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Abstract

We consider the e�ects of multipath on three array signal processing algorithms for
direction of arrival (DOA) estimation. We adopt a model in which the source signals
impinge on an array of sensors over a spread of angles. Such a scenario arises in mobile
telecommunications, where the angular spread is caused by multipath from a large
number of scatterers local to each source. We analyze the e�ect of this angular spread
on the DOA estimates obtained from MUSIC, ESPRIT, and weighted subspace �tting
(WSF). We develop analytical expressions for the bias of the DOA estimates, and discuss
variance properties, for small source spread angles. We compare the various techniques,
and validate the analysis with simulation results.

I. Introduction

Over the past several years, a number of techniques have been developed for estimating
the directions of arrival of multiple signals impinging on an array of sensors; these
include MUSIC, ESPRIT, weighted subspace �tting (WSF), Maximum Likelihood (ML)
methods, and their variants. Nearly all of these algorithms assume that the source
signals arrive at discrete, distinct angles. This assumption leads to a signal subspace

of low rank, and the low-rank property is exploited to arrive at estimates of the source
directions of arrival (DOA). However, in many problems of interest, the signals do not
arrive at a discrete angle but instead at a continuum of angles due to multipath from
local scattering at the source transmitters. In the mobile telecommunication application,
for example, signal spread from mobile transmitters has been reported [1, 2].

One approach to address such multipath is to model and estimate the signal source
spread. In [3], a maximum likelihood algorithm is proposed to estimate the nominal
arrival angle �0 and the angular spread �� of each source. The algorithm has good
statistical properties, but involves minimization of a nonlinear function, and can be
computationally prohibitive for a general array con�guration or for multiple source sig-
nals. Another approach is to analyze how perturbations on the signal model and/or
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or noise model impact DOA estimation performance (see, e.g., [4, 5, 6] and their refer-
ences). Existing analyses often assume an array perturbation which preserves the low
rank property of the signal subspace; in contrast, the source signal spread destroys the
low rank property.

In this paper, we investigate the combined e�ects of �nite samples and dispersive mul-
tipath on three standard DOA estimation techniques: MUSIC, ESPRIT, and WSF. We
assume that each source signal arrives at a continuum of angles; the power distribution
of each source is described by a mean value �k and variance �2

k. We require no paramet-
ric model of the signal distribution; thus, our analysis includes both the uniform and
the Gaussian multipath models proposed in [1, 2], or other models. We assume that the
angular spread variances are small, and develop a �rst order (in �2

k) analysis of the bias
and variance of the DOA estimates resulting from such a signal scenario. Our analysis
is in part an extension of recent work by Kangas, Stoica and S�oderstr�om, who consider
a general perturbation scenario for MUSIC and ESPRIT [5, 6]; we extend these results
to the signal multipath scenario of interest, and also analyze the WSF method.

II. Model and Assumptions

We assume an array of m sensors, whose sampled output at time t is a complex m-
vector x(t) = [x1(t); : : : ; xm(t)]

T . The n uncorrelated source signals fsk(t)gnk=1 impinge

on the array; each source arrives at the array via a large number L of independent local
re
ectors around the source. The received signal at the ith sensor can be expressed as:

xi(t) =
nX

k=1

"
sk(t)

LX
l=1

�l(t)ai(�k + ~�kl(t))

#
+ ni(t); i = 1; : : : ; n (2.1)

where �k is the nominal DOA of sk(t), ~�kl(t) is the angular deviation of the lth ray
due to local scattering, and �l(t) is the random complex gain of the lth ray. The array

gain at angle � is given by a(�) = [a1(�); a2(�); : : : ; am(�)]
T . The ni(t) term is the noise

component, and we assume the noise vector n(t) = [n1(t); : : : ; nm(t)]
T is a zero mean,

circularly complex random vector with Efn(t)n�(s)g = �2Im�t;s and Efn(t)nT (s)g = 0.
We assume L is large in equation (2.1), and that the complex ray gains are zero mean
and uncorrelated.

If the source signals have no angular spread (i.e., if �2
k � 0), then the array covariance

matrix R
4
= Efx(t)x�(t)g is given by the standard \nominal" expression:

R0 = A(�0)QA
�(�0) + �2Im (2.2)

where �0 = [�1; �2; : : : ; �n)]
T , A(�0) = [a(�1); : : : ; a(�n)] is the (m � n) array manifold

matrix, and Q = diagfq1; : : : ; qng where qk is the received signal power from sk(t).

For nonzero source spread, the situation is di�erent. If the distribution of rays from
the kth source is Gaussian N(�k; �

2
k), then it can be shown [3] that the array spatial

covariance matrix has (�; �)th element
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R(�; �) =

8<:
nX

k=1

qkp
2��k

Z 1

�1
e
�

�2

2�2
k a�(�k + �)a��(�k + �) d�

9=;+ �2��;� (2.3)

For a uniform linear array, ak(�) = ej2��(k�1) sin(�), where � is the element spacing in
wavelengths and � is the incident angle measured from the broadside of the array. In
this case, the integral in (2.3) can be evaluated [3], giving

R(�; �) =

(
nX

k=1

qk

"
J0 (2��(�� �)) + 2

1X
l=1

J2l (2��(�� �)) e�(2l)
2�2

k cos(2l�k)

+2
1X
l=1

J2l�1 (2��(�� �)) e�(2l�1)
2�2

k sin ((2l � 1)�k))

#)
+ �2��;�

(2.4)

where Jk(x) is the kth order modi�ed Bessel function of the �rst kind.

III. Bias and Variance Analysis of DOA Estimators

A. Small Perturbation Properties of R

We assume the angular spreads �2
i are \small" and derive a �rst order analysis of the

angular spread e�ect. To this end, we �nd the Taylor series expansion of R about the
nominal covariance R0 and retain �rst order terms in �2

i . We �nd that [7]

R � R0 +
nX
i=1

�2
iCi = R0 +C (3.5)

whereCi = (qi=2)�[a(�k)h�(�k) + h(�k)a
�(�k) + 2d(�k)d

�(�k)] and where d(�) = da(�)=d�
and h(�) = d2a(�)=d�2.

In practice R is often estimated from N array output samples fx(t)gNt=1 by

cR =
1

N

NX
t=1

x(t)x�(t): (3.6)

If the elements of x(t) are given by (2.1), then we �nd that [7]

cR � R0 +
nX
i=1

�2
iCi +M (3.7)

whereM is the random perturbation onR due to �nite sample size N . The �nite-sample
e�ects on cR and on the corresponding DOA estimates based on cR are known when
�2
k � 0; see, e.g., [8, 9, 10, 11]. These studies show thatM is a random matrix with mean

that is O(1=N) and standard deviation that is O(1=
p
N) for large N . We will consider

the combined �nite sample and source spreading e�ects. We assume �2
i � 1=

p
N and

derive expressions for the deviation resulting from both source spread and �nite samples.
If �2

i � 1=N , then the deviation of cR (and b�) from the nominal value is dominated by
C, and �nite-sample e�ects can be neglected; if �2

i � 1=N , then the multipath-induced
bias is negligible with respect to �nite-sample bias e�ects.
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The DOA estimation algorithms we consider are based on a subspace decomposition ofcR. We de�ne these subspaces by the decompositions

R0 = S�S� + �2GG� (3.8)cR = bS b�bS+ cG b�cG� (3.9)

where � = diagf�1 : : : �ng contains the n largest eigenvalues of R0, S is the corre-
sponding matrix of the n associated orthonormal eigenvectors, and G is the matrix of
the remaining m � n orthonormal eigenvectors. We assume f�igni=1 are distinct and
greater than �2. The matrices bS; b�;cG and b� are similarly de�ned. Then as �2

i ! 0
and N ! 1, we have [5] cR ! R0, bS ! S, b� ! �, b� ! �2Im�n, and cGcG� ! GG�.

De�ning ��
4
= �� �2In; (n� n), it readily follows from (3.8) and (3.9) that

S�R0G = 0; bS�G = �
��1
S�cRG: (3.10)

B. The MUSIC Algorithm

The (weighted) MUSIC algorithm computes the DOA estimates fb�Mk gnk=1 as the n small-
est local minima of the function

fM(�) = a�(�)cGcG�WcGcG�a(�) (3.11)

where W is a user-selected non-negative de�nite Hermitian weighting matrix. A Taylor
series expansion of f 0M(b�k) about b�k = �k for k = 1; : : : ; n gives, to �rst order [6]

b�Mk � �k =
�f 0M(�k)

f 00M(�k)
=

Re[d(�k)
�cGcG�WcGcG�a(�k)]

d(�k)�cGcG�WcGcG�d(�k)
; k = 1; 2; : : : ; n (3.12)

Using (3.5), (3.10), along with properties of orthogonal matrices, we can show that, to
�rst order [7]

b�Mk � �k =
�Re

n
d�kGG

�WGG� [
Pn

i=1 �
2
iCi +M]S��

�1
GS�ak

o
d�kGG

�WGG�dk
(3.13)

4
=

nX
i=1

�2
i b

M
ik +

~�Mk ; k = 1; : : : ; n: (3.14)

Each bMik term corresponds to the bias of the kth DOA estimate due to the angular
spread of the ith source. The ~�Mk term is a random variable whose mean is O(1=N)
and whose standard deviation is O(1=

p
N). For �i � 0, equation (3.13) reduces to the

large-sample expression for the MUSIC estimation error derived in [8] for the nominal
signal model.

C. The ESPRIT Algorithm

The ESPRIT algorithm is derived under the assumption that the array has a shift
invariant structure. That is, the array elements can be partitioned into two subsets,
which are identical except for a translational shift of � wavelengths. Thus, the array
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manifold matrix A(�) satis�es [0 I �m]A(�) = [I �m 0]A(�)	, where 	 is a diagonal
matrix with diagonal elements fei!kg �m

k=1. If we de�ne the (m�n) matrices bS1 = [I �m 0]bS
and bS2 = [0 I �m]bS, and the (n � n) matrix �̂ = (bS�1bS1)

�1bS�1bS2, then the ESPRIT
direction of arrival estimates are given by

b�Ek = sin�1
 
arg �̂k
2��

!
; k = 1; : : : ; n; (3.15)

where f�̂kgnk=1 are the eigenvalues of �̂. Using an expression for �̂ developed in [5] along
with (3.15) (see [7] for details), we can show that to �rst order

b�Ek � �k =
1

2�� cos �k
Im

(
1

�k
��k

"
nX
i=1

�2
iCi +M

#
S�
��1�k

)
(3.16)

4
=

nX
i=1

�2
i b

E
ik +

~�Ek ; (3.17)

where ��k = 
�k(S
�
1S1)

�1S�1f[0 I �m] � �k[I �m 0]g, �k, 
k, �k are the eigenvalues and the
associated left and right eigenvectors (normalized so the 
�k�k = 1) of the matrix � =
(S�1S1)

�1S�1S2, with S1 = [I �m 0]S and S2 = [0 I �m]S. In (3.17), ~�Ek is the expression
for the �rst order perturbation of the ESPRIT method without source spread [12, 13].
Once again, the DOA bias is dominated by the spatial spread, and the variance is to
�rst order the nominal ESPRIT variance.

D. The WSF Algorithm

The WSF algorithm [10] involves the maximization of the cost function:

b�W = argmaxV(�) (3.18)

where b�W = [b�W1 ; : : : ; b�Wn ]T is the vector of DOA estimates from WSF and where

V(�) = tr
h
A(�) [A�(�)A(�)]�1A�(�)bSWbS�i (3.19)

The matrix W is a user-selected weighting matrix. The optimal weight Wopt
4
= �

�2
��1,

or a consistent estimate of it, is often used because the resulting DOA estimates have
asymptotically minimum variance over all such weighting matrices [10, 11].

The deviation in the DOA estimates can be found from a Taylor series expansion of
V0(b�) about the point �0; this yields [10, 11]

b�W � �0 � �[V00(�0)]
�1V0(�0) (3.20)

where V0(�0) and V
00(�0) are the gradient vector and Hessian matrix of V(�). Using

the results in [10, 11], along with (3.7) and (3.10), we obtain to �rst order that

V0
k(�0) = 2Re

(
eTkA

ySW�
��1
S�
"

nX
i=1

�2
iCi +M

#
GG�d(�k)

)
(3.21)

V00(�0) = �2Re[(AySWS�Ay)� �D�GG�D] (3.22)
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where V0
k(�0) is the kth element of V0(�0), ek is the kth unit vector, A = A(�0),

Ay = (A�A)�1A�, and D = [d(�1) : : :d(�n)]. Inserting (3.22) and (3.21) into (3.20)
gives the �nal result for the deviation; to �rst order it can be expressed as

b�W � �0
4
=

nX
i=1

�2
i b

W
i + e�W (3.23)

Once again, to �rst order the bias of b�W is dominated by the source spread, and the

variance of b�W is the same as the nominal WSF variance as derived in [10, 11].

E. Variance Considerations

The variance of the DOA estimates from MUSIC, ESPRIT, and WSF when source
spread is present, are to �rst order equal to the \nominal" variances when there is
no source spreading. It can be shown from equation (3.14), (3.17), or (3.23) that the
variance of the DOA estimates increases linearly with �2

k for small �k [7]. The slope of
this variance increase is given by Ef~�g. The term Ef~�g is known to be O(1=N) for the
three methods we consider. For MUSIC, an analytic expression for Ef~�Mk g is derived in
[14]; no similar expressions seems to be available for ESPRIT and WSF.

F. Uniform Linear Array and Single Source

For a uniform linear array and a single source, it can be shown from equations (3.13),
(3.16), and (3.23) that the �rst order bias term of the DOA estimate is given by

�Mb = �Eb = �Wb =
��2

1

2
tan �1: (3.24)

It is remarkable not only that the three bias terms are equal, but that they are also
independent of the array size m, the signal power q1, and the noise power �2.

The bias term in equation (3.24) can also be found by purely geometrical arguments.

For a ULA, the phase shift between adjacent elements that results from a signal arriving
at angle � is given by ! = f(�) = 2��sin �. If � is a random variable with small, then a
nonzero bias in ! results from the asymmetry of f around �. This bias, transformed back
from ! to � is exactly the bias expression in equation (3.24). This argument suggests
that the bias of the DOA estimates may result from array geometry in some cases.

IV. Numerical Exmples

We present numerical examples that illustrate the DOA bias and variance due to source
spread and �nite samples. We consider a ULA with half wavelength spacing of the
elements. We show results for the MUSIC algorithm, but the ESPRIT and WSF results
are nearly identical to those presented. The \true bias" results are obtained by applying
the DOA algorithms to R as given in equation (2.4), and the \�rst order bias" results
are generated from equations (3.13), (3.16), and (3.23).
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Figure 1 compares the (negative of the) actual DOA bias to that predicted by the �rst
order theory for a 5-element ULA and for a single source with angular spread standard
deviation of �1 = 5�. Figure 1b shows the ratio of the �rst order bias to the total
bias for varying signal spread standard deviations. We see that the �rst order theory
predicts the bias well for �1 � 3�. The large relative errors near � = 0� occur where the
absolute error is quite small, as can be seen from Figure 1a. We note that for mobile
telecommunications, angular spreads of �� � 1 � 4� have been reported [3]; thus, the
�rst order theory appears to be useful in this application.

Figure 2 compares the �rst order bias to the actual bias for a single source and N =1,
as a function of source spread �1 and array size m. Two cases are shown corresponding
to arrival angles of �20� and �75�; note the di�erent bias scales for the two plots. The
deviation of �rst order theory from true bias can be shown to depend on the product
m� � �1, because this controls the total phase deviation across the entire array [7].

Figure 3 compares the in�nite sample true and �rst order bias to �nite sample estimates.
Again the array is a 5-element ULA, and a single source arrives at a nominal angle of
�75�. The error bars show the 1-standard deviation angle estimation errors for 200
Monte-Carlo simulation trials. We see the predicted linear trend in bias for increasing
�2
1 . We also see an approximately linear increase in DOA variance for increasing �2

1 .

Figure 4 compares the true biases (for N = 1) and �rst-order bias predictions for a
10-element ULA with two equal power sources. One source is �xed at � = 20� and
the other source direction is varied. The source spread standard deviations are both
set to 3�. When the �2 is near 20�, the bias becomes very large; in this region, the
MUSIC algorithm fails to resolve the two sources, even for N = 1. We also see an
oscillatory behavior in the bias, which is similar to \bias leakage" in DFT-based spectral
analysis. We have found similar oscillatory behavior in the MUSIC loss function. As the
signal powers of the two sources di�er, the minimum corresponding to the weaker source
becomes \lost" in these ripples of the loss function, and the MUSIC algorithm fails to
detect the weaker source; similar detection failures were found for ESPRIT and WSF.
Thus, for applications with large di�erences in source signal powers and multipath,
these DOA estimators may not apply unless some modi�cations are made to address
this problem.

V. Conclusions

We have analyzed the e�ect that angular spread of signal sources have on the direction of
arrival estimates of three direction-of-arrival estimation algorithms: MUSIC, ESPRIT,
and WSF. We derived analytical expressions for the bias of the DOA estimates under
the assumption that the signal spread was small. To �rst order, the DOA bias depends
linearly on the variance of the angular spread. The variance of the DOA estimates is
the \nominal" variance for the case when there is no source spread; this variance also
increases linearly with source spread variance.

We compared our �rst order analysis to the true bias, and found good agreement for
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practical source spread values. For two or more sources, all source signals contribute
to the bias of each DOA estimate; this bias contribution can be signi�cant, even if
the sources are well-separated. For a uniform linear array and a single source, all
three methods have the same DOA estimate bias to �rst order. This �rst-order bias
is independent of signal or noise power and of array size. An identical �rst-order bias
expression was obtained from an analysis that relied only on the array geometry.

For most cases we considered, the bias induced by source spread was never very large.
The standard deviation from the DOA estimates due to �nite sample estimation of the
array covariance matrix often dominated the bias. Thus, the bias analysis predicts,
and the simulations verify, that the use of MUSIC, ESPRIT, and WSF result in DOA
estimates that are only slightly a�ected by source spreading for most signal scenarios.
On the other hand, source spread resulted in an oscillatory cost function for MUSIC
and the extra local minima resulted in failure to detect weak sources; similar detection
failures were found for ESPRIT andWSF. These extra minima could cause the algorithm
to fail to locate a weak source signal.
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Figure 4: True and �rst order bias for two sources, as a function of �2.
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