Novel B-Spline Behavioral Model

Extracted and Verified

Using Vectorial Harmonic and Multitone Data

Jiarui Lian and Patrick Roblin
Department of Electrical Engineering
The Ohio State University
and
Jaime A. Pla
RF Design Operations
Wireless Infrastructure System Design
Motorola
Poster Outline

• I Introduction
 – Goals, Motivations
 – Procedure
 – Modeling Strategy

• II Modeling Methodology
 – Model topology and mathematical representation
 – Extraction of model coefficients

• III Results
 – Model playback
 – Model verification

• IV Conclusion
Part I: Introduction

Goals and Motivations

• Goal: Develop a Behavioral model for RF power amplifiers accounting for:
 – Non-linearities (harmonics, intermodulation and spectral regrowth)
 – Memory effects (AM-PM)

• Motivations: Behavioral models
 – Provide intellectual property (IP) protection
 – Facilitate the testing and design of communication systems
 – Can assist with the development of linearization systems: (e.g., design of a
 pre-distorder)
Procedure:

- Acquire the targeted measurements on the PA
- Extract the behavioral model in MATLAB
- Implement behavioral model into ADS as a user-compiled-model
- Compare the performance of the behavioral model and the original PA
Modeling Strategy I

Ideal behavioral model requirements:

- fit the time domain and harmonic response
- predict the intermodulation (IMD3, IMD5 ...) and spectral regrowth
- work for a wide range of signal power levels and bandwidth

In practice there is a trade-off process between the number of performance criteria targeted and the accuracy achieved in each of these criteria.
Modeling Strategy II

Our trade-off solution:

- Target a specified range of power and a finite bandwidth
- A finite number of one-tone and two-tone measurements are used for extraction:
 - Components used for fitting: H1, H2, H3, H4; IMD1, IMD3
- An acceptable time-domain performance is achieved by
 - monitoring/bounding and filtering the higher harmonics: H5, H6, H7, H8
- The model predictability is verified with the prediction of
 - Higher order intermodulation: IMD5 and IMD7
 - Multi-tone response (emulation of CDMA)
Example of DataBase

- Verification measurement
 - One-tone tests: 1899, 1900, 1901, 1902 MHz
 - Two-tone tests: 1900 + 1901 MHz
 Note: 3rd order intermodulations (IMD3): 1899, 1902 MHz

- Verification measurement
 - Two-tones IMD5: 1900, 1901 MHz
 Note: 5th order intermodulations (IMD5): 1898, 1903 MHz
 - 8 tone multisine: 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1903, 1904 MHz

- Typical range of input powers:
 - Minimum power: 45 dB below P1dB (e.g., -30 dBm)
 - Maximum power: 15 dB above P1dB (e.g., 30dBm)
Example of PA Circuit in ADS for Data Collection

Virtual Device: Set-up in ADS for Data Collection
Part II: Modeling Methodology

BSpline Model Topology

4 channels are shown but in practice 8 channels are used.
Main Model Components

• 8 Phase-Shift Channels ϕ are used to implement memory effects.

• The nonlinear function $A(\phi)$ are implemented using B-Spline representation of order r and knots sequence k:

$$A_\phi(x) = \sum_{i=1}^{m} \alpha_i^\phi B_i(x, k, r)$$

 - B-spline representation uses piecewise polynomials
 - B-spline order $r = 4$ (or 5) is selected to enforce the continuity of the 2nd or (3rd order) derivative of $A_\phi(x)$ at the boundaries.

• A filter is used to remove unwanted higher harmonics to improve the time-domain performance at high power levels.
Model is extracted using frequency-domain data (harmonics and intermodulation tones):

\[
\begin{bmatrix}
 B_{\text{OneTone.Hars,1...N}}^n(Re/Im) \\
 B_{T\text{woTone.IMDs,1...M}}^m(Re/Im)
\end{bmatrix}
\begin{bmatrix}
 \alpha
\end{bmatrix} =
\begin{bmatrix}
 H_{\text{OneTone.Hars,1...N}}^n(Re/Im) \\
 H_{T\text{woTone.IMDs,1...M}}^m(Re/Im)
\end{bmatrix}
\]

(1)

where:

- \(B^k \) are the B-spline functions, \(H^k \) are the real and imaginary component of each harmonics and tones \(\alpha \) are the B-spline coefficients to extract.
- The labels \(Re/Im \) stand for real and imaginary parts.
- The indices \(n \) and \(m \) specify the frequency components, \(N \) and \(M \) specify the range of simulation power levels for one-tone excitation and two-tone excitation respectively.
Extraction of Model Coefficients

- Fitting is done in frequency-domain
 - 8 harmonics are included for fitting
 - An output filter is used to only pass the first 4 harmonics
 - Higher harmonics are included in fitting to bound their values
- Prior-shaping: balance fitting of harmonics as a function of power level
- Optimization:
 - B-spline knots placement
 - Post-shaping (same as prior-shaping but using error feedback mechanism)
Prior Shaping: Weighing as a Function of Power Levels

The original system to solve (for one component):

\[
\mathbf{B} \alpha = \begin{bmatrix} B_{11} & \cdots & B_{1N} \\ \vdots & \ddots & \vdots \\ B_{M1} & \cdots & B_{MN} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{bmatrix} = \begin{bmatrix} A_1 \\ \vdots \\ A_M \end{bmatrix} = \mathbf{A}
\]

becomes

\[
\begin{bmatrix} w_1 \times B_{11} & \cdots & w_1 \times B_{1N} \\ \vdots & \ddots & \vdots \\ w_M \times B_{M1} & \cdots & w_M \times B_{MN} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{bmatrix} = \begin{bmatrix} w_1 \times A_1 \\ \vdots \\ w_M \times A_M \end{bmatrix} \quad \text{with} \quad \begin{bmatrix} w_1 \\ \vdots \\ w_M \end{bmatrix} = \begin{bmatrix} \max(A)/A_1 \\ \vdots \\ \max(A)/A_M \end{bmatrix}
\]

- Weights depend on the power levels within each component fitted
- The purpose is to balance the extraction of high and low power level data.
- Prior shaping is done at the beginning of the extraction (no error feedback needed)
Before and After Using Prior-Shaping

Figure 1: IMD3 ($2\omega_1 - \omega_2$ and $2\omega_2 - \omega_1$) before and after prior-shaping.
Optimization of B-spline Knot Placement

Integrated error (linear scale) versus knots distribution (dBm scale)

Other parameters such as the number and phase-shift ϕ of the memory channel could also be optimized.
Overall Extraction Algorithm including Optimization

Start

Prior Shaping

B-Spline Knots Optimization

Done?

Post Shaping

Done?

End

Final result
Part III: Results

Implementation of Behavioral Model as a User-Compiled-Model in ADS
Demo PCS amplifier: Transistor and Matching Network

Optimized Matching Circuits

Detail of PCS amplifier
Model Fitting and Prediction for PCS circuit

- Fitting
 - one-tone fitting
 - two-tone fitting

- Prediction:
 - IMD5
 - Multi-sine: 4-tone fitting and 8-tone fitting
One-tone fitting: Fundamental, Second, Third harmonics

(a) Real and imaginary components, (b) Power (dBm) for ω, 2ω, 3ω.
One-tone fitting: Third, Forth, Fifth Harmonics

(a) Real and imaginary components, (b) Power (dBm) for 3ω, 4ω and 5ω.
One-tone fitting: Sixth, Seventh, Eighth harmonics

(a) Real and imaginary components, (b) Power (dBm) for 6\omega, 7\omega and 8\omega.
Two-tone fitting: IMD3

(a) Real and Imaginary components
(b) Power (dBm) for $2\omega_2 - \omega_1$ and $2\omega_1 - \omega_2$;

Note: The circles are the locations of B-Spline knots.
Two-tone fitting: IMD1

(a) Real and imaginary, (b) Power (dBm) for ω_1 and ω_2
Two-tone prediction: IMD5

Predicted (a) Real and imaginary components (b) Power (dBm) for $3\omega_2 - 2\omega_1$ and $3\omega_1 - 2\omega_2$
One-tone fitting: Time-domain performance

Time-domain representation for some power levels; Left: before filtering; Right: after filtering
Multi-sine Excitation

\[v_{in} = R_F \cos(\omega_{RF}t) \times \sum_{n=0}^{N_{\text{phi}}} \cos(n\omega_{IF}t + \phi_n) \]

\[\phi_n = \pi \frac{n^2 - 1}{N_{\text{phi}}} \quad \text{or} \quad \phi_n = \pi \frac{(n - 1)^2}{N_{\text{phi}}} \]

Multisine input signal in the time domain
Prediction(1-a): PCS circuit: 4-tone fitting multi-sine
Comparison of Time-domain signal: original PA in ADS and our model in ADS
Four-tone prediction:

Left: amplitude; Right: phase and phase difference
Four-tone prediction: Fundamental

Left: amplitude; Right: phase and phase difference
Four-tone prediction: Second

(a) V-out: Amplitude

(b) V-out: Phase

V-out: Phase difference

Left: amplitude; Right: phase and phase difference
Four-tone prediction: Third

Left: amplitude; Right: phase and phase difference
Four-tone prediction: Forth

Left: amplitude; Right: phase and phase difference
Four-tone prediction: Fifth

Left: amplitude; Right: phase and phase difference
Prediction(1-b): PCS circuit: 8-tone fitting multi-sine
Time-domain signal: original PA in ADS and our model in ADS
Eight-tone prediction: All

Left: amplitude; Right: phase and phase difference
Eight-tone prediction: Fundamental

Left: amplitude; Right: phase and phase difference
Eight-tone prediction: Second

(a) V-out: Amplitude

(b) V-out: Phase

Left: amplitude; Right: phase and phase difference
Eight-tone prediction: Third

(a) V-out: Amplitude
(b) V-out: Phase

Left: amplitude; Right: phase and phase difference
Eight-tone prediction: Forth

V-out: Amplitude

V-out: Phase

V-out: Phase difference

(a) (b)

Left: amplitude; Right: phase and phase difference
Eight-tone prediction: Fifth

(a) V-out: Amplitude

(b) V-out: Phase and phase difference

Left: amplitude; Right: phase and phase difference
Prediction(2): OAT circuit: 4-tone fitting multi-sine
Input Power=12 dbm: Time-domain signal: original PA in ADS and our model in ADS
Four-tone prediction: Fundamental

Input Power=12 dbm: Left: amplitude; Right: phase and phase difference
Input Power=0 dbm: Time-domain signal: original PA in ADS and our model in ADS
Four-tone prediction: Fundamental

Input Power=0 dbm: Left: amplitude; Right: phase and phase difference
Experimental Validation of Model

- The behavioral model developed is now sufficiently mature to be directly extracted from experimental data.
- This requires the availability of vectorial data for both the fundamental and harmonics generated for single and multi-tone input signals.
- The forthcoming acquisition of the LSNA in our laboratory will put us in the position to acquire these data.