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Optimal High-Order Yule-Walker Estimation of
Sinusoidal Frequencies
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and Jian Li, Student Member, IEEE

Abstract—The asymptotic properties of sinusoidal frequency
estimators based on the high-order Yule-Walker (HOYW)
equations were analyzed recently. The results of that analysis
are used here to propose two classes of frequency estimators;
one class uses singular value decomposition, and the other uses
a sparse matrix solution. Both classes entail two estimation
steps: the first step generates initial estimates which are used
to obtain an optimal weighting matrix, and the second step gen-
erates an optimally weighted estimate. Each two-step method
produces asymptotically minimum variance estimates over all
estimators of their class. The implementation of the proposed
estimators is described in detail and numerical examples are
presented to evaluate their performance.

1. INTRODUCTION

THE problem of estimating the frequencies of sinu-
soidal signals from noise-corrupted measurements has
attracted considerable interest [1]-[19]. A number of so-
lutions to this problem have been proposed and analyzed.
The Yule-Walker equation approach to sinusoidal fre-
quency estimation has been discussed in a large number
of papers [1], [2], [5], [15], [16]. It leads to numerically
simple estimators which often exhibit satisfactory statis-
tical properties. The high resolution of the overdeter-
mined and high-order Yule-Walker (HOYW) estimators
was proven in many numerical simulations. However, a
theoretical analysis of these Yule-Walker methods was
lacking.

Recently we analyzed the accuracy properties of the
HOYW estimator [9], [10], [12]. Among other things, this
analysis provided theoretical explanation of the empiri-
cally observed fact that estimation accuracy increases
considerably with increasing model order and number of
Yule-Walker equations.

This paper can be viewed as a continuation of the work
reported in [9], [10], [12]. The insight into the problem
of sinusoidal frequency estimation gained by the theoret-
ical analyses in these references is used here to propose
two classes of two-step optimal HOYW estimators. The
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implementation of these optimal estimators is discussed
in detail and their performance is studied and compared.

II. HiGH-ORDER ARMA REPRESENTATION OF THE

SiNusoIDs IN NoISE PROCESs
Consider the following sinusoidal signal:

x(1) = E; vi sin (gt + ¥ @.1)
where v, > 0, w; € (0, 7), w; # w; fori # j, and {y;}
are mutually independent uniform random variables dis-
tributed on [0, 2«]. Let y(f) denote the noise corrupted
measurement of x (¢)

y@ = x@ + @), t=1,2,--- 2.2)

where e(?) is a sequence of independent and identically
distributed random variables with zero mean and variance
A2, It is assumed that x(¢) and e(s) are uncorrelated for all
t and s. For later use, define

re = E{y@®y( + ).

The problem is to estimate the angular frequencies
{wi}i'=1 from N samples of noisy measurements { y(1),
L YN

It is well known that x(¢) obeys the following homo-
geneous autoregressive (AR) equation [5]:

A@ Hx@® =0

2.3)

2.4)

where q_1 denotes the unit delay operator [q‘lx(t) =x(
— D], and A(q“') is given by

>

l+aqg'+- - + a,q”"

II (1 -2cos wq ™+ g7, n & om.
k=1

2.5)

From (2.2) and (2.4) it follows that y(¢) obeys the follow-
ing autoregressive moving-average (ARMA) equation:

A Dy = A@ Heq). (2.6)

Note from (2.5) that the poles (and zeros) of (2.6) are
located on the unit circle at e k =1, - -+ , m. It
follows from (2.6) that y(¢) also obeys the following high-
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order ARMA equation:

Clg Yy = Clg e (2.7a)

where

+cq7t 2B HAEQ™Y
2.7b)

and where B(q") is an arbitrary polynomial of degree L
- n:

Bg)y=by+bg '+ - (2.7¢)

The reason for considering a high-order ARMA model
as in (2.7a) is that frequency estimates which use the high-
order model often have lower variances than estimates ob-
tained for the minimal order model (i.e., when C(q_’) =
A(q_l)). This has been shown both experimentally and
theoretically by a number of authors; see, e.g., [1], [2],
[91, [10], and the next sections.

CqH=c+cqg'+- -

+ bL_nq_(L—n).

III. HOYW EQUATIONS AND THEIR SOLUTIONS
It is well known that if a time series satisfies the differ-
ence equation (2.7a), the corresponding c; coeflicients sat-
isfy the following (high order) Yule-Walker equations:

Ler I et on Co
TLe2 T+t "7 N2 &}
. . . =0, LM=n
rL+M Y DY rM CL
3.1

Both the model order L and the number M of equations in
(3.1) can be chosen so as to improve the accuracy of the
Yule-Walker frequency estimates (see the next sections).

The solutions of the linear system of equations (3.1)
are given by (2.7b), where the {a;} coefficients are given
by (2.5) and the {b;} coefficients are arbitrary. A partic-
ular algorithm for solving (3.1) corresponds to a particu-
lar choice of a set of {b;} coefficients.

The standard HOYW-based frequency estimation prob-
lem consists of first determining a particular solution to
equation (3.1). Then one forms C(z) and finds its zeros.
Finally, the zeros of C(z) are separated into the ‘‘signal
zeros’’ of A(z) and the ‘‘spurious zeros’’ of B(z), cf.
(2.7b). Most often, these zeros are separated by their re-
lationship to the unit circle; for example, zeros whose
magnitudes are closest to one are chosen as signal zeros.’
Therefore, to avoid incorrectly choosing a spurious zero
as a signal zero, it is desirable that B(z) have the property
that its zeros are all bounded away from the unit circle.

To apply standard numerical algorithms to (3.1) we
need to constrain {¢;} in some way. The most convenient

'"Theoretically, the zeros of A(z) have modulus exactly equal to one. In
practice, numerical roundoff and inaccuracies in the {r,} coefficients result
in signal zeros which do not lie exactly on the unit circle.

constraint is to set ¢, = 1, for some k € [0, L]. In the
following, for conciseness of the discussion, we assume
that

¢ =1, (or equivalently by = 1). 3.2)

Other constraints of the form ¢, = 1 for k € [1, L] will
lead to similar algorithms.
Next we introduce the following notation:

7 P,

R = (3.3a)
rLam-1 """ ™™

r=lrper o remd’ (3.3b)

0=1[c - cl” (3.3¢)

With this notation, the YW equations (3.1) along with
(3.2) can be written compactly as

RO = —r.

For any nonsingular M X M matrix Q the system of equa-
tions (3.4) is equivalent to

QRO = —Qr. 3.5)

The reason for introducing Q in (3.5) can be explained as
follows. In the known covariance case the solutions of
(3.5) do not depend on Q. However, in the unknown co-
variance case, when the system of equations (3.5) no
longer holds exactly, its ‘‘solution’” will depend on Q,
and hence Q can be selected so as to improve estimation
accuracy. The choice of Q is addressed in Section V.

Let (QOR)™ denote any pseudoinverse of QR. (4~ is
called a pseudoinverse of a matrix 4 iff A4”A = A). Then

9 = —(QR)"(Qn) (3.6)

is a solution of (3.5). In the following we discuss two
possible choices of the pseudoinverse in (3.6), leading to
two particularly useful solutions 6.

(3.4)

A. Minimum-Norm Solution
Let

(OR)™ = (@B 3.7

where ()T denotes the Moore-Penrose pseudoinverse.
Then (3.6) becomes

A

6; = —(QR)"(Qn) (3-8)

which is known to be the minimum Euclidean norm so-
lution of (3.5) [14], [20]. (We will use the notation (- ),
to denote quantities corresponding to the minimum norm
solution above.) Numerically well-behaved algorithms for
computing the Moore-Penrose pseudoinverse are readily
available (for example, the singular value decomposition
(SVD) procedure). Furthermore, the polynomial

C(2) £ B/ AR) (3.92)
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corresponding to 6, is such that [3], [9]

Bi@)=0=|z| > 1 (3.9b)

for any finite L. This property makes it possible to extract
A(z) from C;(z). Note, however, that zeros of B,(z) tend
to the unit circle as L increases [9], [10]. Thus, for too
large a value of L it may be difficult to separate the zeros
of A(z) from those of B,(z) once C,(z) has been found.

B. Sparse Solution

Let I' be an M X n matrix made up of any n columns
of R. We can express I' compactly by

o]

where J is an L X L (orthogonal) permutation matrix
formed by reordering the rows of the identity matrix ;.
The last n columns of RJ gives I'. Thus,

R=[x T (3.11)

where the explicit expression of X has no importance for
the following discussion. Let the matrix I be chosen to
have full rank n (see [9], [15])

(3.10)

rank {T'} = n. (3.12)
Introduce
(OR)” = J[ 0 ] (3.13)
(FTQTQF)-]FTQT

The matrix on the right-hand side of (3.13) is a pseudoin-
verse of (QR). This can be shown as follows. Since rank
{R} = rank {'} = n, the columns of X must be linearly
dependent on the columns of I'. Thus

X=TZ (3.14)

for some n X (L — n) matrix Z. Using this observation,
we can write

(QR)(QR)™ (QR)

= [QX QT [ ,] [ox oryJ’

0
@’o’on~'r’Q
= or’o’on'r’o'oriz 1)’
= Qrz 1)JJ" = QR

which shows that (3.13) is indeed a pseudoinverse of OR.
It follows from (3.6) and (3.13) that

0
0, =J (3.15a)
[0
is a solution of (3.5), where
a=—@C'wn)~' @ wr (3.15b)
and where
w = Q7. (3.15¢)
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Since for L >> n the vector 6, contains many zero ele-
ments, we call it a ‘‘sparse solution.”” We denote quan-
tities corresponding to the sparse solution as ( * );.

There are numerically well-behaved algorithms for
computing . Note that o in (3.15b) is the least squares
solution of the following system of equations:

Ola = —Qr. (3.16)
The so-called QR algorithm [20] can be used to determine
« given by (3.16). It is worth stressing that solving the
linear system (3.16) is a much simpler task than evaluat-
ing 0, in (3.8), unless L = n (for L = n (3.8) and (3.16)
are identical). The price paid for the numerical simplicity
of (3.16) is that the polynomial C,(z) = B,(z) A(z) corre-
sponding to 6, is no longer guaranteed to be such that the
zeros of B,(z) are bounded away from the unit circle. Ex-
traction of A(z) and C,(z) may therefore be difficult in
some cases; however, this difficulty has rarely surfaced in
the numerical experiments we performed (see Section VI).

We end this section with some comments on possible
extensions and modifications of the two solutions above.

Remark 3.1: In Section III-B we pointed out that dif-
ferent sparse solutions of (3.5) can be obtained by select-
ing different sets of n linearly independent columns of R
to form T'. For example, the n ‘‘most linearly indepen-
dent’’ columns of R could be chosen. This choice of col-
umns is defined as HOYWE-3, and discussed in more de-
tail in Section VI.

Remark 3.2: Use of other pseudoinverses in (3.6) may
lead to frequency estimators which, depending on the case
under study, may have better properties than the esti-
mators corresponding to (3.8) or (3.15). This aspect is
discussed in [19].

IV. HOYW ESTIMATORS

In this section we treat the unknown covariance case.
Let 7, denote a consistent estimate of r,. For example,
N—k
% ymy + R

N—k:
where N is the number of data points. Replace {r} by
{#}in R, T, and r and denote the results by R, [, and 7.
In the following, we introduce two estimators of § based
on the expressions (3.8) and (3.15) developed in the pre-
vious section. These two estimators are called HOYWE-
1 and HOYWE-2, respectively. Note that once an esti-
mate § is available, the frequencies { &} can be deter-
mined from the zeros of the polynomial C(z) correspond-
ing to 8. More specifically, let { pye ¥** }7_ | denote the m
complex-conjugate zeros of C(z) which are nearest the unit
circle. The angular positions { &} of these zeros are taken
as the estimates of {w;}. The number m of sinusoids is
assumed to be known, so n = 2m is also known. Proce-
dures for determining m are described in [13], [17].

7 4.1

A. HOYWE-1

First we note that replacement of R and r in (3.8) by
R and # produces an estimator of questionable utility since
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the matrix QR is very likely to be ill conditioned. It is
well known (see, e.g., [1], [2], [9]) that a much better
estimator is the following one, which we call HOYWE-
1:

b, = —(QR)* (@) @.2)
where QR is the best rank n approximation of QR in the
Frobenius norm sense [20]. The Moore-Penrose pseu-
doinverse of QR is given by ([14], [20])

(OR)* = vz 'uT (4.3)

where L = diag (0y, - " , 0,), {o,-7} are the n principal
singular values of QOR, and V and U" are the correspond-
ing matrices of right and left singular vectors.

B. HOYWE-2

HOYWE-2 is obtained by replacing the true autocovar-
iances in T' and r in (3.15) by estimates obtained from
equation (4.1). The resulting estimator is given by

4.4)

A

b, = J[O] & = (PTwr) "I Twr.
&

For L = n, (4.4) reduces to the overdetermined weighted
Yule-Walker estimator. For L > n the estimator (4.4)
appears to be new. Note that & should be determined as
the least squares solution of Q' = — Q7 using, for ex-
ample, the QR algorithm (see (3.16)). The evaluation of
& using (4.4) is not reqommended for numerical compu-
tations because it is not as well numerically conditioned
as a QR algorithm based solution.

V. OptriMAL HOYW ESTIMATORS AND THEIR
IMPLEMENTATION

The (asymptotic) accuracy properties of the HOYW es-
timators have been derived in [9], [19], [21]. In particu-
lar, the choice of Q, L, and M to achieve the maximum
possible accuracy of the frequency estimates has been
studied in these papers. It was shown that the following

choice of Q maximizes the estimation accuracy for given
L and M:

Q=S5 (5.1)
where
e(t — 1)
1 .
$=3E) 0@
et - M)
F O )t — 1) - et~ MIp. (5.2)

It was also shown that the optimal accuracy corresponding
to the choice (5.1) of Q increases significantly with in-
creasing M or L (the optimal accuracy increases monoton-

ically as M increases, but not necessarily monotonically
as L increases).

The above results are general in the sense that they ap-
ply to the HOYW estimators obtained from any solution
of the Yule-Walker equations (3.5). In the following, the
S matrices corresponding to the specific solutions (3.8)
and (3.15) considered in this paper will be denoted by S,
and S,, respectively. Thus, each S; is given by (5.2) with
C(q"") = C(q~") where Ci(g™") corresponds to §;, i = 1,
2.

To summarize, for improved estimation accuracy we
should use the minimim norm and sparse HOYW esti-
mators with: a) @ = §;7'/2, i = 1, 2; and b) large L and
M. Two issues which must still be addressed are those of
how to handle the ptbblem that Q in (5.1) is not known,
and how large to choose L and M. These are discussed
below.

A. The Optimal HOYWE-1
The matrix §; in (5.2) can be written as

S; = i (5.3)
where
Loey o0 0
o7 = ., Mx M+ L)
0 1 ¢p - cuL
(5.4)

and {cy;} are the elements of 4,. Let $, denote a consistent
estimates of ¢, obtained by replacing {c,;} in (5.4) by
some consistent estimates { ¢;;}. It can be shown that use
of ¢7¢, instead of S, in the optimal HOYWE-1 does not
affect the asymptotic accuracy [9]. Thus, the following
two-step procedure can be used to implement the optimal
HOYWE-1.

Step 1: Use (4.2) with Q = I and some large values of
M and L to calculate initial estimates of the {c,;} param-
eters.

Step 2: Using the estimates from step 1 to form o1,
determine optimal HOYW estimates of {c;;} with (4.2)

" where Q is set to @ = ($71¢,)""/? (since the matrix

( 65,T<?>1) is Toeplitz, its inverse square root can be effi-
ciently computed). Finally, estimate the frequencies {w;}
from the zeros of the estimated polynomial Cy(z).

Next we turn to the problem of choosing L and M. The
values of L and M should be only a fraction of the number
N of data points to guarantee that the high-lag sample co-
variances are computed with reasonable statistical accu-
racy. The value of L is limited also by another consider-
ation. If L is too large, the zeros of B.(@) may be located
too close to the unit circle to be reliably separated from
the zeros of A,(z), and this may produce spurious fre-
quency estimates as already explained. Therefore some
upper bounds on L and M should be imposed. The values
of these bounds, however, are problem dependent and
there is no general rule for choosing them.
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Some guidelines for choosing L and M in specific cases
can be found in [1], [2], [9], [10] and in the next section.
Here we present some further general considerations that
should be taken into account when choosing L and M.

The value of M should not be ‘‘much larger’” than L.
This is so since for fixed L the minimum eigenvalue of S,
goes to zero when M increases [10]. Thus, for M >> L
the calculations in step 2 of the two-step procedure above
are expected to be ill conditioned. Conversely, if we let
L be much larger than M then it can be shown that ([9])

Si'=H+00/D) =1+ 001/L) (5.5)

which implies that in such a case it is approximately op-
timal to set Q = I. However, M should not be too small
compared to L since the accuracy increases considerably
with increasing M. Moreover, the two-step procedure re-
quires solving an algebraic equation of degree L. The task
of solving a high order equation should be avoided. Recall
also that for large values of L spurious frequency esti-
mates may occur.

To summarize the above discussion, we recommend to
use the two-step procedure with M larger than L, but not
much larger, to guarantee that the calculations in step 2
are well conditioned.

B. The Optimal HOYWE-2

Similarly to the discussion in Section V-A, we can use
the following two-step procedure to implement the opti-
mal HOYWE-2 (corresponding to the choice (5.1), (5.2)
of Q).

Step 1: Use (4.4) with Q = I and large values of L and
M, to obtain initial estimates of the {c,;} parameters.

Step 2: Use the estimates from step 1 to form @, (an
estimate of ¢, defined similarly to ¢, (5.4)). Next, com-
pute optimal estimates of {c,;} with (4.4), where Q is set
to Q = (¢;6,)""/?. Finally, estimate the frequencies
{w:} from the zeros of the estimated polynomial Cy(z).

Concerning the choice of L and M, the principal con-
clusions pertaining to this choice which were presented in
Section V-A still apply. Thus we recommend using the
optimal HOYWE-2 procedure with M larger than L, but
not ‘‘much larger.”’

VI. NuMERIcAL EXAMPLES

In this section we present some numerical examples
which illustrate the performance of the above HOYW al-
gorithms. The examples consider the case of two closely
spaced sinusoids in white noise. The frequencies, ampli-
tudes, and phases of the sinusoids are given by: w, =
1.00, w, = 1.05; y; = v, = 1; and ¢; = ¢, = 0. The
noise variance (\?) is chosen to give a signal-to-noise ra-
tio of 10 dB (where SNR = 10 log (y?/2A?). The nu-
merical results were obtained using Matlab, and opera-
tions such as SVD and polynomial root finding were
performed using standard Matlab functions.

The tables and figures in this section give normalized
sum-squared errors (SSE’s) N + SSE(&;;) fori = 1 or 2

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 6, JUNE 1991

TABLE 1
THEORETICAL NORMALIZED VARIANCES OF &, (IN DECIBELS) FOR THE
INITIAL, MINIMUM NORM ESTIMATOR (N = 150)

L M=5 M=9 M=13 M=17 M =21

5 233 5.99 1.37 -1.93 -7.78

9 7.20 0.34 -6.02 -12.1 -16.0

13 2.01 -5.08 -11.6 —16.7 -19.6

17 1.63 -9.14 ~-13.9 -17.3 -21.9

21 ~4.48 -13.7 -17.5 -21.2 -25.2
TABLE II

THEORETICAL NORMALIZED VARIANCES OF @, (IN DECIBELS) FOR THE TwO-
STEP OPTIMAL, MINIMUM NORM ESTIMATOR (N = 150)

L M=5 M=9 M =13 M=17 M =21
5 23.3 5.42 —1.55 -7.26 -13.6
9 7.19 0.32 —6.11 -12.6 -17.5
13 2.01 -5.10 —11.8 -16.7 -19.9
17 1.63 -9.15 -13.9 -17.3 -22.0
21 —4.48 -13.8 -17.5 -21.3 -25.3

(the subscript i indicates the HOYWE variant in question,
i.e., HOYWE-1 or 2). The theoretical SSE’s were com-
puted using the formulas derived in [9], [10], whereas the
empirical SSE’s were obtained by averaging the results
from 50 Monte Carlo experiments. Only results for one
of the two frequency estimates, &;,, are shown; the results
for &;, are similar. All SSE values are given in decibels.
For comparison purposes, the asymptotic Cramér-Rao
lower bound (CRLB) for the variance of each frequency
estimates is given by (24\?) /(y?N>); for this example, N
* CRLB = —42.7 dB when N = 150 and —62.7 dB when
N = 1500 (N - CRLB is given to facilitate comparison
with the N - SSE values in the figures).

Table I shows the theoretical SSE’s of &,, for several
values of L and M, corresponding to the initial minimum
norm estimate (8, with Q = I). Note that the error de-
creases by nearly 50 dB as L and M increase. Table II
shows the variances for the two-step optimum minimum
norm estimate; here, similar decrease in error is seen for
increasing L and M. Note that the optimal variances are
smaller than the initial variances for large M and small L;
in other ranges the initial and optimum variances are al-
most equal. The latter observation is in agreement with
the theoretical discussion immediately following (5.5).
The former implies that the optimal two-step procedure
with L = L, can achieve the same statistical accuracy as
the initial procedure with L = L, greater than L,. In par-
ticular, the optimum two-step procedure with L = n may
provide satisfactory statistical performance without the
risk of spurious frequency estimates that often occur when
L is chosen greater than n. This is an important advantage
which may constitute enough motivation for the second
(optimal) step of the two-step procedure.

Fig. 1 shows theoretical and simulation SSE’s of &,
for the minimum norm estimator HOYWE-1 with M =
20, for two values of the number of data points: N = 150
and N = 1500. It can be seen that the optimal SSE is
significantly smaller than the initial SSE only for small L.
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Variance of Estimaticn (dB)

Variance of Extimation (dB)

10 15 20 25 30 35

®

Fig. 1. Normalized variances of &,; using the minimum-norm estimator
(M = 20). Solid lines are theoretical variances (initial and optimal). The
dotted line is the estimated initial variance with Q = /, and the dashed line
is the estimated two-step optimal variance. The estimated variances are
obtained by averaging over 50 independent Monte Carlo runs. (a) N = 150.
(b) N = 1500.

The empirical SSE’s follow the theoretical results fairly
closely when N = 150 and more closely for N = 1500
data points; because the theortical variance expressions
are asymptotic results (as N = o), closer agreement be-
tween theory and experiment is expected for larger N.

Fig. 2 shows similar SSE curves for the sparse solution
estimate HOYWE-2 with M = 20 and J = I, again for N
= 150 and N = 1500. First note from the solid lines in
Figs. 1 and 2 that while the theoretical optimal estimator
variance for &;; and &,, are similar, the theoretical initial
estimator variance is larger for the HOYWE-2 estimate.
The initial HOYWE-2 variances do not approach the op-
timal variances as L increases, so here, the use of the sec-
ond step of the optimal two-step procedure appears mo-
tivated for the whole range of values of L. Moreover, the
initial HOYWE-2 variances are sensitive to the particular
choice of L.

The estimated SSE’s in Fig. 2 closely agree with the
theoretical results in some cases, but deviate significantly
in other cases; in particular, the optimal HOYWE-2 es-
timate at N = 1500 agree closely with theory for all val-
ues of L, but the other estimated SSE’s agree only for
certain values of L. Also, the estimated SSE curves fluc-
tuate much more as a function of L than the theoretical
curves do, especially for the initial HOYWE-2 estimator.

Figs. 3 and 4 show pole plots which correspond to the
L =9 and L = 13 cases in Fig. 2. The L = 9 estimate
corresponds to a point where experimental SSE’s and the
theoretical variances match closely, and the L = 13 esti-
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Variaoce of Estimation (4B)

Parameter L

(@)

Variance of Estimation (dB)

s 10 15 20 25 30 3s

Parameter L.

(b)

Fig. 2. Normalized variances of &,, using the sparse matrix estimator with
= I (M = 20). Lines are as in Fig. 1. (a) N = 150. (b) N = 1500.

mate corresponds to a point where they do not. It can be
seen that for L = 9 the two frequencies are estimated about
equally well. The pole plots for L = 13 show a much
larger variation in the &,, pole estimate. In fact, for N =
150 the two sinusoids are not resolved in the initial esti-
mates. Even for N = 1500, the initial &,, poles are not
tightly clustered, and the centroid of this cluster is biased
in both magnitude and frequency. In all cases the optimal
method significantly improves the pole estimates.

The pole plots in Figs. 3 and 4 also give an indication
of occurrence of extraneous frequency estimates. From
these pole plots it can be seen that for N = 150, there are
some cases in which extraneous zeros are near the unit
circle. For L = 9, there are several zero estimates near
= 0.97 which are outside the unit circle; for L = 13,
there are only two cases. For N = 1500, extraneous zeros
did not appear in our examples. In order to eliminate these
spurious frequency estimates, more elaborate methods
than just choosing the poles nearest the unit circle must
be employed; for example, one could select frequencies
based on the corresponding amplitude of the estimated
sinusoid.

The higher simulation errors of &,, and the large swings
in the performance as a function of L are primarily caused
by ill conditioning of the QI matrix for some of the Monte
Carlo experiments.? To reduce the ill-conditioning effect,
an alternate sparse matrix estimator was tested. In this
estimate (denoted &s;;), the n most linearly independent
columns of R were used to form [' at each Monte Carlo

“Note that the columns of R are nearly linearly dependent for closely
spaced sinusoids.
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Fig. 3. Pole plots for HOYWE-2 for N = 150 and M = 20. (a) Initial
estimate, L = 9. (b) Optimal estimate, L = 9. (c) Initial estimate, L = 13.
(d) Optimal estimate, L = 13.
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Fig. 4. Pole plots for HOYWE-2 for N = 1500 and M = 20. (a) Initial
estimate, L = 9. (b) Optimal estimate, L = 9. (c) Initial estimate, L = 13.
(d) Optimal estimate, L = 13.
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Variance of Estimation (dB)

Fig. 5. Normalized variances of &, and &, for two sparse matrix esti-
mators, initial solution (M = 20, N = 150). Dotted line is the &, estimated
variance. Dashed line is the &;, estimated variance.

Variace of Estimation (dB)
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Fig. 6. Normalized variances of &,, and &;, for two sparse matrix esti-
mators, two-step procedure (M = 20, N = 150). Lines are as in Fig. 5.

experiment. Specifically, the n columns of R are chosen
recursively and each is chosen as the one which gives the
minimum residual error of (3.16). Note that this method
only requires n additional pivoting operations in a QR al-
gorithm used to solve (3.16), and as such has very little
computational overhead compared with the sparse solu-
tion using J = I'in (3.10). When N is very large R =R,
so the same n columns are chosen for each simulation;
however, for small N, this is not the case. Thus, for small
N, the estimated SSE for this sparse solution-based
HOYWE are expected to differ significantly from the
asymptotic SSE (the former correspond to a data-depen-
dent J matrix and the latter to a fixed J matrix).

Figs. 5 and 6 compare the sparse matrix estimator &;;
as in Fig. 2 with &;,. Fig. 5 shows initial estimates, and
Fig. 6 shows two-step optimum estimates; in all cases, N
= 150 and M = 20. It can be seen that the &;, estimate
exhibits much less sensitivity to the parameter L. How-
ever, the &;; SSE’s are not always lower than the &,
SSE’s. We note that using the most linearly independent
columns of R does not necessarily yield the lowest asymp-
totic error estimates, so we do not necessarily expect the
&3; SSE’s to be lower than the &,; SSE’s. However, the
simulation curves suggest that choosing the most linearly
independent columns of R may improve performance for
small N, especially when a ‘‘good’’ choice for the L pa-
rameter is not known a priori. Since the computational
overhead in choosing these n columns is small, the pro-
cedure provides a simple but effective means of reducing
the SSE sensitivity to L for small data lengths.

Finally, we remark that even though the second step in
the two-step procedures can be repeated, no significant
improvement was seen in the estimates for any simulation
performed.

VII. CONCLUSIONS

In this paper, two forms of HOYW estimators for es-
timating the frequencies of sinusoidal signals have been
investigated. One estimator is based on a singular value
decomposition approach, and the other on a sparse least
squares solution to the HOYW equations. For each
method, an initial solution, in which a fixed weighting
matrix Q was used, and a two-step optimum solution, in
which a data-dependent weight Q was employed, were
considered.

The SVD-based solutions provided lower error esti-
mates than the sparse matrix solutions in our experiments.
Sparse solutions, however, require much less computa-
tion to realize the estimates. Estimates obtained with the
two-step procedures were generally better than the initial
estimates obtained with Q = I. Repeating the second step
of the two-step algorithms provided no additional de-
crease of estimate error.

A second sparse matrix estimator, wherein the most lin-
early independent columns of the estimated autocorrela-
tion matrix were chosen, provided better estimates than
did the fixed-column sparse solution for short data lengths.
However, for large N, this column selection technique
may not be as useful. Indeed, for large values of N it may
often happen that the n most linearly independent columns
of R are not the best n columns to choose in order to min-
imize the sum-squared error of the frequency estimates.
The question of how to choose these n columns to mini-
mize the error of the estimate remains an open problem.
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