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Abstract

In this work the dynamic compressive sensing (CS) problemeocévering sparse, correlated, time-
varying signals from sub-Nyquist, non-adaptive, linearasweements is explored from a Bayesian per-
spective. While there has been a handful of previously psegdayesian dynamic CS algorithms in the
literature, the ability to perform inference on high-dins@mal problems in a computationally efficient
manner remains elusive. In response, we propose a prdiabilynamic CS signal model that captures
both amplitude and support correlation structure, andri@san approximate message passing algorithm
that performs soft signal estimation and support deteatiibh a computational complexity that is linear
in all problem dimensions. The algorithm, DCS-AMP, can perf either causal filtering or non-causal
smoothing, and is capable of learning model parametersiadppfrom the data through an expectation-
maximization learning procedure. We provide numericatlence that DCS-AMP performs withihdB
of oracle bounds on synthetic data under a variety of opayatnditions. We further describe the result
of applying DCS-AMP to two real dynamic CS datasets, as wel equency estimation task, to bolster

our claim that DCS-AMP is capable of offering state-of-timeperformance and speed on real-world
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high-dimensional problems.

. INTRODUCTION

In this work, we consider thelynamic compressive sensiridynamic CS) problem, in which a

sparse, vector-valued time series is recovered from a getore series of noisy, sub-Nyquist, linear
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measurements. Such a problem finds application in dynamit [#|Rhigh-speed video capturgl![3], and
underwater channel estimatidn [4] amongst others.

Framed mathematically, the objective of the dynamic CS lerabis to recover the time series

{®, .. 2™} wherexz® c CV is the signal at timestep, from a time series of measurements,
{yW,...,y™}. Eachy® € CM is obtained from the linear measurement process,
y® = AOLO 4 Oy T, 1)

with e(®) representing corrupting noise. The measurement matfiX (which may be time-varying or
time-invariant, i.e., A®") = AV¢) is known in advance, and is generally wide, leading to aretheter-
mined system of equations. The problem is regularized byrassy thatz(*) is sparse (or compressib&),
having relatively few non-zero (or large) entries.

In many real-world scenarios, the underlying time-varygmarse signal exhibits substantial temporal
correlation. This temporal correlation may manifest ftgeltwo interrelated ways(i) the support of the
signal may change slowly over time, a(ij the amplitudes of the large coefficients may vary smoothly
in time [2], [3], [5].

In such scenarios, incorporating an appropriate modelrapteal structure into a recovery technique
makes it possible to drastically outperform structureesgic CS algorithms. From an analytical stand-
point, Vaswani and Lu demonstrate that the restricted isgn@operty (RIP) sufficient conditions for
perfect recovery in the dynamic CS problem are significawiyaker than those found in the traditional
single measurement vector (SMV) CS problem when accourfonghe additional structure_[6]. In
this work, we take a Bayesian approach to modeling this &trac which contrasts those dynamic
CS algorithms inspired by convex relaxation, such as theajo LASSO [[5] and the Modified-CS
algorithm [6]. Our Bayesian framework is also distinct fréihose hybrid techniques that blend elements
of Bayesian dynamical models like the Kalman filter with méeditional CS approaches of exploiting
sparsity through convex relaxation [2]] [7] or greedy meh@g].

In particular, we propose a probabilistic model that trehestime-varying signal support as a set of
independent binary Markov processes and the time-varyaedficient amplitudes as a set of independent
Gauss-Markov processes. As detailed in Sedtibn Il, thisehiecds to coefficient marginal distributions
that are Bernoulli-Gaussian (i.e., “spike-and-slab”)tdrain Sectiorl 'V, we describe a generalization of

the aforementioned model that yields Bernoulli-Gaussixture coefficient marginals with an arbitrary

without loss of generality, we assume®) is sparse/compressible in the canonical basis. Otheripagsbases can be

incorporated into the measurement matAX") without changing our model.



number of mixture components. The models that we propose differ substantially from those used
in other Bayesian approaches to dynamic CS, [9] [10].amiqular, Sejdinovic et al[ [9] combine a
linear Gaussian dynamical system model with a sparsityaptimg Gaussian-scale-mixture prior, while
Shahrasbi et al[ [10] employ a particular spike-and-slalkidamodel that couples amplitude evolution
together with support evolution.

Our inference method also differs from those used in theratere Bayesian dynamic CS algorithms
[€] and [10]. In [9], Sejdinovic et al. perform inferenceava sequential Monte Carlo sampler][11].
Sequential Monte Carlo techniques are appealing for thgtieability to complicated non-linear, non-
Gaussian inference tasks like the Bayesian dynamic CS gmobiNevertheless, there are a number of
important practical issues related to selection of the ingyee distribution, choice of the resampling
method, and the number of sample points to track, since imciple one must increase the number of
points exponentially over time to combat degeneracy [1HdiAonally, Monte Carlo techniques can be
computationally expensive in high-dimensional inferepeceblems. An alternative inference procedure
that has recently proven successful in a number of appiieatis loopy belief propagation (LBF) [12].
In [10], Shahrasbi et al. extend the conventional LBP metmagosed in[[13] for standard CS under a
sparse measurement mateixto the case of dynamic CS under spass€. Nevertheless, the confinement
to sparse measurement matrices is very restrictive, arildouti this restriction, the methods 6f [10], [13]
become computationally intractable.

Our inference procedure is based on the recently propoaeatkfrvork of approximate message passing
(AMP) [14], and in particular its “turbo” extension [15]. AR} an unconventional form of LBP, was
originally proposed for standard CS with a dense measurematnix [14], and its noteworthy properties
include: (i) a rigorous analysis (a&/, N — oo with M /N fixed, under i.i.d. Gaussiad) establishing
that its solutions are governed by a state-evolution whasel fpoints are optimal in several respeCts [16],
and(ii) extremely fast runtimes (as a consequence of the fact tinateits relatively few iterations, each
requiring only one multiplication byd and its transpose). The turbo-AMP framework originallypmsed
in [15] offers a way to extend AMP to structured-sparsityljems such as compressive imagihg! [17],
joint communication channel/symbol estimation![18], ares—we shall see in this work—the dynamic

CS problem.

A. Notation

Boldfaced lower-case letters, e.g., denote column vectors, while boldfaced upper-case $tteg.,

A, denote matrices. The letteris strictly used to index a timestep,= 1,2,...,T, the lettern is



strictly used to index the coefficients of a signal= 1, ..., N, and the lettern is strictly used to index

the measurementsy = 1,..., M. The superscript) indicates a timestep-dependent quantity, while a
superscript without parentheses, suctf amdicates a quantity whose value changes according to some
algorithmic iteration index. Subscript notations such aét) are used to denote theé” element of the
vectorz®, while set subscript notation, e.gr:g), denotes the sub-vector af*) consisting of indices
contained inS. Them! row of the matrixA is denoted bya] , an M-by-M identity matrix is denoted

by I,,, and a length¥V vector of ones is given byt 5. Finally, CA(a;b,C) refers to the circularly
symmetric complex normal distribution that is a functiontbé vectora, with meand and covariance

matrix C.

Il. SIGNAL MODEL

We assume that the measurement process can be accura@ipedy the linear model of{1). We
further assume that) € CM*N ¢ = 1,....T, are measurement matrices known in advance, whose
columns have been scaled to be of unit nErWe model the noise as a stationary, circularly symmetric,
additive white Gaussian noise (AWGN) process, with ~ CA (0,021 ) V t.

As noted in Sectiof] |, the sparse time seri{as@ ff:l, often exhibits a high degree of correlation
from one timestep to the next. In this work, we model this elation through a slow time-variation
of the signal support, and a smooth evolution of the amp#isudf the non-zero coefficients. To do so,
we introduce two hidden random processgs?}” | and {6)}7_,. The binary vectos® < {0,1}V
describes the support af®), denotedS®, while the vectord® ¢ CV describes the amplitudes of the

active elements o"). Together,s) and8®) completely characterize® as follows:

z® =0 .90 yp ¢, (2)

n n n

Therefore,s\) = 0 setsz = 0 andn ¢ S®, while s = 1 setsz!) = 6" andn € S®.

To model slow changes in the supp&®) over time, we model the!" coefficient's support across
time, {sﬁf) }le, as a Markov chain defined by two transition probabilities:= Pr{s,(f): 1|s§f‘1):0},
andp,, = Pr{sgf) = oysﬁf‘” = 1}, and employ independent chains acrass- 1,..., N. We further
assume that each Markov chain operates in steady—state,tlm&Pl{sgf) =1} = A Vn,t. This steady-
state assumption implies that these Markov chains are @ielplspecified by the parametexsandp, .,

which together determine the remaining transition prolitgbp,, = Ap,,/(1 — A). Depending on how

20ur algorithm can be generalized to suppdit”) without equal-norm columns, a number of measureméfisghat change

as a function of time, and real-valued matrices/signals as well.



p,, IS chosen, the prior distribution can favor signals thatileikta nearly static support across time, or
it can allow for signal supports that change substantiaitiynf timestep to timestep. For example, it can
be shown thatl /p,, specifies the average run length of a sequence of ones in thio¥ehains.

The second form of temporal structure that we capture in mpvas model is the correlation in active
coefficient amplitudes across time. We model this cormetathrough independent stationary steady-state

Gauss-Markov processes for ean:,hwherein{Hff)};f:1 evolves in time according to

o) = (1—a)(08 ™ — ¢ ) + awl) +¢, 3)

where( € C is the mean of the proce&s,(rf) ~ CN (0, p) is an i.i.d. circular white Gaussian perturbation,

and « € [0,1] controls the temporal correlation. At one extreme—= 0, the amplitudes are totally
correlated, (i.e.eﬁf) = 0,(f_1)), while at the other extremey = 1, the amplitudes evolve according to an
uncorrelated Gaussian random process with mgan

At this point, we would like to make a few remarks about oumsigmodel. First, due td{2), it is
clear thatp(mﬁf)\sﬁf),e,(f)) = 5(955? — s£f>9,(f)), whered(-) is the Dirac delta function. By margining out

the distributions ots,(f) and@ﬁf), one finds that

p(a)) = (1= N)d())) + ACN (a}); ¢, 0%), (4)

&)

where g2 £ 52 is the steady-state variance @5(‘). Equation [(#) is a Bernoulli-Gaussian or “spike-
and-slab” distribution, which is an effective sparsitypoting prior due to the point-mass ﬁftt) =0.
Second, we observe that the amplitude random pro@éé%}f:l, evolves independently from the sparsity
pattern random procesés(*) L .. As a result of this modeling choice, there can be signifitadtien
amplitudesﬂff) associated with inactive coefficients (those for Whééfﬂ =0). Consequently?ﬁf) should

be viewed as the amplitude @ﬁf) conditionedon s,(f) = 1. Lastly, we note that higher-order Markov
processes and/or more complex coefficient marginals coale¢dnsidered within the framework we
propose, however, to keep development simple, we restiicatiention to first-order Markov processes
and Bernoulli-Gaussian marginals until Sectioh V, wheredescribe an extension of the above signal

model that yields Bernoulli-Gaussian-mixture marginals.

Ill. THE DCS-AMP ALGORITHM

In this section we will describe the DCS-AMP algorithm, whiefficiently and accurately estimates the
marginal posterior distributions c{fxﬁf)}, {Hr(f)}, and{sﬁf)} from the observed measuremefig®) }L_,,
thus enabling both soft estimation and soft support detecths mentioned in Sectidh I, DCS-AMP can

perform either filtering or smoothing.



Factor Distribution Functional Form
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TABLE I: The factors, underlying distributions, and furmtal forms associated with our signal model

The algorithm we develop is designed to exploit the staasttructure inherent in our signal model.
By definingy to be the collection of all measuremen{y,(t)};f:1 (and definingz, 5, and@ similarly),
the posterior joint distribution of the signal, supportdaamplitude time series, given the measurement
time series, can be expressed using Bayes’ rule as

T /M N

0ly) o< | | (H plys)|z") Hp(m&?!sﬁf%9%’)19(355’!sSf‘”)p(@é”\HS‘”)) NG

t=1 \m=1 n=1
wherex indicates proportionality up to a constant scale faqt()fgﬂsﬁ?)) = p(s (1)) andp(e(1 |9 )
p(eg”). By inspecting [(b), we see that the posterior joint distiiftu decomposes into the product of
many distributions that only depend on small subsets ofabées. A graphical representation of such
decompositions is given by tHactor graph which is an undirected bipartite graph that connects the pd
“factors” of (8) with the random variables that constituleit arguments [20]. In Tablé I, we introduce
the notation that we will use for the factors of our signal mipghowing the correspondence between
the factor labels and the underlying distributions theyrespnt, as well as the specific functional form
assumed by each factor. The associated factor graph fora$terpr joint distribution of[(5) is shown
in Fig.[, labeled according to Tallk I. Filled squares repn¢ factors, while circles represent random
variables.

As seen in Figl]1, all of the variables needed at a given tiepesain be visualized as lying in a plane,
with successive planes stacked one after another in timewleefer to these planes as “frames”. The
temporal correlation of the signal supports is illustratgdthe hﬁf) factor nodes that connect théf)
variable nodes between neighboring frames. Likewise, éngooral correlation of the signal amplitudes
is expressed by the interconnectiondﬂf) factor nodes aneﬁf) variable nodes. For visual clarity, these
factor nodes have been omitted from the middle portion offémtor graph, appearing only at indices

n =1 andn = N, but should in fact be present for all indices=1,..., N. Since the measurements
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Fig. 1: Factor graph representation of the jvoint posteristrithution of [3).

{yﬁ,ﬁ)} are observed variables, they have been incorporated iatgf,%factor nodes.

The algorithm that we develop can be viewed as an approximgtiementation of belief propagation
(BP) [21], a message passing algorithm for performing eriee on factor graphs that describe proba-
bilistic models. When the factor graph is cycle-free, Hglimpagation is equivalent to the more general
sum-product algorithm[[20], which is a means of computing tharginal functions that result from
summing (or integrating) a multivariate function over atisgible input arguments, with one argument
held fixed, (i.e., margining out all but one variable). In t@ntext of BP, these marginal functions are
the marginal distributions of random variables. Thus, givgeasurementg and the factorization of the
posterior joint distributiorp(ic, s, 9|'y), DCS-AMP computes (approximate) posterior marginals:ﬁ{j?f,
s,(f), and Hﬁf). In “filtering” mode, our algorithm would therefore reture,g.,p(xﬁf)‘{y(ﬂ}gzl), while
in “smoothing” mode it would returm(xﬁf)|{y(t)}le). From these marginals, one can compute, e.g.,
minimum mean-squared error (MMSE) estimates. The fact@plyof Fig[1 contains many short cycles,
however, and thus the convergence of loopy BP cannot be lglmnhH Despite this, loopy BP has

been shown to perform extremely well in a number of differepplications, including turbo decoding

[26], computer vision[[2[7], and compressive sensing [1B3H [17], [28]-[30].

3However, it is worth noting that in the past decade much wark heen accomplished in identifying specific situationseund
which loopy BPis guaranteed to converge, e.d..[16].][22]2[25].



A. Message scheduling

In loopy factor graphs, there are a number of ways to schedulsequence, the messages that are
exchanged between nodes. The choice of a schedule can impaghly the rate of convergence of the
algorithm, but also the likelihood of convergence as well][3Ve propose a schedule (an evolution of
the “turbo” schedule proposed in [15]) for DCS-AMP that isagihtforward to implement, suitable for
both filtering and smoothing applications, and empiricaliglds quickly converging estimates under a
variety of diverse operating conditions.

Our proposed schedule can be broken down into four distitegiss which we will refer to using
the mnemonicginto), (within), (out), and (across). At a particular timestep, the (into) step involves
passing messages that prowde current beliefs about tteecdtéhe relevant support varlable{s,n

nl'

and amplitude varlables[e laterally into the dashed AMP box within frame (Recall Fig.[1.)

et
The (within) step makes use of these incoming messages, together withbtegvations available in
that frame,{yﬁn ——1, to exchange messagesthin the dashed AMP box of framg thus generating
estimates of the marginal posteriors of the signal varﬁal{)&éL }N_|. Using these posterior estimates,
the (out) step propagates messagmsg of the dashed AMP box, providing updated beliefs about the
state of{s,(q N, and{ theta%) N_,. Lastly, the(across) step involves transmitting messagesross
neighboring frames, using the updated beliefs ab[mﬁﬁ _, and {0 N_, to influence the beliefs
about{s\{ TV} and {65V (or {s{7VI_ and {6 V3N ).

The procedures for filtering and smoothing both start in #treesway. At the initiak = 1 frame, steps
(into), (within) and(out) are performed in succession. Next, sfagross) is performed to pass messages
from {s$71Y_, and {0V 1, to {21, and{6{?}Y_,. Then at frame = 2 the same set of steps are
executed, concluding with messages propagatir{g;f‘&ﬂ},JLV:1 and{eﬁf’) N_,. This process continues until
steps(into), (within) and(out) have been completed at the terminal fraffie At this point, DCS-AMP
has completed what we call a single forward pass. If the tbgavas to perform filtering, DCS-
AMP terminates at this point, since only causal measuresnieate been used to estimate the marginal
posteriors. If instead the objective is to obtain smoothemh-causal estimates, then information begins
to propagate backwards in time, i.e., s{@gross) moves messages fronﬁn,(@T) N and {G,QT) N to
{s(T 2 N | and {HﬁlT_l) N_,. Steps(into), (within), (out), and(across) are performed at fram@& — 1,
with messages bound for franie — 2. This continues until the initial frame is reached. At thisir
DCS-AMP has completed what we term as a single forward/badkywass. Multiple such passes, indexed

by the variablet, can be carried out until a convergence criterion is met oa@imum number of passes
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Fig. 2: A summary of the four message passing phases, imgjudiessage notation and form.

has been performed.

B. Implementing the message passes

We now provide some additional details as to how the above dteps are implemented. To aid our
discussion, in Fig.]2 we summarize the form of the messagegtss between the various factor graph
nodes, focusing primarily on a single coefficient indexat an intermediate frame Directed edges
indicate the direction that messages are moving. In(deeoss) phase, we only illustrate the messages
involved in a forward pass for the amplitude variables, agalé out a graphic for the corresponding
backward pass, as well as graphics for the support var{@bi®ss) phase. Note that, to be applicable at

frameT', the factor nodel' ™"

and its associated edge should be removed. The figure ateduces the
notation that we adopt for the different variables that sd¢osparameterize the messages. For Bernoulli
message pdfs, we show only the non-zero probability, éfé) = Vo, m(sﬁl) =1).

To perform step(lnto) the messages from the factdid’ and {™ to s{ are used to set?,
the message frong to f . Likewise, the messages from the factdég and d£f+1) to 9,(f) are used
to determine the message fro&éf) to f,(f). When performing filtering, or the first forward pass of
smoothing, no meaningful information should be conveyemmheh,(fH) and d,(fH) factors. This can
be accomplished by |n|t|aI|Z|ng>\n ,nn)fﬁf)) with the values(L,0, c0).

In step(within), messages must be exchanged betweelﬁxlﬁfé}ivzl and{g,(,? }n]\f:l nodes. Whem ()
is not a sparse matrix, this will imply a dense network of aextions between these nodes. Consequently,

the standard sum-product algorithm would require us touatal multi-dimensional integrals of non-
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Gaussian messages that grow exponentially in number in Botand M. This approach is clearly
infeasible for problems of any appreciable size, and thutiweto a simplification known agpproximate
message passin\MP) [14], [28].

At a high-level, AMP can be viewed as a simplification of lodply, employing central limit theorem
arguments to approximate the sum of many non-Gaussian mavdoables as a Gaussian. Through a
series of principled approximation steps (which becometefion GaussiamA matrices in the large-system
limit [L6]), AMP produces an iterative thresholding alghm that requires onlyO(M N) operations,
dominated by matrix-vector products, to obtain postertlrrsthe{gcgf)}T]LV:1 variable nodes. The specifics
of the iterative thresholding algorithm will depend on thgnsl prior under which AMP is operating
[28], but it is assumed that the joint prior decouples intdependent (but not necessarily i.i.d.) priors
on each coefﬁcien:tﬁf).

By viewing Vo, (-) as a “local primH for xSf), we can readily apply the AMP technique as a

e

means of performing the message passes within the portibtisecfactor graph enclosed within the

dashed boxes of Fig] 1 (only one such box is visible). Thisllgeior is a Bernoulli-Gaussian, namely
Vio_ygo (@) = (1= 70)5(a0) + 7OCN (@D, ).

The appropriate AMP message update equations for this fwtal follow a straightforward extension
of the derivations outlined in_[15], which considered theapl case of a zero-mean Bernoulli-Gaussian
prior. The specific AMP updates for our model are given[by] (4g) in Table[Il.

After employing AMP to manage the message passing betw&@ajﬁﬁ)}ivzl and {97(7?}%:1 nodes
in step(within), messages must be propagated out of the dashed AMP box of fréstep (out)) and
either forward or backward in time (stépcross)). While step(across) simply requires a straightforward
application of the sum-product message computation retep,(out) imposes several difficulties which
we must address. For the remainder of this discussion, wesfoo the messag%w_)eg)(-).

A routine application of the sum-product rules to tft;@-to-&ﬁf) message would produce the following
expression:

eact S (00) & (1 —7D)CN(0; Ly, ch) + TPCN(O); 68, ). (6)

v
fT(Lt)_>0£Lt)

Unfortunately, the termCA/(0; ¢¢,,c}) prevents us from normalizing??ﬁie(t) (Gﬁf)), as the former is

constant with respect u@),(lt). Therefore, the distribution o@)(f) represented by 16) is improper. To provide

“The AMP algorithm is conventionally run with static, i.i.priors for each signal coefficient. When utilized as a suzkl
of a larger message passing algorithm on a larger factohgthp signal priors (from AMP’s perspective) will be chamgiin

response to messages from the rest of the factor graph. \&eteethese changing AMP priors &scal priors.
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intuition into why this is the case, it is helpful to think @13%0_)955) (Hﬁf)) as a message that conveys
information about the value (&tﬁf) based on the values @:ff) ands,(f). If sﬁf) =0, then by K]Z),mﬁf) =0,
thus making9,(f) unobservable. The constant term[ih (6) reflects the unogytdue to this unobservability
through an infinitely broad, uninformative distributiorrf@ff).

To avoid an improper pdf, we modify how this message is ddrivg regarding our assumed signal
model, in whichs! € {0,1}, as a limiting case of the model witt}? e {e,1} ase — 0. For any fixed

positivee, the resulting messag%m_)em(-) is proper, given by

VI g0 (00) = (1= QD)) CN (0 10y, Bel) + Q) CN (0 6, i), )
where
2
A ETT
Yr) = (1—m7)+e?n ®)

The pdf in [7) is that of a binary Gaussian mixture. If we cdesk < 1, the first mixture component
is extremely broad, while the second is more “informatiweith meangzbf1 and variance:;. The relative

weight assigned to each component Gaussian is determinﬁtéhgzer(mg)). Notice that the limit of

this weighting term is the simple indicator function

0 fo<m<l,
lim Q(7) = 9)

=0 1 ifr=1

Since we cannot set = 0, we instead fix a small positive value, e.g.= 10~7. In this case,[{7)
could then be used as the outgoing message. However, thisrgsea further difficulty: propagating a
binary Gaussian mixture forward in time would lead to an exgoal growth in the number of mixture
components at subsequent timesteps. This difficulty is alilanone in the context of switched linear
dynamical systems (SLDS'’s) based on conditional Gaussiatlefs, since such models are not closed
under marginalization [32]. To avoid the exponential gtowt the number of mixture components, we
collapse our binary Gaussian mixture to a single Gaussiampoaent, an approach sometimes referred
to as a Gaussian sum approximation/[38],1 [34]. This can bgfips by the fact that, for < 1, Q()
behaves nearly like the indicator function [d (9), in whicse one of the two Gaussian components will
typically have negligible mass.

To carry out the Gaussian sum approximation, we proposedif@ving two schemes. The first is to
simply choose a threshold that is slightly smaller than and, using[(P) as a guide, threshoﬁig) to

choose between the two Gaussian components]of (7). Theaesnlessage is thus

Vo (01)) = CN(00:60, 41), (10)
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with £ and4{ chosen according to
(Eh. &h), m) <7

(¢i,c), 7D >r

n»-n

(€D, pP) = (11)

The second approach is to perform a second-order Taylagssapproximation of- log y}nﬁg)d_) e (Hﬁf))
with respect t097(f), which results in a single Gaussian message, as descrilf2d]irrhe latter approach
has the advantage of being parameter-free. Empiricallyfjvdethat this latter approach works well when
changes in the support occur infrequently, ezg,,< 0.025, while the former approach is better suited
to more dynamic environments.

In Table[Il we provide a pseudo-code implementation of owppsed DCS-AMP algorithm that gives
the explicit message update equations appropriate fooipeifig a single forward pass. The primary
computational burden of DCS-AMP is computing the messagssipg between th@mﬁf)} and {gﬁ,ﬁ)}
nodes, a task which can be performed efficiently using magbtor products involvingd® and A®".
The resulting overall complexity of DCS-AMP is therefd®7 M N) flops (flops-per-pass) when filtering
(smoothingg The storage requirements a® N) and O(T'N) complex numbers when filtering and

smoothing, respectively.

IV. LEARNING THE SIGNAL MODEL PARAMETERS

The signal model of Sectidn] Il is specified by the Markov chaamameters\, p,,, the Gauss-Markov
parameters, «, p, and the AWGN variance?. It is likely that some or all of these parameters will requir
tuning in order to best match the unknown signal. To this eveldevelop an expectation-maximization
(EM) [19] algorithm that works together with the messagespag procedure described in Sectlon 1lI-A
to learn all of the model parameters in an iterative fashiomfthe data.

The EM algorithm is appealing for two principal reasonsstithe EM algorithm is a well-studied and
principled means of parameter estimation. At every EM ttem the likelihood is guaranteed to increase
until convergence to a local maximum occurs![35]. For mudiital likelihoods, local maxima will, in
general, not coincide with the global maximum, but a judisianitialization of parameters can help in
ensuring the EM algorithm reaches the global maximun [35f $econd appealing feature of the EM
algorithm lies in the fact that its expectation step levesguantities that have already been computed

in the process of executing DCS-AMP, making the EM procedwraputationally efficient.

SWhen they exist, fast implicitA(*) operators can provide significant computational savingkigh-dimensional problems.
Implementing a Fourier transform as a fast Fourier tramsfg®#FT) subroutine, for example, would drop DCS-AMP’s coaxitly
from O(TMN) to O(T'N log, N).
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% Define soft-thresholding functions:

(1) oy (1)
Fre(61) 2 (14 me(010) 7 (P 0D

Gut(850) 2 (1 +2me(6:0) 7 (Z52) + (@ I Fn(gs0? (02
Fri(dic) & $5Fne(¢,¢) = £Gnt(d50) (D3)
e & (150) (B

xexp (- [w“)w +€4

% Begin passing messages. ..

t) *

PG (1) |2
cotén’co” —clén | ] D4
c(w(t) +c) ) ( )

fort=1,...,7T:
% Execute the (into) phase. ..
) _ A(t) 50
Ty = = " — n Al
" aaY) s A( Al 3 (A1)
() _ DR
=& #2
P QO
gr(zt) = 'Ez) : <4(r) + 1—(t)> vn (A3)

% Initialize AMP-related variables . . .
Vm:zl, = =y vn: ph, =0, andc! =100 - N ®
% Execute the (within) phase using AMP . ..

fore=1,...,1, :
io= M AD s i n (A%)
pt' = Fre(dhyscf) Wn (AS)
U:;tkl = Gnt((z’ntvct) vn (AG)
atl =02+ LN v ;;1 (A7)
Z:ntl = y'gy? - a'Eth) T“7£+1 + N Fnt(¢7lt70t) vm (AS)
end
& = 1 yn % Store current estimate of z) (A9)
% Execute the (out) phase ..
_ —(t) 1
70 = (1+(; ;(t)>’ym(¢m, ™) W (A10)
7 I+1 =(t)
€0, gy = § @n /slil [, ST, <1) (AL
(Phsci ), o.W.
% Execute the (across) phase from O(t) to 6,(1”1) ...
(1) _ 2y A2 AT ) +(1—pg AT
An BT \OE=O) o (A12)
i) _ ROPO \ (30 g
2D = —a)(jt)w(t))(% + 5 ) +al Vn (A13)
S(t41) _ 2( AP
ROHD — (1 _ ) (W) +a2p Vn (AL4)
end

TABLE Il: DCS-AMP steps for filtering mode, or the forward pion of a single forward/backward pass in smoothing mode.
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We letT" £ {)\,p,,,(, a,p,02} denote the set of all model parameters, andlletdenote the set
of parameter estimates at th& EM iteration. The objective of the EM procedure is to find maeter
estimates that maximize the data likelihgg@|T"). Since it is often computationally intractable to perform
this maximization, the EM algorithm incorporates addiéibthidden” data and iterates between two steps:
(i) evaluating the conditional expectation of the log likebldoof the hidden data given the observed data,
g, and the current estimates of the paramef@fs and(ii) maximizing this expected log likelihood with
respect to the model parameters. For all parameters exwepioise variances?, we uses andf as the
hidden data, while for? we usez.

Before running DCS-AMP, the model parameters are inializising any available prior knowledge.
If operating in smoothing mode, DCS-AMP performs an initiatward/backward pass, as described
in Section[II-A. Upon completing this first pass, estimatdsthe marginal posterior distributions are
available for each of the underlying random variables. Addally, belief propagation can provide
pairwise joint posterior distributions, e.@.(,sgf), sﬁf‘l) ]@), for any variable nodes connected by a common
factor node([36]. With these marginal, and pairwise joirgsterior distributions, it is possible to produce
closed-form solutions for performing stefdsand(ii) above. We adopt a Gauss-Seidel scheme, performing

coordinate-wise maximization, e.g.,
NFL = argmax Eso1g logp('y,é,9;/\,Fk\{/\k})‘fg;f‘k} .
A

The EM procedure is performed after each forward/backwass pleading to a convergent sequence of
parameter estimates. If operating in filtering mode, thegdore is similar, however the EM procedure
is run after each recovered timestep using only causallifadle posterior estimates.

In Table[IIl, we provide the EM update equations for each @& farameters of our signal model,

assuming DCS-AMP is operating in smoothing mode.

V. INCORPORATINGADDITIONAL STRUCTURE

In Sections ]l -[TV we described a signal model for the dyna@i® problem and summarized a
message passing algorithm for making inferences undentbigel, while iteratively learning the model
parameters via EM. We also hinted that the model could bergbéred to incorporate additional, or
more complex, forms of structure. In this section we willbgeate on this idea, and illustrate one such
generalization.

Recall that, in Sectioflll, we introduced hidden varial#esnd @ in order to characterize the structure

in the signal coefficients. An important consequence obuhicing these hidden variables was that they
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% Define key quantities obtained from AMP-MMV at iteration k:
QI ONO)

(B =1 —
E[sn |y] = C(t) () (t)+(1 A(t))(lw('))(l A(t))) (Ql)
[sﬁﬁsﬁf 1)|37 =P(85Lt) =150 = 19) (@2
5 2 var{G(t)|’} — (L + 14 L)il (Q3)
n = n Yy = 0] i(?) 'EEf)
~ ~ —(t) =) “Ht)
i & oV lg) = o0 - (T + S5 + 25 @
o) Lvar{zP |y} % Seel[BB) of TablEdl
HONA Elx 7(115)|y] % See[[Ab) of TablE]!
% EM update equationS'
Akt = L S Els )|y ED
(t 1) (r) (r 1)
k+1 Etzzz ~5n ! |
» (E2)
01 2271 1 [(t 1)| }
N - ~(1
Ck+1 = ( (Z’C 1) + (02)k) <(02)k Zn 1;U'SL)
+3T 5N 5 (i - (1—a )qufl))> (E3)
okl — m(b_ [,2+8N(T—1)c> (E4)
where:

b2 2 T, me{ Bl 0L V]
~Re{(ar!) — )Ry - P
2 Z iy 0+ D 4 0
me{E[eSP o5V 1gl}
pk+1 = (ak)2N(T 1) Z 22 ’555) + “’L(t)P

+(ak)2(¢H? —2(1 — m{E[e‘“ oV g)}

2akme{u<“*ck}+2a 1—am)Re{all 1"k}

+<1—a V(Y 1>+|;1£f*”\2> (E5)
(2 = 2y (S Iy® — Ap®)2 + 1500) (E6)

TABLE Ill: EM update equations for the signal model parametef Sectior{]l.

made each signal coeﬁiciemf) conditionally independent of the remaining coefficientgingiven sff)
and 0,@. This conditional independence served an important dlgoic purpose since it allowed us to
apply the AMP algorithm, which requires independent log#@rg, within our larger inference procedure.
One way to incorporate additional structure into the signabel of Sectiori ]l is to generalize our

choices ofp(s) andp(8). As an example, suppose that we wish to expand our Bern@allissian signal
model to one in which signal coefficients are marginally ritistted according to a Bernoulli-Gaussian-
mixture, i.e.,

D

t t
p(al)) = AT 5@D) + 3 AP CN (@D o, 07),

d=1

where 25’:0 )\g) = 1. Since we still wish to preserve the slow time-variationsthie support and

smooth evolution of non-zero amplitudes, a natural chofdeidden variables is, 61, ...,0p}, where
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sﬁf) €{0,1,...,D}, and@fﬁl eC,d=1,...,D. The relationship betweerﬁf) and the hidden variables
then generalizes to:

® ® _
g)’egtla,eg)n) = 5($n )’ Sp” =0,

oz —00)), s =d #o0.

To model the slowly changing support, we spegifi) using a(D + 1)-state Markov chain defined
A

by the transition probabilitiegy; = Pr{sgf) = O\sﬁf‘l) = d} and pyo Pr{sn = d\sﬁf‘l = 0},
d = 1,...,D. For simplicity, we assume that state transitions canncuobetween active mixture

components, i.e., Pgﬁf) = d|s,(f_1) =e) =0 whend # e # 0. For each amplitude time-series we again
use independent Gauss-Markov processes to model smodthiens in the amplitudes of active signal
coefficients, i.e.,

65) = (1—aq) (85" — ¢a) + aquwl), + .

n
wherew|), ~ CN(0, pa).

As a consequence of this generalized signal model, a nunfbiseanessage computations of Sec-
tion [M-B]l must be modified. For stepnto) and (across), it is largely straightforward to extend the
computations to account for the additional hidden varigbkeor step(within), the modifications will
affect the AMP thresholding equations definedinl(D1) -l(D#Jable(dl. Details on a Bernoulli-Gaussian-
mixture AMP algorithm can be found in [30]. For tlfeut) step, we will encounter difficulties applying
standard sum-product update rules to compute the messf(a%@s_)@ﬁ(-)}le. As in the Bernoulli-
Gaussian case, we consider a modification of our assumedl!sigodel that incorporates an < 1
term, and use Taylor series approximations of the resuftestsages to collapse(® + 1)-ary Gaussian

mixture to a single Gaussian. More information on this pdare can be found i [37].

VI. EMPIRICAL STUDY

We now describe the results of an empirical study of dynanﬁH Che primary performance metric
that we used in all of our experiments, which we refer to agithe-averaged normalized MSE (TNMSE),

is defined as

5) a® — &0
TNMSE(z, #) 2; O

wherez® is an estimate of(®).

Code for reproducing our results is available: at ece.osiradhniter/DCSturboAMP.


ece.osu.edu/~schniter/DCSturboAMP
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Unless otherwise noted, the following settings were usedDiGS-AMP in our experiments. First,
DCS-AMP was run as a smoother, with a total offorward/backward passes. The number of inner
AMP iterations I for each(within) step wasl = 25, with a possibility for early termination if the
change in the estimated signadi, fell below a predefined threshold from one iteration to teetni.e.,

% [lped — w2 < 1075, Equation [(A9) of Tabl&]l was used to produg€’, which corresponds to an
MMSE estimate ofc(Y) under DCS-AMP’s estimated posteriqréz,(f)]@). The amplitude approximation
parametee from (7) was set ta = 10~7, while the threshold- from (I1) was set ta- = 0.99. In our
experiments, we found DCS-AMP’s performance to be relbtiviesensitive to the value of provided
thate < 1. The choice ofr should be selected to provide a balance between allowing-BK2B to track
amplitude evolutions on signals with rapidly varying sugp@and preventing DCS-AMP from prematurely
gaining too much confidence in its estimate of the support.fdMad that the choice = 0.99 works
well over a broad range of problems. When the estimateditiam$probability p,, < 0.025, DCS-AMP
automatically switched from the threshold method to theldlageries method of computing{10), which

is advantageous because it is parameter-free.

A. Performance across the sparsity-undersampling plane

Two factors that have a significant effect on the performaoicany CS algorithm are the sparsity
|S(®)| of the underlying signal, and the number of measuremght€onsequently, much can be learned
about an algorithm by manipulating these factors and olosgithe resulting change in performance. To
this end, we studied DCS-AMP’s performance across the gpansdersampling plane [38], which is
parameterized by two quantities, thermalized sparsity ratios 2 E[|S®)|]/M, and theundersampling
ratio, § £ M/N. For a given(s, 3) pair (with N fixed at512), sample realizations of, 8, ande were
drawn from their respective priors, and elements of a timeing A®) were drawn from i.i.d. zero-mean
complex circular Gaussians, with all columns subsequestiifed to have unit;-norm, thus generating
x andy. Given knowledge of the signal model parameters (i.e., autithe need for EM learning), a
recovery was obtained by executing DCS-AMP in smoothing enod

As a performance benchmark, we used the support-aware Kasmeother. In the case of linear
dynamical systems with jointly Gaussian signal and obgiems, the Kalman filter (smoother) is known
to provide MSE-optimal causal (non-causal) signal eseés§29]. When the signal is Bernoulli-Gaussian,
the Kalman filter/smoother is no longer optimal. Howeverpadr bound on the achievable MSE can
be obtained using the support-aware Kalman filter (SKF) ooctirer (SKS). Since the classical state-

space formulation of the Kalman filter does not easily yidld support-aware bound, we turn to an
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alternative view of Kalman filtering as an instance of messpgssing on an appropriate factor graph
[40]. For this, it suffices to use the factor graph of Kip. 1h/\4&,(f)} treated as fixed, known quantities.
Following the standard sum-product algorithm rules rasulta message passing algorithm in which all
messages are Gaussian, and no message approximationguwredeThen, by running loopy Gaussian
belief propagation until convergence, we are guaranteadtiie resultant posterior means constitute the
MMSE estimate ofe, in accordance with [22, Claim 5].

Finally, to quantify the improvement obtained by explatiemporal correlation, signal recovery was
also explored using the Bernoulli-Gaussian AMP algorittBG{AMP) independently at each timestep
(i.e., ignoring temporal structure in the support and amgés), accomplished by passing messages only
within the dashed boxes of Figl 1 usim@xﬁf)) from @) as AMP’s prio

In Fig.[3, we present three plots from a representative éxget. The leftmost plot shows the TNMSE
of the SKS (in dB) across the sparsity-undersampling plérecenter plot shows the TNMSE of DCS-
AMP; the rightmost plot shows the TNMSE of BG-AMP. The resudhown were averaged over more
than 500 independent trials at ea@h/) pair. For this experiment, signal model parameters weratset
N =512, T = 25, p,, = 0.05, ( =0, a = 0.01, 0 = 1, and a noise variance;?, chosen to yield a
signal-to-noise ratio (SNR) of5 dB. (M, \) were set based on specifig, 5) pairs, andp,, was set so
as to keep the expected number of active coefficients carstamss time. It is interesting to observe that
the performance of both the SKS and DCS-AMP are only weakpeddent on the undersampling ratio
d. In contrast, the structure-agnostic BG-AMP algorithmtremsgly affected. This is one of the principal
benefits of incorporating temporal structure; it makes ggiole to tolerate more substantial amounts of

undersampling, particularly when the underlying signdess sparse.

B. Performance vg,, and«

The temporal correlation of our time-varying sparse signabel is largely dictated by two parame-
ters, the support transition probabilipy, and the amplitude forgetting facter. Therefore, it is worth
investigating how the performance of DCS-AMP is affectedtiigse two parameters. In an experiment
similar to that of Fig[B, we tracked the performance of DCgFA the SKS, and BG-AMP across a
plane of(p,,,«) pairs. The active-to-inactive transition probability was swept linearly over the range

[0,0.15], while the Gauss-Markov amplitude forgetting factowas swept logarithmically over the range

"Experiments were also run that compared performance agBamis Pursuit Denoising (BPDN) [41] with genie-aided
parameter tuning (solved using the SPGL1 solier [42]). Hawethis was found to yield higher TNMSE than BG-AMP, and

at higher computational cost.
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Support-aware Kalman smoother TNMSE [dB] DCS-AMP TNMSE [dB] BG-AMP TNMSE [dB]
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Fig. 3: A plot of the TNMSE (in dB) of the SKS (leftmost), DCSMP (center) and BG-AMP (rightmost) across the

sparsity-undersampling plane, for temporal correlatiarameterg,, = 0.05 anda = 0.01.

[0.001,0.95]. To help interpret the meaning of these parameters, we hatettie fraction of the support
that is expected to change from one timestep to the next&diy2 p,,, and that the Pearson correlation
coefficient between temporally adjacent amplitude vaesl$l — a.

In Fig.[4 we plot the TNMSE (in dB) of the SKS and DCS-AMP as adfion of the percentage of
the support that changes from one timestep to the next #pe.,x 100) and the logarithmic value of
« for a signal model in whickh = 1/3 and 5 = 0.45, with remaining parameters set as before. Since
BG-AMP is agnostic to temporal correlation, its performang insensitive to the values of, and a.
Therefore, we do not include a plot of the performance of BEPAbut note that it achieved a TNMSE
of —11.6 dB across the plane. For both the SKS and DCS-AMP, we see én@irmance improves with
increasing amplitude correlation (moving leftward). Tlhishavior, although intuitive, is in contrast to
the relationship between performance and correlationdanrthe MMV problem [29], [[43], primarily
due to the fact that the measurement matrix is static forimésteps in the classical MMV problem,
whereas here it varies with time. Since the SKS has perfemvlauge of the support, its performance is
only weakly dependent on the rate of support change. Froni4rige see that DCS-AMP performance
shows a modest dependence on the rate of support changesMautheless is capable of managing rapid

temporal changes in support.

C. Recovery of an MRI image sequence

While the above simulations demonstrate the effectiveoEBES-AMP in recovering signals generated
according to our signal model, it remains to be seen whethersignal model itself is suitable for
describing practical dynamic CS signals. To address thestipn, we tested the performance of DCS-

AMP on a dynamic MRI experiment first performed in_[44]. Thepekment consists of recovering
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Support-aware Kalman smoother TNMSE [dB] DCS-AMP TNMSE [dB]
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Fig. 4: TNMSE (in dB) of the SKS (leftmost) and DCS-AMP (righdst) as a function of the model parametggs and «,
for undersampling ratio = 1/3 and sparsity ratig = 0.45. BG-AMP achieved a TNMSE of-11.6 dB across the plane.

a sequence of0 MRI images of the larynx, each56 x 256 pixels in dimension. (See Fi@l 5.) The
measurement matrices were never stored explicitly dueggtbhibitive sizes involves, but were instead
treated as the composition of three linear operatiohs—= MFWT. The first operationWT, was
the synthesis of the underlying image from a sparsifying, 2Bevel Daubechies-4 wavelet transform
representation. The second operatibnwas a 2-D Fourier transform that yielded the k-space caeffis

of the image. The third operatiod/, was a sub-sampling mask that kept only a fraction of thelaiviai
k-space data.

Since the image transform coefficients are compressiblerahan sparse, the SKF/SKS no longer
serves as an appropriate algorithmic benchmark. Insteadompare performance against Modified-CS
[6], as well as timestep-independent Basis Pu&ms reported in[[6], Modified-CS demonstrates that
substantial improvements can be obtained over temporghpstic methods.

Since the statistics of wavelet coefficients at differerdlss are often highly dissimilar (e.g., the
coarsest-scale approximation coefficients are usuallyhnhess sparse than those at finer scales, and are
also substantially larger in magnitude), we allowed our EiMdcpdure to learn different parameters for
different wavelet scales. Usirg to denote the indices of the coarsest-scale “approximatioefficients,
and G, to denote the finer-scale “wavelet” coefficients, DCS-AMPswaaitialized with the following
parameter choicesig, = 0.99, \g, = 0.01, p,, = 0.01, (g, = (g, = 0, ag, = ag, = 0.05, pg, = 10°,

pg, = 10%, ando? = 0.01, and run in filtering mode withl = 10 inner AMP iterations.

8Modified-CS is available at http://home.engineeringatsedufluwei/modcs/index.html. Basis Pursuit was solved usirgy th
£1-MAGIC equality-constrained primal-dual solver (choséncs it is used as a subroutine within Modified-CS), avadaat
http://users.ece.gatech.edjustin/I1magic/.


http://home.engineering.iastate.edu/~luwei/modcs/index.html
http://users.ece.gatech.edu/~justin/l1magic/
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Algorithm TNMSE (dB) | Runtime
Basis Pursuit -17.22 47 min
Modified-CS -34.30 7.39 hrs
DCS-AMP (Filter) -34.62 8.08 sec

TABLE IV: Performance on dynamic MRI dataset from [44] withcieased sampling rate at initial timestep.

Fig. 5: Framesl, 2, 5, and 10 of the dynamic MRI image sequence of (from top to bottom): fily sampled dataset, Basis
Pursuit, Modified-CS, and DCS-AMP, with increased samptiaig at initial timestep.

In Table[TM we summarize the performance of four differertireators: timestep-independent Basis
Pursuit, which performs independefit minimizations at each timestep, Modified-CS, and DCS-AMP
(operating in filtering mode). In this experiment, per theupedescribed in[44], the initial timestep was
sampled at0% of the Nyquist rate, i.e M = N/2, while subsequent timesteps were samplethét of
the Nyquist rate. Both Modified-CS and DCS-AMP substantiallitperform Basis Pursuit with respect
to TNMSE, with DCS-AMP showing a slight advantage over MatifiCS. Despite the similar TNMSE
performance, note that DCS-AMP runs in seconds, whereasfidddCS takes multiple hours. In Figl 5,
we plot the true images along with the recoveries for thiseexpent, which show severe degradation
for Basis Pursuit on all but the initial timestep.

In practice, it may not be possible to acquire an increasedben of samples at the initial timestep.
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Algorithm TNMSE (dB) | Runtime

Basis Pursuit -16.83 47.61 min

Modified-CS -17.18 7.78 hrs
DCS-AMP (Filter) -29.51 7.27 sec

TABLE V: Performance on dynamic MRI dataset from[44] witteidical sampling rate at every timestep.

We therefore repeated the experiment while samplind6ét of the Nyquist rate at every timestep.
The results, shown in Table]V, show that DCS-AMP’s perforoeadegrades by about dB, while
Modified-CS suffers d4 dB reduction, illustrating that, when the estimate of thiidhsupport is poor,

Modified-CS struggles to outperform Basis Pursuit.

D. Recovery of a CS audio sequence

In another experiment using real-world data, we used DC3Ad recover an audio signal from
sub-Nyquist samples. In this case, we employ the Bern@alissian-mixture signal model proposed
for DCS-AMP in Sectiorl Y. The audio clip is @ second recording of a trumpet solo, and contains a
succession of rapid changes in the trumpet’s pitch. Such@dang presents a challenge for CS methods,
since the signal will be only compressible, and not sparde. dlip, sampled at a rate afi kHz, was
divided intoT = 54 non-overlapping segments of length= 1500. Using the discrete cosine transform
(DCT) as a sparsifying basis, linear measurements weraneltaising a time-invariant i.i.d. Gaussian
sensing matrix.

In Fig.[@ we plot the magnitude of the DCT coefficients of theiawsignal on a dB scale. Beyond the
temporal correlation evident in the plot, it is also inteirgs to observe that there is a non-trivial amount
of frequency correlation (correlation across the infigy, as well as a large dynamic range. We performed
recoveries using four techniques: BG-AMP, GM-AMP (a tengflgragnostic Bernoulli-Gaussian-mixture
AMP algorithm with D = 4 Gaussian mixture components), DCS-(BG)-AMP, and DCS-GMPA(the
Bernoulli-Gaussian-mixture dynamic CS model describe8entior Y, withD = 4). For each algorithm,
EM learning of the model parameters was performed usinggbtfarward variations of the procedure
described in Sectidn 1V, with model parameters initializedomatically using simple heuristics described
in [30]. Moreover, unique model parameters were learnedel émestep (with the exception of support
transition probabilities). Furthermore, since our moddlidden amplitude evolutions was poorly matched
to this audio signal, we fixed = 1.

In Table[V]l we present the results of applying each algoritonthe audio dataset for three different

undersampling rates, For each algorithm, both the TNMSE in dB and the runtime icosels are pro-
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Magnitude (in dB) of DCT Coefficients of Audio Signal

Coefficient Index [n]

10 20

30 40 50
Timestep [t]

Fig. 6: DCT coefficient magnitudes (in dB) of an audio signal.

Undersampling Rate

5= 1 5=1 =1

BG-AMP -16.88 (dB)| 9.11 (s) | -11.67 (dB)| 827 (s | -8.56 (dB)| 6.63 (9
E GM-AMP (D = 4) -17.49 (dB)| 19.36 (s) | -13.74 (dB)| 17.48 (s)| -10.23 (dB)| 15.98 (s)
E,, DCS-BG-AMP -19.84 (dB)| 10.20 (s)| -14.33 (dB)| 8.39 (s) | -11.40 (dB)| 6.71 (s)
<

DCS-GM-AMP (D = 4)

-21.33 (dB) | 20.34 (s)

-16.78 (dB) | 18.63 (s)

-12.49 (dB) | 10.13 (s)

TABLE VI: Performance on audio CS dataset (TNMSE (dBuntime (s)) of two temporally independent algorithms,
BG-AMP and GM-AMP, and two temporally structured algoriinDCS-BG-AMP and DCS-GM-AMP.

vided. Overall, we see that performance improves at eacrsathpling rate as the signal model becomes
more expressive. While GM-AMP outperforms BG-AMP at all erghmpling rates, it is surpassed by
DCS-BG-AMP and DCS-GM-AMP, with DCS-GM-AMP offering the &iETNMSE performance. Indeed,
we observe that one can obtain comparable, or even bettérpance with an undersampling raite= %
using DCS-BG-AMP or DCS-GM-AMP, with that obtained using B®&P with an undersampling rate

f=1

E. Frequency Estimation

In a final experiment, we compared the performance of DCS-AddRBinst techniques designed to
solve the problem of subspace identification and trackiognfpartial observations (SITPQ) [45], [46],
which bears similarities to the dynamic CS problem. In salspidentification, the goal is to learn the
low-dimensional subspace occupied by multi-timestep datasured in a high ambient dimension, while

in subspace tracking, the goal is to track that subspaceeslites over time. In the partial observation
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setting, the high-dimensional observations are sub-sesmpbing a mask that varies with time. The
dynamic CS problem can be viewed as a special case of SITP@gimtthe timet subspace is spanned
by a subset of the columns of an a priori known matd%). One problem that lies in the intersection
of SITPO and dynamic CS is frequency tracking from partialetidomain observations.

For comparison purposes, we replicated the “direction i¥aranalysis” experiment described [n [46]

where the observations at timetake the form
y® =Wyl L t—12 .. T (12)

where®® ¢ {0,1}*N is a selection matrix with non-zero column indic@) ¢ {1,..., N}, VI ¢

CN*K js a Vandermonde matrix of sampled complex sinusoids, i.e.,

VO 2 o), v (13)
with v(w,(f)) 21, ei2m | ei2mel (N=D]T ang w,(f) €[0,1). a® € RX is a vector of instantaneous

amplitudes, an&® ¢ R" is additive noise with i.i.d A (0, 02) elementg Here, {®®}T_, is known,
while {w®}T | and {a®}L_, are unknown, and our goal is to estimate them. To assessrperice,
we report TNMSE in the estimation of the “complete” siggd (Va7 .

We compared DCS-AMP’s performance against two online #lyos designed to solve the SITPO
problem: GROUSE [45] and PETRELS |46]. Both GROUSE and PEI®REeturn time-varying subspace
estimates, which were passed to an ESPRIT algorithm to genéme-varying frequency estimates (as
in [46]). Finally, time-varying amplitude estimates werengputed using least-squares. For DCS-AMP,
we constructedd®) using a2x column-oversampled DFT matrix, keeping only those rowsxed by
0, DCS-AMP was run in filtering mode for fair comparison witrettonline” operation of GROUSE
and PETRELS, with/ = 7 inner AMP iterations.

The results of performing the experiment for three différproblem configurations are presented in
Table[VII, with performance averaged ové0 independent realizations. All three algorithms were given
the true value ofK. In the first problem setup considered, we see that GROUSEatgsethe fastest,
although its TNMSE performance is noticeably inferior tattiof both PETRELS and DCS-AMP, which
provide similar TNMSE performance and complexity. In thea®d problem setup, we reduce the number
of measurements\/, from 30 to 10, leaving all other settings fixed. In this regime, both GR@&Usd
PETRELS are unable to accurately estim@u.ét)}, and consequently fail to accurately recow&t)a(®,

°Code for replicating the experiment provided by the authuir§46]. Specific choices regardingu,(f)} and {a¥} were
made by the authors of [46], and can be found in the code.
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Problem Setup
N =256, M =30, K=5| N=256, M =10, K =5 | N =1024, M =120, K = 20
E | GROUSE -4.52 (dB)| 6.78 (s) 2.02 (dB)| 6.68 (9) -4.51 (dB)| 173.89 (s)
é PETRELS | -15.62 (dB) | 29.51 (s) 0.50 (dB)| 14.93 (s) -7.98 (dB)| 381.10 (s)
< | DCS-AMP |  -15.46 (dB)| 34.49 (s) -10.85 (dB) | 28.42 (s) -12.79 (dB) | 138.07 (9)

TABLE VII: Average performance on synthetic frequency mstiion experiment (TNMSE (dB) Runtime (s)) of GROUSE,
PETRELS, and DCS-AMP. In all caseg,= 4000, o2 = 10~°.

in contrast to DCS-AMP. In the third problem setup, we inseghthe problem dimensions from the

first problem setup by a factor of to understand how the complexity of each approach scalds wit
problem size. Interestingly, DCS-AMP, which was the slawaissmaller problem dimensions, becomes
the fastest (and most accurate) in the higher-dimensi@tihg, scaling much better than either GROUSE
or PETRELS.

VIl. CONCLUSION

In this work we proposed DCS-AMP, a novel approach to dyna@fic Our technique merges ideas
from the fields of belief propagation and switched linear alyical systems, together with a computa-
tionally efficient inference method known as AMP. Moreowee proposed an EM approach that learns
all model parameters automatically from the data. In nucaéexperiments on synthetic data, DCS-AMP
performed within3 dB of the support-aware Kalman smoother bound across thsigpandersampling
plane. Repeating the dynamic MRI experiment froml [44], DAEP slightly outperformed Modified-CS
in MSE, but required less that) seconds to run, in comparison to more thahours for Modified-
CS. For the compressive sensing of audio, we demonstragedisant gains from the exploitation of
temporal structure and Gaussian-mixture learning of tyeadiprior. Lastly, we found that DCS-AMP can
outperform recent approaches to Subspace Identificatidmeacking from Partial Observations (SITPO)

when the underlying problem can be well-represented thragynamic CS model.
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