T−MSBL
MSBL
SA−MUSIC
AMP−MMV
SKS

1.5 2 2.5 3

10
1

10
2

10
3

10
4

α = 0.1  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

R
un

tim
e 

[s
]

 

 

T−MSBL
MSBL
SA−MUSIC
AMP−MMV

Fig. 3: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versusM /K.

Correlation coefficient1− α = 0.90.

1.5 2 2.5 3

10
−1

10
0

α = 0.01  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

N
or

m
al

iz
ed

 S
up

po
rt

 E
rr

or
 R

at
e 

(N
S

E
R

)

 

 

T−MSBL
MSBL
SA−MUSIC
AMP−MMV
AMP−MMV [p(s

n
| y)]

1.5 2 2.5 3

−25

−20

−15

−10

−5

0

α = 0.01  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

T
im

es
te

p−
A

ve
ra

ge
d 

N
or

m
al

iz
ed

 M
S

E
 (

T
N

M
S

E
) 

[d
B

]

 

 
T−MSBL
MSBL
SA−MUSIC
AMP−MMV
SKS

1.5 2 2.5 3

10
1

10
2

10
3

10
4

α = 0.01  |  N = 5000, M = 1563, T = 4, SNR = 25 dB

Measurements−to−Active−Coefficients (M/K)

R
un

tim
e 

[s
]

 

 
T−MSBL
MSBL
SA−MUSIC
AMP−MMV

Fig. 4: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versusM/K.

Correlation coefficient1− α = 0.99.

In this case we see that AMP-MMV and T-MSBL still offer a TNMSEperformance that is comparable

to the SKS whenM/K ≥ 2.50, whereas the performance of both MSBL and SA-MUSIC has degraded

across-the-board. WhenM/K < 2.5, the NSER and TNMSE performance of AMP-MMV and T-MSBL

decays sharply, and all the methods considered perform poorly compared to the SKS. Our finding that

performance is adversely affected by increased temporal correlation is consistent with the theoretical and

empirical findings of [8], [13], [14], [16]. Interestingly, the performance of the SKS shows a modest

improvement compared to Fig.3, reflecting the fact that the slower temporal variations of the amplitudes

are easier to track when the support is known.

B. Performance VersusT

In a second experiment, we studied how performance is affected by the number of measurement vectors,

T , used in the reconstruction. For this experiment, we usedN = 5000, M = N/5, λ = 0.10 (M/K = 2),

and SNR= 25 dB. Figure5 shows the performance with a correlation of1− α = 0.90. Comparing to
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Fig. 5: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versusT . Correlation

coefficient 1 -α = 0.90.

Fig. 3, we see that MSBL’s performance is strongly impacted by the reduced value ofM . AMP-MMV

and T-MSBL perform more-or-less equivalently across the range ofT , although AMP-MMV does so with

an order-of-magnitude reduction in complexity. It is interesting to observe that, in this problem regime,

the SKS TNMSE bound is insensitive to the number of measurement vectors acquired.

C. Performance Versus SNR

In the two previous experiments, we studied the performanceof the algorithms when the SNR was

a relatively high25 dB. To understand how AMP-MMV performs in lower SNR environments, we

conducted a test in which SNR was swept over the range[5, 25] dB. The problem dimensions were fixed

at N = 5000, M = 1000, with T = 4 measurement vectors acquired. The sparsity rate,λ, was chosen

to yield M/K = 3 measurements-per-active-coefficient, and the correlation was set at1− α = 0.95.

Our findings are presented in Fig.6. Both T-MSBL and MSBL operate9 within 5 - 10 dB of the SKS

in TNMSE across the range of SNRs, while AMP-MMV operates≈ 5 dB from the SKS when the SNR

is at or below10 dB, and approaches the SKS in performance as the SNR elevates. We also note that

using AMP-MMV’s posteriors onsn to estimate the support does not appear to perform much worse

than theK-largest-trajectory-norm method for high SNRs, and shows aslight advantage at low SNRs.

The increase in runtime exhibited by AMP-MMV in this experiment is a consequence of our decision

to configure AMP-MMV identically for all experiments; our initialization of the noise variance,σ2e , was

more than an order-of-magnitude off over the majority of theSNR range, and thus AMP-MMV cycled

9In lower SNR regimes, learning rules for the noise variance are known to become less reliable [14], [16]. Still, for high-

dimensional problems, a sub-optimal learning rule may be preferable to a computationally costly cross-validation procedure. For

this reason, we ran all three Bayesian algorithms with a learning rule for the noise variance enabled.
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Fig. 6: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versus SNR. Correlation

coefficient1− α = 0.95.

through many different schedules in an effort to obtain an (unrealistic) residual energy. Runtime could

be drastically improved in this experiment by using a more appropriate initialization ofσ2e .

D. Performance Versus Undersampling Rate,N/M

As mentioned in SectionI, one of the principal aims of CS is to reduce the number of measurements

that must be acquired while still obtaining a good solution.In the MMV problem, dramatic reductions

in the sampling rate are possible. To illustrate this, in Fig. 7 we present the results of an experiment in

which the undersampling factor,N/M , was varied from5 to 25 unknowns-per-measurement. Specifically,

N was fixed at5000, while M was varied.λ was likewise adjusted in order to keepM /K fixed at 3

measurements-per-active-coefficient. The SNR was set to25 dB, andT = 4 measurement vectors were

acquired. In Fig.7, we see that MSBL quickly departs from the SKS performance bound, whereas AMP-

MMV, T-MSBL, and SA-MUSIC are able to remain close to the bound whenN/M ≤ 20. At N/M = 25,

both AMP-MMV and SA-MUSIC have diverged from the bound, and,while still offering an impressive

TNMSE, they are outperformed by T-MSBL. In conducting this test, we observed that AMP-MMV’s

performance is strongly tied to the number of smoothing iterations performed. Whereas for other tests,

5 smoothing iterations were often sufficient, in scenarios with a high degree of undersampling, (e.g.,

N/M ≥ 15), 50 − 100 smoothing iterations were often required to obtain good signal estimates. This

suggests that messages must be exchanged between neighboring timesteps over many iterations in order

to arrive at consensus in severely underdetermined problems.

E. Performance Versus Signal Dimension,N

As we have indicated throughout this paper, a key consideration of our method was ensuring that it

would be suitable for high-dimensional problems. Our complexity analysis indicated that a single iteration
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Fig. 7: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versus undersampling

rate,N/M . Correlation coefficient1− α = 0.75.

of AMP-MMV could be completed inO(TNM) flops. This linear scaling of the complexity with respect

to problem dimensions gives encouragement that our algorithm should efficiently handle large problems,

but if the number of iterations required to obtain a solutiongrows too rapidly with problem size, our

technique would be of limited practical utility. To ensure that this was not the case, we performed an

experiment in which the signal dimension,N , was swept logarithmically over the range[100, 10000]. M

was scaled proportionally such thatN/M = 3. The sparsity rate was fixed atλ = 0.15 so thatM/K ≈ 2.

The SNR was fixed at25 dB, T = 4 measurement vectors were acquired, and the correlation wasset at

1− α = 0.95.

The results of this experiment are provided in Fig.8. Several features of these plots are of interest.

First, we observe that the performance of every algorithm improves noticeably as problem dimensions

grow fromN = 100 toN = 1000, with AMP-MMV and T-MSBL converging in TNMSE performance to

the SKS bound. The second observation that we point out is that AMP-MMV works extremely quickly.

Indeed, a problem withNT = 40000 unknowns can be solved accurately in just under30 seconds.

Finally, we note that at small problem dimensions, AMP-MMV is not as quick as either MSBL or SA-

MUSIC, however AMP-MMV scales with increasing problem dimensions more favorably than the other

methods; atN = 10000 we note that AMP-MMV runs at least two orders-of-magnitude faster than the

other techniques.

F. Performance With Time-Varying Measurement Matrices

In all of the previous experiments, we considered the standard MMV problem (1), in which all of the

measurement vectors were acquired using a single, common measurement matrix. While this setup is

appropriate for many tasks, there are a number of practical applications in which a joint-sparse signal is
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Fig. 8: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versus signal dimension,

N . Correlation coefficient1− α = 0.95.

measured through distinct measurement matrices.

To better understand what, if any, gains can be obtained fromdiversity in the measurement matrices,

we designed an experiment that explored how performance is affected by the rate-of-change of the

measurement matrix over time. For simplicity, we considered a first-order Gauss-Markov random process

to describe how a given measurement matrix changed over time. Specifically, we started with a matrix

whose columns were drawn i.i.d. Gaussian as in previous experiements, which was then used as the

measurement matrix to collect the measurements at timestept = 1. At subsequent timesteps, the matrix

evolved according to

A(t) = (1− β)A(t−1) + βU (t), (13)

whereU (t) was a matrix whose elements were drawn i.i.d. Gaussian, witha variance chosen such that

the column norm ofA(t) would (in expectation) equal one.

In the test,β was swept over a range, providing a quantitative measure of the rate-of-change of the

measurement matrix over time. Clearly,β = 0 would correspond to the standard MMV problem, while

β = 1 would represent a collection of statistically independentmeasurement matrices.

In Fig. 9 we show the performance whenN = 5000, N/M = 30, M/K = 2, T = 4, SNR= 25 dB,

and the correlation is1 − α = 0.99. For the standard MMV problem, this configuration is effectively

impossible. Indeed, forβ < 0.10, we see that AMP-MMV is entirely failing at recovering the signal.

However, onceβ ≈ 0.15, we see that the NSER has dropped dramatically, as has the TNMSE. Once

β ≥ 0.20, AMP-MMV is performing almost to the level of the noise. As this experiment should hopefully

convince the reader, even modest amounts of diversity in themeasurement process can enable accurate

reconstruction in operating environments that are otherwise impossible.
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Fig. 9: A plot of the NSER, TNMSE (in dB), and runtime of T-MSBL, MSBL, AMP-MMV, and the SKS versus rate-of-change

of the measurement matrix,β. Correlation coefficient1− α = 0.99.

VII. C ONCLUSION

In this work we introduced AMP-MMV, a Bayesian message passing algorithm for solving the MMV

problem (1) when temporal correlation is present in the amplitudes of the non-zero signal coefficients.

Our algorithm, which leverages Donoho, Maleki, and Montanari’s AMP framework [23], performs rapid

inference on high-dimensional MMV datasets. In order to establish a reference point for the quality of

solutions obtained by AMP-MMV, we described and implemented the oracle-aided support-aware Kalman

smoother (SKS). In numerical experiments, we found a range of problems over which AMP-MMV

performed nearly as well as the SKS, despite the fact that AMP-MMV was given crude hyperparameter

initializations that were refined from the data using an expectation-maximization algorithm. In comparing

against two alternative Bayesian techniques, and one greedy technique, we found that AMP-MMV offers

unrivaled computational efficiency without sacrificing performance, particular in high-dimensional set-

tings. We also demonstrated that substantial gains can be obtained in the MMV problem by incorporating

diversity into the measurement process. Such diversity is particularly important in settings where the

temporal correlation between coefficient amplitudes is substantial.

APPENDIX A

TAYLOR SERIES APPROXIMATION OFνMOD

f
(t)
n →θ

(t)
n

In this appendix we summarize the procedure used to collapsethe binary Gaussian mixture of (10),

νmod
f
(t)
n →θ

(t)
n

(θ
(t)
n ), to a single Gaussian,ν

f
(t)
n →θ

(t)
n

(θ
(t)
n ) = CN (θ

(t)
n ;

⇀

ξ
(t)

n ,
⇀

ψ
(t)

n ). For simplicity, we drop then

and (t) sub- and superscripts.
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Let θr , Re{θ}, let θi , Im{θ}, and letφr andφi be defined similarly. Define

g̃(θr, θi) , νmod
f→θ(θr + jθi),

= (1− Ω(
↼

π)) CN (θr + jθi;
1
ε
φ, 1

ε2
c) + Ω(

↼

π) CN (θr + jθi;φ, c)

f̃(θr, θi) , − log g̃(θr, θi).

Our objective is to approximatẽf(θr, θi) using a two-dimensional second-order Taylor series expansion,

f̆(θr, θi), about the pointφ:

f̆(θr, θi) = f̃(φr, φi) + (θr − φr)
∂f̃
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 .

It can be shown that, for Taylor series expansions about the point φ, ∂2f
∂θr∂θi

= O(ε2) and
∣

∣

∣

∂2f
∂θ2

r

− ∂2f
∂θ2

i

∣

∣

∣
=

O(ε2). Sinceε ≪ 1, it is reasonable to therefore adopt a further approximation and assume ∂
2f̃

∂θr∂θi
= 0

and ∂2f̃
∂θ2

r

= ∂2f̃
∂θ2

i

. With this approximation, note that

exp(−f̆(θr, θi)) ∝ CN (θr + jθi;
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)

. (15)

The pseudocode function,taylor approx, that computes (14), (15) given the parameters ofνmod
f→θ(·) is

provided in TableIII .
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