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Abstract: The authors consider the impact of a
small but nonzero bandwidth on narrowband
direction-of-arrival (DOA) estimation using an
array of sensors. They derive expressions for the
DOA error for three commonly used array
processing algorithms: MUSIC, ESPRIT and
weighted subspace fitting (WSF). The error
expressions are found by a perturbation analysis
of these algorithms for small relative bandwidths
of the sources. The perturbation-based error
predictions are compared to the exact deviation
for some special cases of interest.

1 Introduction

In this paper we consider the effect of bandwidth on
direction-of-arrival (DOA) estimates. Our problem is
motivated by communications and sensor problems in
which the bandwidths of the source signals, while
small, may not be negligibly small, such as, for exam-
ple, in radar, acoustics and underwater array process-
ing. Our interest is to quantify the error (and variance)
that results from using narrowband DOA estimators
when the sources have nonzero bandwidths.

An important and popular class of narrowband
DOA estimation algorithms is based on decomposing
the array covariance matrix into a low-rank signal sub-
space and an orthogonal noise subspace. The low-rank
structure arises from a zero-bandwidth assumption;
when the signals have a nonzero bandwidth, the low-
rank structure of the signal subspace is lost (see [1] for
a discussion on the effect of bandwidth on the distribu-
tion of the eigenvalues of the covariance matrix). Cor-
respondingly, the statistical properties of the DOA
estimates, and in particular the DOA errors, are
affected.

One alternative to DOA estimation for sources with
nonzero bandwidth is to use wideband source location
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algorithms (see, for example, [2, 3] and their
references). However, these algorithms are more
complex than their narrowband counterparts, so the
use of narrowband algorithms is preferred when the
bandwidths are small enough that the DOA error is
neglible or tolerable.

In this work we quantify the error in the DOA esti-
mates for three popular subspace-based narrowband
DOA estimators: MUSIC, ESPRIT and weighted sub-
space fitting (WSF). Specifically, we assume multiple
signals of nonzero bandwidth impinging on an array of
sensors and give analytical expressions for the resulting
error in the estimates of the directions of arrival.

The analysis is based on a series expansion of the sig-
nal and noise subspaces of the array covariance matrix
as a function of the relative bandwidths of the source
signals; as such, the analysis applies to cases where the
relative bandwidths are ‘small’. We compare our
expressions to the true deviation resulting from sources
with nonzero bandwidth for some cases of interest.

Our error analysis is a perturbation analysis of the
array covariance matrix, and is similar in principle to
several related perturbation analyses on, for example,
sensor positioning errors and uncertainties in the sen-
sor gains and phases. First-order DOA variance due to
finite-sample effects and to sensor errors are studied,
for example, in [4-10] and their references. DOA bias
has been analysed in [11-13] using second-order tech-
niques. The above references assume a perturbation
that retains the low-rank structure of the signal sub-
space. In contrast, the nonzero bandwidth of the source
signals destroys this low-rank property. In [14, 15] a
general array perturbation analysis is presented, in
which a low-rank signal subspace is not assumed. In
related earlier work [16], which was in part based on
[14, 15], we studied the effect of multipath-induced
source angular spread on DOA estimation, another
problem in which the low-rank subspace structure is
lost. Following [16], it is straightforward to include the
effect of a finite sample length (i.e. variance) in the
error analysis. Since this extension is straightforward,
we only consider it briefly in this paper, and focus on
obtaining the expressions for the error resulting from
the nonzero bandwidth.

2 Model and assumptions

In the following Section we define the (complex-valued)
signal model used throughout the paper, and give a
derivation of the array output covariance matrix. The
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signals received at the array {y,(¢)}]_, are, of course,
real-valued. Let y,(¢) be defined as

Yi(t) = ap(t) cos (wit + @i(t)) (1)
It is clear that y,(7) can also be written as

yr(t) = Re {ak(t)ei“""(‘)ei“’“} = Re {di(t)e"*"}

(2)
where d,(1) & a(1)e™ is the complex envelope of y()
[17). Tt is mathematically convenient (see, for example,
[17]) to work with complex signals, and this is the
approach that is taken in this paper. It should, how-
ever, be clear that to each complex modulated signal
si(0) & di (e corresponds a real-valued received sig-
nal y,(#) as described by eqn. 2.

Assume that n (complex modulated) signals {si(1)}/_,
impinge on an array of m sensors. The signals are
assumed to be uncorrelated stationary stochastic proc-
esses. Each signal arrives from an angle 6, and has a
symmetric spectral density Sy(w), centred around the
carrier frequency wy. Its total power is defined by

A1

gk = =

o Si(w)dw (3)

—oo
Sk(w) S()

ooy oy og+Bog
w

area=2n

4 0 1
w

Fig.1  Example spectral density Si(w) of signal 5,(t) and corresponding
shape” spectral density Si(w)
Note that other shapes are possible (see Table 1)

The spectral density Si(w) is assumed to be a scaled
and shifted version of a normalised ‘shape’ spectral
density, denoted by Sy (w), whose bandwidth (defined
as half the width of the symmetric spectrum) is one and
whose total power is one (the connection between the
spectral density S;(w) and the ‘shape’ spectral density
Si(w) is displayed in Fig. 1). This means that we
assume the relation between S (w) and S,(w) to be
given by

1 = W — Wk
Sk = qr5—Sk 4
@=ags (52 @
In the case of a spectral density of finite support, the
bandwidth of Sy(w) is defined as

by, £ Brwr (5)

where fB; is the relative bandwidth, with 0 < §, = 1.
When the spectral density has infinize support (as, for
example, in the case of S,(w) having a Gaussian shape)
we can define an ‘equivalent bandwidth’ proportional
to the square root of the second morent of Si(w):

/ " w?skw)dw) " e

—00

by 2 B = (

2mqp
(the second moment of S;(w) is assumed to be finite,
which means that the S;(¢) have finite energy).

To each source signal is associated a ‘spectral shape’
autocorrelation function 7y (7), which is given by the
inverse Fourier transform of Sy(w). Thus 7y (7) is
normalised such that 7,(0) = 1. In addition, since S;(w)
is assumed to have finite second moment, 7y (1) is
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continuously differentiable at T = 0. The corresponding
signal autocorrelation, ri(7), is found from eqn. 4 to b

ri(T) = @re™ T - T (BrwiT) (M
As the relative bandwidth B, approaches zero, ri(t) —
¢ and Si(w) — 2ng,8(w — @y), which are the auto-
correlation and spectral density functions of a sinusoi-
dal signal of frequency w, and power ¢, as desired.
The sampled array output at time ¢ is the complex m-
vector X(1) = [x1(£), ..., x,()]7, where the received signal
at the pth sensor can be expressed as

wu(t) = au(Ok)sk(t— Tip) +nu(t), p=1....,m

k=1
8

where T}, is the time taken for the kth signal to propa-
gate from an arbitrary reference point to the uth ele-
ment of the array. The antenna elements’ frequency
responses are assumed to be constant amplitude and
(identical) linear phase over the bandwidth of the
source signals. This assumption, used also for band-
width performance analysis of adaptive antenna sys-
tems [18], is valid for small relative bandwidths, which
is the case of interest here. The linear phase term
results in a constant time delay that can be included in
the T, terms. The remaining complex antenna gain
terms are denoted 4,(6), giving the array gain vector at
angle 6

a(0) = [@(0),a:(0).....an (O] (9)
The n,(t) term in eqn. 8 is the noise component, and we
assume that the noise vector n(7) = [n,(7), ..., n,(D)]7 is a
zero mean, circularly complex random vector with
E{n(nn’(s)} = A21,,8,, and E{n(Hn’(s)} = 0 (here "
denotes the complex conjugate transpose).

If the source signals have zero bandwidth, i.e. if the
usual narrowband assumption holds, a time delay of
the signal can be modelled as a simple phase shift of
the carrier. Then the array covariance matrix

R 2 B {x()x" (1)) (10)
is given by the standard ‘nominal’ expression:
Ro = A(wo, 80) QA" (wo, 60) + N1 (11)

where 8, = [6,, ..., 6,17, wy = [wy, ..., 0,]T, Ay, 6) =
[a(w;, 8)), ..., a(w,, 6,)] is the m x n array manifold
matrix and Q = diag{q;, .... ¢,}, where ¢, is the
received signal power from s.(7). Note that

a(wk’ 9k) é [dl (Qk)e_w’“'”'l, e dm(ek)e——iw;. TL',,,] T
(12)

For nonzero signal bandwidths, the (u, v)th element of
the covariance matrix is given by

R(p,v) = E{z,(t)x} (1)}

> (0035 0)rx(Tew — Tiw) + A28,

k=1
= Zau(%,@k)qwi(wkﬁk)
k=1
x 7 (Brwi(Thw — Tip)) + A28,

(13)

where a,(wy, 6,) = d,(6)e iwiTue (see eqn. 12). Eqn. 13
can be written in matrix form as
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R = Z( (W, Ok )gra (Wk,ak)GBk)+/\2Im (14)

where O denotes the Hadamard (element-wise)
product. The m x m matrices {B,}/_, are defined by
their (u, v)th elements:

B, v) = 7 (Bewr (Tew — Trp)) (15)

(the result (eqn. 14) is also presented in a different form
in [1]). For B, = 0, B, is a matrix whose elements are
all ones, and R reduces to Ry in eqn. 11.

3  Small perturbation properties of R

We now assume that the fractional bandwidths p, are
‘small’ and find the Taylor series expansion of R as a
function of B = [B, ... B,] about the nominal covari-
ance Ry, and retain terms up to and including second
order in B. Because only B, in eqn. 14 depends on B,
we need only the Taylor series expansion of 7(w.f,T)
about the point 8, = 0. We have

R OBy,

5 a(wk, Ok )gra® (wi, 0) © EXn (16)

and

PR _ [ a(w,0k)gpa (w0, 0:) © ZBs k=1
9Bx38: | 0 Y
(17)

(there are no crossterms in the expansion as the sources

are assumed to be independent). The covariance matrix
in eqn. 14 can thus be expanded as

R~Ro+ ) [ﬁkék +6,2]3k] =Ro+C+B (18)
k=1

where the (¢, v)th elements of C; and B, are given by

ﬁk-zo]

Crlp,v) = a,(wi, Ox)aral (we, bx)

|:—7"k (Wi Bk (T — Tku))

B
(19)
Bi(u,v) = %a“(wk,ﬂk)qkaf,(wkﬁk)
[aﬁQ (Wi Bk (Thw — Tip)) m:o]
(20)

Through the Fourier-pair relation between 7(7) and
Si(w) and since Sy(w) is symmetric, we have

1 it ~ )
! —_ 4 . - wWwT
74 (7) i }1_1’1'%) 5 /_Oo wSi(w)e™ dw
1 *° ~
= — twSg(w)dw =0 (21)
27 J_ o
Since
ai'”k (wrBk(Tro — Tiew))
Bk Br=0
= (Thy — Trp)wi T4 (7) =0
=0
(22)
it follows that C; = 0. We also have that
2
r(weBe(Tew = Thy))
gz R PR
= (Thy — Tip)?wiry (1)
7=0
= (Tew — Trp)* Wik

(23)

where ;. 2 7 (0). The same kind of argument as above

gives

ki = lim L/ —w25k(w)eiwdw

=027 [_
1 e ~
=5 —w2S(w)dw (24)
s

The integral in eqn. 24 is well defined since S(w) is
assumed to have a finite second moment. To summa-
rise, for a symmetric spectral density

n
R~Ro+ ) BBi=Ro+B (25)
k=1
where the (u, v)th element of By is given by

- 1 .
Bk(,u, l/) = Ea# (wk N Hk)qka’;(wk, Gk)(Tk,, —Tk#)zwink
(26)
A few examples of spectral shape models, together with

their normalised autocorrelation functions and «; val-
ues, are given in Table 1.

4  Perturbation analysis of DOA estimators

We analyse the error of DOA estimators when the
source signals have small but nonzero bandwidth. The
approach we take is to perform a small perturbation
analysis of the estimation algorithms, using the

Table 1: Examples of some spectral density models and their
corresponding normalised autocorrelation functions

Sw) Filt) Kk
E1 {]6 l:;lsjv:here sinc z -3
ez {flIroostrl o=t o dsine 2o 201/ - (6N
E3 {%”("‘“' N ;‘;’s'ejhere 2(1 - cos 7)/z2 16
E.4 \/(27!) exp—w?/2} lwl < » exp(-1%/2) -1

sinc x 2 (sin x)/x; E.1 = flat spectrum; E.2 = raised cosine spectrum; E.3 = tri-
angular spectrum; E.4 = Gaussian spectrum
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perturbation results on R obtained above (and on its
corresponding sample estimate R).

4.1 Signal and noise subspaces

In practice, the true covariance matrix R is not availa-
ble and must be estimated from a sample of N data
points of the array output, {x()}},, according to

=L 3 x(Hx () (27)

If the elements of x(7) are given by eqn. 8, then we can
write

RZRQ'FZ\B%B/C-FM
k=1
=Ro+B+M (28)
where the matrices B, are given by eqn. 26 and where
M is a random perturbation (of order 1/N) on R due to
the finite sample size N. Consider the following sub-
space decompositions of Ry and R

Ry = SAS* + \’GG” (29)

R =SAS" + GEG* (30)
where A = diag{A, ... A,} contains the n largest eigen-
values of Ry, S is the corresponding matrix of the n
associated orthonormal eigenvectors, and G is the
matrix of the remaining m - n orthonormal eigenvec-
tors (we assume that {A;} 7, are distinct and greater
than A2). The matrices S, A, G and 3, are the estimated
counterparts of S, A, G apd 3. Then as B, = 0 and N
—aocﬂvgehaveR—éRO - S, A=A %= A,,
and GG* — GG* [19]

Define A 2 A~ A, (n x n) and let P, & A(A"A) A"
= AAt and P; 2 I - P, denote the projection matrices
onto the range and null spaces of a matrix A (where A*
= (A"A) 'A" is the pseudo-inverse of A). To simplify
the notation, in what follows we oftea write a, instead
of a(w. 6;) and d, instead of da,/a0,.

4.2 MUSIC algorithm
The MUSIC algorithm gives the DOA estimates
{6 My, as the n largest maxima of the scalar function

Vu(8) = tr {Pas) 88" } (31)

Expanding the gradient V() B 430 VM(Q) in a Tay-
lor series about the true angle of arrival 6, = 6, k = 1,
., 1, gives to first order

B =0 ==V O VB (32)

where V"(6) A 259 V1(0) is the Hessian of VW(O)
Defining G = G - G and 3 = ¥ - X and carrying
through the calculations yield

N P o)
Vi, (6) = tr
A[( k) tl{ o0 SS } 6=0;.

=2Re {ir [P, 010 85°]}

= 2Re {al (1- GG*)PL d; |
~ —2Re {a;GG*d,,} (33)

where we have used the fact that G'P& = G* and
where the approximation is valid as N — c. We aim at
expressing the error in terms of the covariance matrix
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(eqn. 28) rather than in terms of the noise subspace as
in eqn. 33. To that end, the following derivation is use-
ful:

RG =GX
= RoG +RG ~0’G + G + 0°G
— S*RoG + S'RG ~ 0%8*G
= S*RG ~ -AS"G
— —alSR 'S'RG ~alSS"G =alG
(34)

Combining eqns. 33 and 34 and using eqn. 28 we
obtain

Vi (1)
~ 2Re {(a;ak)—la;;szi'ls*[ﬁ + MGG dy }
(35)

In the same manner, it is possible to show that for
Vi1(6,) we have

" azPa 4 *
Vi) = tr { 092( 'ss }

6="0;.
Oa 15)
= 2R ESS*PL dy —a]SS*—2td,
2 e{aak i~ 2,855, "k
= 2Re {(aja;) 'd;SS*PL di
—(ajar) 'diPg di}
= —2(aja;) 'd;GG*d,

(36)

Combining eqns. 35 and 36 we obtain that the MUSIC
error, to second order in f3, is given by

6M — 6,
Re{a;sk 's [T, #B, + M| GG d, }
d;GG*d,

~

(37)

Z;Zb +6YM, k=1,....n  (38)
Eqn. 37 could dlSO be found by using results in [20] on
the first-order expansion of the projection matrix P =
SS”, together with results on the derivatives of a non-
normalised version of the MUSIC cost function,
eqn. 31 (see [21]). We chose to give the derivation
above as it is also valid for the WSF algorithm, as will
be indicated below.

4.3 ESPRIT algorithm
The ESPRIT algorithm [22] assumes that the array can
be partitioned into two subsets. The two subarrays are
identical except for a translational shift of A wave-
lengths. In terms of the array manifold matrix, this
assumption can be written

A, =[I,, 0JA A, =0 I,A (39)
where A| and A, are the manifolds for the two subar-
rays, respectively. Define the matrices

Si=[L. 0S S;=[0 LS  (40)
¢ = (SiS1)7'S;S; (41)

1EE Proc.-Radar, Sonar Navig., Vol. 145, No. 6, December 1998



and similarly S|, S, and . If {o;}/; and {p,}/L, are
the eigenvalues of the matrices ¢ and ¢, respectively,
then the DOA estimates of the ESPRIT algorithm [22]
are given by

GE _ g1 [ 8Pk —1
© = sin (277A , k=1,...,n (42)

where the shift-invariance of the array has been used. It
follows that

. 1 5 —
0F — 0F ~ Im { 26— Pk 43

T T S N cosO, Dk (43)
Let {y,"} and {x} denote the left and right eigenvec-
tors of ¢, normalised so that y,"n, = 1. Introduce p,”
= % (S1*S) ' S,” {[0 I,] — oL, O]}. Then it is shown
in [14] that

Pr — pr ~ piGG*Sn, (44)
Using eqns. 43 and 44 together with eqn. 28 we obtain,
to second order in §;, the ESPRIT error

~ 1
Hf — 6, ~ A con b
xIm { %MZGG* [il 3B; + M| Sk ',
- (45)
23" g 4 6F (46)
=1

4.4 WSF algorithm

The WSF algorithm computes the DOA estimates as
the vector 8" that maximises a scalar loss function (of
a vector variable), i.e.

v = argmax V (6) (47)
where 8% = [6,%, ..., 6,"]T is the vector of WSF DOA
estimates and

V(0) =tr {P, 5 SWS"} (48)

This loss function is a multidimensional counterpart of
the scalar MUSIC criterion, eqn. 31. The matrix W
included in eqn. 48 is a positive definite and Hermitian
weighting matrix that can be chosen by the user. Using
the same kind of derivation as in Section 4.2, we obtain
(to second order in f;) the WSF error

6" — 6,
~ {2Re[ATSWS*AT* © D*GG*D]} ' ¥V'(8))
(49)

with D = [d;, ..., d,] and where V'(0), the gradient vec-
tor of V(0), has the kth element

V5. (60)
~ 2Re {e{AJ‘SWK_IS* [Z ﬁ?Bi +M

=1

GG*dk}

(50)
(e, is the column vector containing only zeros except
for having 1 as its kth element). Again, the error can be

expressed as the sum
n

0% — 0o~ > b + 8" (51)
=1
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4.5 DOA error: deterministic and random
components

Eqns. 38, 46 and 51 give the error induced by a
nonzero bandwidth for the MUSIC, ESPRIT and WSF
algorithms, respectively. As can be seen from these
equations, the second-order error is the sum of two
terms. The first term is the error induced by the
nonzero bandwidth of the signals. Each b, represents
the error in the kth DOA estimate induced by the ith
source. Thus, a DOA estimate 6 derived from R can,
under mild conditions, be written as

0~6,+ b + 6 (52)
~— O~
O(B8) OQVN)
In eqn. 52, b is the second-order error due to nonzero
bandwidth (i.e. corresponding to B). The second term,
0,, is the large-sample estimation error (i.e. corre-

sponding to M). It follows from eqn. 52 that the mean-
squared error is

E{66") — 6,6"
~ bb’ +cov(8) + bE{8}T + E{6}bT

o3 oa/N)

{
{

O(BF-1/N)

(53)
The first term in eqn. 53 is the square of the determin-
istic error due to nonzero bandwidth. The second term
is the variance of the DOA estimate for the nominal
case of narrowband source signals. This variance has
been well studied in the literature, and expressions for
the large-sample variance of 6 are known when §; = 0;
see, for example, [4-10] (for the case of small N, see
[23]). These studies show that € has mean of O(1/N)
and a standard deviation of O(1/VN) for large N. Thus,
we obtain the magnitude order expressions as shown in
eqn. 53. The final term in eqn. 53 shows a linear
increase in the variance of the DOA estimate as a func-
tion of B2, with slope given by E{@}. We note that for
both B> and I/N ‘small’, the last term in eqn. 53, is
negligible with respect to the first two terms. In view of
the above observations, it is clear that if g2 >> 1AVN,
then the bandwidth-induced error dominates the error
due to finite sample effects.

4.6 Uniform linear array and a single source
The complex array response for the uth element of a
uniform linear array (ULA) with an interelement spac-
ing of A wavelengths is given by

aﬂ(w’e) — e27riA(/_L—-1)sin(0) (54)

For a scenario with a single source impinging on a
ULA, it is readily shown that the bandwidth-induced
error (to second order in §;) is zero for all the algo-
rithms considered here.

5 Numerical examples

In this Section we present some numerical examples
that illustrate the effect of nonzero bandwidth on the
DOA estimators. We restrict our attention to the case
of a uniform linear array. Thus, the complex array
response of the uth sensor to a signal arriving from an
angle 6 is given by eqn. 54, where the incident angle is
measured from the broadside of the array. We consider
the case of two signals impinging from different direc-
tions on an array of m sensors with half-wavelength
spacing. The signals each have a flat spectrum, the
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expression of which is given by example E.1 of Table I,
and arrive at angles 6; and 6,. The centre frequencies
w; and w, are assumed to be equal, as are the relative
bandwidths B, and B,.

We present the results mainly for the MUSIC algo-
rithm, but the results are very similar for ESPRIT and
WSF. In the Figures we compare the ‘true’ (N = o)
error, obtained by applying the algorithms to the cov-
ariance matrix in eqn. 14 to the one obtained by the
above second-order theory. Note that (except for Fig.
8) we do not include the effect of noise in the simula-
tions, i.e. we have A> = 0 in eqn. 14. The reason is to
isolate the effect of the bandwidth-induced error. With
no noise (or infinite samples), it is clear that whatever
error is present in the DOA estimates is due to the sig-
nal bandwidth only, which is the error we are attempt-
ing to quantify.

Fig. 2 shows the error of the MUSIC algorithm as a
function of the array size m. The two sources have
equal power and impinge on the array from the angles
8, = 20° and 6, = 50° with relative bandwidths 8, = 3,
= 0.1. The first-order theory predicts the error accu-
rately for small array sizes (m < 20 in this example). As
seen in Fig. 2, the error becomes very small for a large
value of m, and in what follows we focus on ‘small’
arrays.

05 05
0.4 04
gos 03
402 0.2
201 0.1
0 0 i
01555 15 20 25 30" & 6 15 20 25 30
a m b m

Fig.2 MUSIC estimation error as a function of array size m for two
sources of equal power impinging from 6; = 20° and 6, = 50° with relative
bandwidth B, = B, = 0.1

first order

- ——— true

a Source 1

b Source 2

1.5

-
—

error, deg
S o
o
error, deg
S =)
- o
E

»H
(=]
oo
o
.
o]
O

0 40 80
b 0,, deg

Fig.3 MUSIC estimation error for a source impinging from 6; = 20° as
a /gm‘tion of DOA of second source for cases of equal power and of relative
power q/q; = 5

Bi=p=0landm=35

a Sources of equal power

b Sources of different power

first order

- --- true

Figs. 3-5 show the error of a source fixed at ; = 20°
when the DOA of the second source is varied from
—-85° to 85°; the relative bandwidths are 8, = 5, = 0.1
and m = 5. Figs. 3a and b show the results for MUSIC
for the cases when the sources have equal power and
when the sources have a relative power of g,/q; = 5,
respectively. When 6, is close to 20° the sources are not
well separated, and we see that the error increases
significantly in this high resolution scenario. Also, the
error increases significantly even for a moderate
difference in the source powers, a fact also noted in the
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presence of multipath induced angular spread [16]. This
can be explained by the corresponding eigenvalue
spread. As the bandwidth increases, the number of
dominant eigenvalues increases, and due to the so-
called ‘leakage’ of power, the signal subspace loses
dimension (see [1]).

In Figs. 4 and 5 the corresponding results for the
ESPRIT and WSF algorithms are shown (for the WSF
algorithm we have chosen the weighting W = A2A 1,
which is known to minimise the variance of the DOA
estimates due to finite sample effects). The error is
slightly larger for ESPRIT than for the MUSIC and
WSF algorithms. This is, indeed, expected since the use
of the shift-invariance property of the array corre-
sponds to the ‘loss’ of one sensor.

-
(]
-

error, deg
o
o u
error, deg
o
O o O =

o

&
o

for]
O
'
-
.
®
[=]

- 40 0 40 80

6,, deg

-80 -40 0 40
6,, deg
a b
Fig.4 ESPRIT estimation error for a source impinging from 6; = 20° as
a function of DOA of second source for cases ofequaﬁ)ower and of relative
power g/y; =5
p=p=0landm=5
a Sources of equal power
h Sources of different power
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Fig. 6 shows the MUSIC error of two sources fixed
at 6, = 20° and 6, = 50°, as a function of the relative
bandwidth for m = 5. The cases of equal and different
source powers (g»/q; = 5) are depicted in Figs. 6 and
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b, respectively. Fig. 6b indicates that the error in the
estimate of the DOA of a weak source can become sig-
nificant even for small relative bandwidths (note the
difference in the scale between the two Figures).

Fig. 6 also shows the effect of a finite sample signal
(N = 1000). A truncated waveform does not have
exactly the power spectral density assumed in the anal-
ysis. Thus, in addition to the approximation error due
to dropping terms of order > 2 there is an additional
error due to the use of finite length data. This error will
be different for each realisation in a Monte Carlo simu-
lation. In Fig. 6 we have plotted the mean together
with 1 standard deviation bars for 100 Monte Carlo
runs. We see that the standard deviation due to finite
samples is smaller than or of the same magnitude as
the error induced by the nonzero bandwidth.
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Fig. 7 shows the MUSIC error of two sources fixed
at 6, = 20° and 6, = 50°, as a function of relative
power ¢,/q,. The sources have relative bandwidth B, =
B, = 0.1 and m = 5. The error predicted by the first-
order theory, being linear in ¢./q;, is accurate only for
small values of the relative power. Again, we note that
the true error for the weak source increases rapidly as
the power of the second source increases. If the relative
power becomes very large, the MUSIC algorithm com-
pletely fails to resolve the two sources.
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Fig. 8 shows the root-mean-square (RMS) error for
the MUSIC algorithm (calculated from 100 independ-
ent Monte Carlo runs) as a function of SNR and
shows the corresponding analytical error predictions.
Again m = 5, and the two equally powered sources are
located at 8, = 20° and 6, = 50° and have relative
bandwidth 8, = 8, = 0.1 (the Figure shows the error in
the estimation in 6;). A sample length of N = 1000 is
used in the simulation. At high SNR, the effects of sig-
nal bandwidth dominate, and the RMS error
approaches the error predicted by the theoretical
results. For low SNR, the effects of noise dominate,
and the RMS error is close to that due to noise only, as
given, for example, in [24].

6 Conclusions

In this paper we have analysed the effect of a small but
nonzero bandwidth on narrowband DOA estimation.
We have presented analytical expressions for the result-
ing error, and illustrated our results by means of some
numerical examples. We have found that the band-
width-induced error, while small for many cases of
interest, may become significant in difficult scenarios,
such as when the source signals are closely spaced in
angle or have a large difference in power.
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