presented at: .
The 29th Midwest Symposium on Circusts

and Systems, Lincoln, Nebraska, August 1986

ON THE NUMERICAL AND STATISTICAL PROPERTIES
OF INSTRUMENTAL VARIABLE LATTICE ALGORITHMS

S. D. Roach, R. L. Moses, and S. Yurkovich

Department of Electrical Engineering
The Ohio State University
2015 Nesl Ave
Columbus, OH {5210

Abstract

The numerical properties of three instrumental variable
ARMA identification algorithms are compared. Two re-
cursive lattice algorithms (one normalized) and a block pro-
cessing algorithm are found to be essentially equivalent in
numerical error and in response to ill-conditioned problems.
Simulations demonstrate the effectiveness of the normalized
lattice algorithm at maintaining near unity magnitudes in
the lattice parameters. While in some cases the parameter
magnitudes suddenly diverge, they recover in a few time
samples; this behavior is eassociated with division by a pa-
rameter which approaches zero and is easily avoided.

I. Introduction

In many engineering applications it is necessary to ob-
tain a model from a given time series. Examples include
on-line identification of structural dynamics, speech pro-
cessing, adaptive equalization, and geophysical signal pro-
cessing. For these applications an often—used time series
model is the autoregressive moving average (ARMA} model
given by

2(k) =~ Yaalk =)+ L0EG-7) . ()

j=0

where E(k) is zero mean, unit variance white noise.

There are numerous algorithms for estimating the a;
and b; coefficients in an ARMA model. Recently, there has
been growing interest in so—called fast lattice algorithms for
on-line estimation. Lattice algorithms are popular because
they combine the advantages of low computational burden
and relatively high estimation accuracy |1].

In this paper we are interested in an instrumental variable—

based method for estimating the AR coefficients in the
ARMA model |2]. There are three different implementa-
tions of this method: a block processing method based on
the extended Yule-Walker equations, an unnormalized lat-
tice implementation, and a normalized lattice implementa-
tion. An important question surrounding these three al-
gorithms is whether one has significantly better numerical

properties than the others. This paper addresses that ques-
tion by considering two measures of numerical quality of the
algorithms: the effects of finite precision arithmetic, and
the ability of the normalized algorithm to keep its internal
parameters “small”.

II. The Three Estimation Algorithms

The following sections briefly outline the three algo-
rithms used in this study. Further details appear in [3,4].

A. The Preunndow Block Processing (PBP) Algorithm

Assume the given data points z(k), k = 1,..., N, are
samples of the ARMA(p,q) process defined in (1). The
so-called prewindow block processing algorithm solves the
following linear system of p extended Yule-Walker equations
[4):

Rnay = -ry (2)
where

av = [a(1),...,a(p)}" , (3)

v = [ro(N),...,ro(N)]T (4)

Ry = [ry(N)] (5)

W) = 3 sle-g-dalk- 0t L (O

where r;(N),i=1,...,p, 7=1,...,p, is an estimate of
the autocorrelation function of z(k) at time lag ¢ + ¢ — J.
The exponential forgetting factor, A, (incorporated in all
three algorithms used in this study) allows the algorithm
to track time varying parameters.

Since the autoregressive order p is usually small, the
solution of (2) is easily found numerically. However, the
formation of R3' requires O(p®) computations and does
not permit efficient real-time identification.

B. The UPIV Algorithm

The Unnormalized Prewindow Instrumental Variable

(UPIV) algorithm is a fast recursive implementation of the
PBP algorithm [4]. The calculation involves updating the
four prediction error scalars in (7)-(10) below and the five
auxiliary scalars, or “lattice parameters”, in (11)-(15) given
below. The lattice filter multiplier coefficients are related to
the five auxiliary scalars in a straightforward way, and time
and order recursive formulas are available for obtaining the
autoregressive coefficients [4].

mtln = — [m-allomnl/lwmn-s] (@
Jmirn = Jon = [Bmncilltmn)/[wmn-i] (8)
botin = bmnr = | nllrmn)/[Bman] (9)
btin = s = (S pllomnl/|Bma] (10)
Bmstn = bmn = [Omalltmnl/[Wma-1] (11)
Wmitn = Wma-1 = [Omalltmal/bma) (12)
Omn = Aomn-y + bopr)lfmnl/[mna] > (13)
Tmn = AMmna 4 {foallbmn-i)/[ma] , (14)
Tmttn = = b - 1llbr)/ lwmna] - (15)

C. The NPIV Algorithm

A shortcoming of the UPIV algorithm is that the four
lattice parameters o, 7, i, and w, tend to become large as
the calculation progresses. For long data sets this growth
prohibits implementation of the algorithm in fixed point

arithmetic.
The Normalized Prewindow Instrumental Variable (NPIV)

algorithm eliminates the problem of lattice parameter growth
by normalizing lattice parameters with the square roots of
certain factors in the following update equations [3]:

iy = =S flsslt (16)
rs‘zvl)’ = Il _bﬂ lpbﬂ 1,8 slz_) 1,08 Sls;)vl’ ’ (17)
r(s:’)7 = [1- ""v"npsnpsaz)x pl’ s (18)
Onp = On- lp's.l;); 512;):"’ Jop bl lps(s;); ’ (19)
Tnp = Tn- 1,pf£,l,), 53,’, + by pf"l, psgl ’ (20)
f:.p-H = ['f:,p by, 2n, psszz)l p]/lr(z,})w '(fp , (21)
X,m = [fX,, - by PALY Pssaz)l,p]/[rv(wz;): -(zs;);] s (22)
b:.p+l = [bn_ 1p — 'r,,,,s]/["Szl;): '(‘s’),] ’ (23)
Bipsr = [bh sy = fhonpstd)/IrelD] . (24)

As is shown in the sequel, the NPIV algorithm keeps the
lattice parameters near unity in magnitude excepi when
unfortunate data sets create ill-conditioned problems.

III. Comparative Studies

Simulations have been run to investigate the effects of
finite precision and to observe the ability of the NPIV al-
gorithm to keep its internal parameters “small”. The sim-
ulations have been conducted for varying data bandwidths,
forgetting factors, and model orders.

Numerical errors are evaluated through simulations coded
in FORTRAN and runon a VAX 11/785 computer. The ab-
solute error between single and double precision real arith-
metic is then plotted as a function of time step. The single
precision mantissa is 24-bits or 7.22 decimal digits, and the
double precision mantissa is 56-bits or 16.9 decimal digits.
The data used for numerical comparisons is single-pole, fil-
tered white noise, generated according to

z(n)=[(z—ju—)]w(n) , n=1,...,1000 , (25)

where w(n) is unit variance, Gaussian white noise. Simula-
tions are conducted with wide, medium, and narrow band-
width data (u=0.3, 0.8, and 0.99, respectively.) The noise
sequence w(n) has been varied for several representative
cases and was found to have no substantial effect on the
identifications.

Figure 1 shows the convergence of the autoregressive co- -
efficient for a first order, wide-band process with A=0.95.
The results are identical for all three algorithms to machine
precision. The large “spikes” are associated with near sin-
gularity of the autocorrelation matrix By in the PBP algo-

rithm and with division by a parameter approaching zero

in the lattice algorithms. These spikes can be avoided by
validating the parameters with a variety of simple heuristic
tests. One method, successfully applied to lattice parame-
ter convergence problems encountered in the identification
of the modes of flexible structures, compares the absolute
sum of ten successive changes in the estimated parameters
against a threshold [5,6]. If the sum exceeds the threshold,
past estimates of the parameters are held until the condi-
tion improves.

Figures 2-7 show the absolute numerical error in the
autoregressive coefficient using wide-band data. For A=1.0,
Figures 2-4 show that for all three algorithms, this error
is on the order of single precision machine epsilon. In Fig-
ures 5 and 6, with A=0.95, the numerical error in the UPIV
and NPIV algorithms is again on the order of machine ep-
silon, except at points where the ill-conditioning problem
arises. Comparison of Figure 1 with 5 and 6 reveals that
spikes in the autoregressive coefficient estimate correspond
to spikes in the numerical error. Although not shown, the

numerical error in the PBP algorithm shows the same spike
phenomenon.

Parameter magnitude growth is studied by running the
UPIV and NP1V algorithms at double precision and plot-
ting the lattice parameters. The data used for these com-
parisons is six-pole filtered white noise, generated according
to

:(n)=[zz—_z:F)5]w(n) , n=1,...,1000 . (26)

Figures 7 and 8 show the variation of the lattice parameter
o for A=1.0 and wide-band data. In the UPIV algorithm
(Figure 7), o reaches 700 at the 1000th data point. (In
the most extreme case we have observed, with A=1.0 and
narrow-band data, o reached 80,000 in 1000 time steps.)
In the normalized algorithm (Figure 6), 0 remains between
gero and 0.8 for all time steps.

For A=0.95, Figures 9 and 10 show how the NPIV algo-
rithm greatly reduces the dynamic range of o in comparison
to the UPIV algorithm.

Finally, Figure 11 is a histogram of Figure 8, show-
ing the distribution of the normalized parameter o for the
NPIV algorithm. The clustering of the magnitude of the
parameter around 0.75 is evident.

IV. Conclusions

Because of space limitations, we have presented only
a few representative plots. However, results from a large
number of simulations with various data bandwidths, for-
getting factors, and model orders have allowed us to make
the following general observations:

e Smaller forgetting factors and wider data bandwidths
tend to increase the variance of parameter estima-
tions.

e All three instrumental variable algorithms are equally
vulnerable to ill-conditioning that arises with unfor-
tunate data sets. Ill-conditioning leads to sudden
“explosions” of estimated parameters, but there are
known methods of detecting and avoiding this phe-
nomenon [5,6]. Moreover, recovery from these errors
is very fast, typically occuring in a few time steps.

e Numerical error is consistently on the order of ma-
chine epsilon for all three algorithms. While the er-
ror may sometimes suddenly deviate from machine
epsilon, this phenomenon is associated with the ill-
conditioning problem. Over a period of 1000 data
points, all three instrumental variable algorithms are
stable with respect to numerical error.

e The NPIV algorithm keeps its internal parameters
near one in magnitude, except when ill-conditioning
arises. If a parameter test is used to detect and avoid
ill-conditioning, “explosions™ of the internal parame-
ters are of no consequence.

In summary, no surprising numerical behavior has been
found in any of the three instrumental variable algorithms.
The NPIV algorithm effectively keeps its internal parame-
ters small in a variety of test cases. Current studies along
these lines involves an application to system identification
and adaptive control schemes on flexible mechanical struc-
tures.

References

(1] P. Fabre and C. Gueguen, “Improvement of the fast
recursive least-squares algorithms via normalization: A
comparative study,” IEEE Transactions on Acoustics,
Speech, and Signa! Processing, vol. ASSP-34, no. 2,
PP. 296-308, April 1986.

[2] R. L. Moses and A. A. Beex, “Instrumental vari-
able adaptive array processing,” IEEE Transactions on
Aerospace and Electronic Systems, 1985. (submitted).

[3] R. L. Moses and A. A. Beex, “Normalized prewin-
dow instrumental variable algorithm,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 1986.
(submitted).

|4] R. L. Moses, J. A. Cadzow, and A. A. Beex, “A re-
cursive procedure for ARMA modeling,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
vol. ASSP-33, no. 4, pp. 1188-1196, October 1985.

[5] N. Sundararajan and R. C. Montgomery, “Identifica-
tion of structural dynamics systems using least-square
lattice filters,” Journal of Guidance, Control, and Dy-
namics, vol. 6, no. 5, pp. 374-381, September 1983.

J. P. Williams and R. C. Montgomery, “Experimen-
tal implementation of parameter adaptive control on a
free-free beam,” In Proceedings of the Fourth VPI &
AIAA Symposium on Dynamies and Control of Large
Structures, June 1983.

{6

8

-

E .

~ 8]

o d

e

e

8

"3 LAMBDA = 0.95

LR

< 7 x(n)= [2/(2-0.30)] w(n)
LA T T L]) T J lT 1 L 1
a0 & ©.0 =®.m w. K 0. 00

TIRE BTEP *10
Pig. 1 Convergence with Wide-band Data

ERROR AR CORPP #10g-%
L

[N

B el

ERROR AR CORFP? *102-%
Bl

LANBDA =

x(n)= ll/(l-o 30)) win)

LN T L] T ¥ ki qT AJ T 1
.00 anw anmw 0. w L 8- 100, 00

TIRE STEP *10

¥ig. 2 wumerical Error in PBP Algoritha

LAKBDA = 1.0

x(n)= [x/(8-0.30)]) w(n)

L L i ¥ ¥ 1 T ‘I L L] 1
[N} .m0 4. 00 0. 0o [Y. 4 100. 00

TIKE STEP *10

rig. 3 Mumerical Xrror in GPIV Algoritha

9
3
¥ o]
-
©
¢
>3
£+
o
=-l
. LAMBDA = 1.0
© ¢ x{n)e {x/(3-0.30)] w(n)
&
-
1 t] T ¥ T T " T L 1
oo .00 0.0 0.0 [Y] 100, 00

TIRE STEP ¢10

rig. 4 Mumerical Error in WPIV Algorith-

ERROR AR CORFY *10E-4
bo'

LAMBDA =

x{n)= ll/(l-o 30}) w(n)

T L] + L T 1 ’| T L 1 1
o .00 40.00 .00 "0, 00 100, 00

TINE STEP ¢10
Pig. 5 dumerical Zrror in UPIV Algorithe

LAMBDA = 0.95
x(n)e [2/(2-0.30)] w(n)

-

| o]

-

o

-]

-

o

] d o~
= 8

£ +

=

-

L T T ¥ T ‘ﬁi’i A RS k)]
o0 .00 .00 m.00 m.m 100, 0O

TINE STEP *10
Fig. 6 MNumerical Error in NPIV Algorithe

SIGHA *10K1

PERCENT

Bm

LAMBDA = 1.
x(nj= ll"ﬁ/(l-o 30)e*6) win)

-
8
7
8
Cy
T Y T Y T Y ruy T
om nm &.0m ®.m s, 0o

TINE STEP *10

)
100. 00

rig. 7 Parameter Magnitude in UPIV Algorithe

[,
d7
.
LARBDA =
9 xz(n)= (I"G/(I-O.'U)"Gl w(n)
&7
¥ L] B3 L] 1 L] ¥ ll PR
a0 0.0 40, 00 [8. 4 [8. 4

TINE BTEP 10
¥ig. 8 Parameter Magnitude in NPIV Algoritha

1
1, oo

LARBDA = 0.95
8 x(n)= (...e/(u-o 30)*¢6] w(n)
9—
.
8
3
8
d
T T 7 Y T— T
[N 2.0 0.0 .00 0o

TIKE STEP *10

Fig. 9 Parameter Magnitude in UPIV Algorithe

1
100, 00

TIAE BTEP 10

rig. 10 Parameter Magnitude in NPIV Algoriths

7
8
-
]
“1
R LAMBDA = 0.
a1 x(n)= [l"e/(l -0.30}%48] win)
L ¥ T T \J AJ L ’l T L
.00 20.00 4000 0. oo m.m

—
$00. 00

- e
8 —
/]
8
s
=
-]
€]
‘ A—F-L_-———4__Pf{-i_—
y T Y 7 Y T T T T u
o % o8 o.o [%) 74

SIGHA
rig. 11 Distribution of Parameter Magnitudes
In NPIV Algorithm

arm

