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Determining the Closest Stable Polynomial to an
Unstable One

Randolph L. Moses, Senior Member, IEEE, and Duixian Liu, Student Member, IEEE

Abstract—This paper considers the following problem: given a poly-
nomial whose zeros do not all lie on or inside the unit circle, find the
closest polynomial whese zeros are all on or inside the unit circle. The
measure of closeness used is the weighted Euclidean distance in coef-
ficient space. The algorithm can be extended to other measures of
closeness, as well. Because the direct minimization on the coefficient
space is difficult, we approach the problem in Schur coefficient space.
In this way, the stability condition is easily guaranteed. We develop a
very efficient algorithm for obtaining the optimum solution.

I. INTRODUCTION

N time series modeling and system identification problems,

one often obtains an estimate of an autoregressive (denomi-
nator) polynomial. Depending on the particular estimator used,
this polynomial may or may not be ‘‘stable’’; that is, it may or
may not have all its zeros inside the unit circle [1], [2]. Ex-
amples of autoregressive (AR) estimators which do not guar-
antee stability include the covariance and prewindow methods
[1], and most singular value decomposition-based methods [3].
In addition, nearly all noniterative methods of ARMA modeling
first estimate the AR coefficients by using some form of the
extended Yule-Walker equations; these methods almost never
guarantee that the estimate AR polynomial is stable [1], [3],
[4]. Few system identification algorithms ensure stability of the
estimate either [2], [5].

Many applications require that the estimated denominator
polynomial be stable. This is especially true in system identi-
fication applications, and in time series analysis applications
which use the model as a synthesis filter (speech synthesis is
one example [6]). Because most estimation algorithms do not
guarantee stability, the following problem is of interest: given
a polynomial whose zeros are not all inside the unit circle, find
a ‘“‘close’’ polynomial whose zeros are all inside the unit circle.
We call this the stabilization problem.

There are several ways to stabilize an unstable polynomial.
One method is to find the zeros of the unstable polynomial, and
if any zero has magnitude greater than one, change it to have
magnitude equal to (or slightly less than) one. In this case, the
stable polynomial is ‘‘close’’ to the original one in the sense of
minimizing a distance measure based on the zero locations of
the polynomials. In some applications this zero is reflected in-
side the unit circle by using the reciprocal of its magnitude; this
choice has the property that | B(z)| = | A(z) | on the unit circle
(although the phases of these polynomials will differ). Another
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method based on the Schur parameters (or reflection coeffi-
cients) associated with a polynomial could be used: find the
reflection coefficient sequence of the given polynomial (using
the Levinson-Durbin recursions), and change any Schur param-
eter with magnitude greater than one to one which is (slightly
less than) one in magnitude [7].

This paper considers solutions to the stabilization problem
that minimize the error between the polynomial coefficients of
the original and stabilized polynomial. The reason for working
in coefficient space is that most algorithms which estimate these
polynomials directly estimate the coefficients of the polyno-
mials (rather than the Schur parameters or the zeros correspond-
ing to that polynomial). Since the polynomial coefficients are
being estimated, it is natural to stabilize the polynomial by per-
turbing these estimated coefficients as little as possible.

More specifically, we use the weighted /, distance measure
in coefficient space as the measure of closeness. The reason for
this choice is that most of the polynomial coefficient estimation
methods in time series analysis and systems identification give
coefficient estimates which are asymptotically Gaussian distrib-
uted as the number of data points used to estimate the coeffi-
cients becomes large [1], [8]; this Gaussian distribution is ob-
tained even when the data themselves are non-Gaussian. Since
the polynomial coefficients are approximately Gaussian, the /,
error is the most natural distance metric to use in perturbing
these coefficients. Moreover, asymptotic variance expressions
for these coefficient estimates have been obtained for several
algorithms [1], [9]; in this case, the inverse of the covariance
matrix can be used as a weighing matrix in a weighted [, coef-
ficient norm to form the distance measure. A stable polynomial
whose (weighted) distance from the given polynomial is mini-
mum has the interpretation of a minimum variance solution to
the stabilization problem.

Although we minimize an error in coefficient space for the
stabilization problem, we find that working in the Schur param-
eter space is easier because the stability condition is readily
guaranteed. A related problem involving optimization of a co-
variance sequence was studied in [10], where the Schur param-
eter space was used to guarantee that a covariance sequence is
nonnegative definite. We then employ the alternate minimiza-
tion method [11] to derive a computationally efficient algorithm
for solving the stabilization problem.

While the algorithm we present uses the [, norm, it readily
generalizes to other /, norms as well; the only difference is that
the error function is no longer quadratic in the parameters for p
# 2, so the alternate minimization of the error function be-
comes more complex.

An outline of this paper is as follows. In Section II, we pre-
sent a formal statement of the problem. In Section III, some
properties of the stability sets both in polynomial coefficients
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and Schur parameters are discussed. These properties form the
foundations of our results. In Section IV, an efficient algorithm
for solving this minimization problem is given. In Section V,
some examples are given to illustrate the algorithm.

II. PROBLEM STATEMENT

Assume we are given the real vector b = [b,, - - -
and that its associated polynomial

, b1,

B(z)=z2"+bz" "'+ - +b,_,7+b, (1)

has at least one zero z, satisfying |z,| > 1. We are interested
in finding another vectora = [a,, * * - , a,]” which is close to
b, and such that its associated polynomial

AQ)=7"+az" '+ +a,_,z +a, (2)

has all its zeros on or inside the unit circle. The measure of
error we use is the weighted Euclidean (/,) distance

J=a-b|, 2 (- b)Wa-b) (3)

for some given positive definite weighting matrix W.
Consider the set of coefficients corresponding to stable poly-
nomials:

S, = {alA(z) =0 = |z] < 1}. (4)

The stabilization problem can then be stated as follows:

Problem SP: Given a vector b ¢ S, find a vector a°® € §,
such that J = (a° — b)"W(a® — b) is minimized over all a €
S,.

III. CHARACTERIZATION OF THE STABILITY SET

In order to solve the above stabilization problem, it is useful
to establish some basic properties of the stability set S,,.

Let us first introduce the concepts of Schur parameters (also
known as reflection coeflicients in the signal processing litera-
ture). For any polynomial of degree k, we define [12]

®5(z) = 2°®,(z 7). (5)

Then for an arbitrarily given real vector [r,, + - , r,] (the
vector of Schur parameters), we can determine a set of poly-
nomials ®,(z), i = 0, 1, - - -, n through the following recur-
sive formulas:

®:(2) = 2®i-1(2) + ¥ (2), o(z) = L. (6)

The following two properties of ®, (z) are useful in the stability
study of the discrete time system analysis [13]:
1) ®,(z) has all its zeros inside the unit circle |z| = 1 if and

only if |r;| < 1fori=1,2, -, n.

2) Assume |r;| < Lfori=1,2, -+ ,(n—1). Then®,(z)
has all its zeros on the unit circle |z| = 1 if and only if |r,| =
1.

From these two properties, the following property readily
follows:

HIf|r| <lfori=1,---
on the unit disk |z| = 1.

With the help of property 3, we can count the number of zeros
inside the unit circle and the number of zeros on the unit circle
of ®,(z). Let us express &,(z), k =1, - - -, nin terms of a
coefficient vector [ay,, * - - , ay ] where

, n, then ®,(z) has all its zeros

B(z) =2 + a7 + o +oan (7)
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It is easy to show that the vector [a,,, * * - , ax] and the vector

[r, *++, rlare related by
{ah=a(,‘_,),-+rka(,(‘mk,) fori =1, - ,(k— 1)
. = Ty
(8)

We know that the stability region of polynomial A(z) =
&, (z) in terms of Schur parameters [r,, - - -, r,] is completely
specified by the unit hypercube:

Srz{lrilshizl’.-.’n}' (9)

This set is a closed and bounded subset of R”. Since the a; pa-
rameters are continuous functions of the Schur parameters, we
have the following:

Theorem: a) S, is a bounded and closed subset of R”. b) Let
B, denote the boundary of S,. Then if a € B, there is at least
one zero z, of (2) satisfying |zo| = 1.

It is obvious that the set S, is convex, but the set S, is not
convex in general. As an example, a = [3, 3, 11Tand b =
{-3,3, —11Tarein S, but aa + (1 — a)b = [0, 3, 0]7 with
a = 0.5 is not in §,,. Since §, is not a convex set, there may
not be a unique solution to the stabilization problem. However,
since S, is closed, any solution to the stabilization problem will
lie on the boundary of §,,.

IV. SOLUTION TO THE STABILIZATION PROBLEM

From the previous discussion we know that the a; coefficients
can be expressed in terms of the Schur parameters [ry, - - -,
r,] and the stability set S, can be transformed to the stability
set S,. We will find the optimal solution a° by working on the
set S,.

For fixed [ry, * - , re_ys Feseys = °° 5 Iyl €ach g, (i = 1,

-, n) is a linear function of r,. Thus J will be (at most) a
quadratic function of r,, and its minimum is easily found. Since
we need only three points to specify a quadratic function, we
calculate the following three points: Q_, = Jatr, = —1, Qy
=Jatr, =0, and Q, = Jatr, = 1. Then the quadratic function

can be found as
Je=J(n) = ari + B+ v (10)

where

a=1[0y+ 0 —20Q] 8=4[0 — Q] v = Q.

Note that & = 0. The minimum value of J, on —1 < r, <
1 with respect to r, can be found very easily as

v - 0258/ if-1=< -058/a=<1
+ 8 ifa=0 andB =<0
! (11)
vy— 8 ifa=0 andB =0
v ifa =0 and 8 = 0.

To use this quadratic function property, the alternative min-
imization procedure is used (see [11] for a description of the
alternative maximization procedure). The algorithm for finding
the optimal Schur parameters r° is as follows:

1) Initialize r°_ € S, and accuracy €. Seti = 1.
2) Calculate r; by using (10) and (11) successively for k =
1, +--,n.
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3) If max, <<, /7%

increase i and go to 2).
4) Calculate a® from r’ by (8).

— ri| = e, then go to 4); otherwise

Note that the above algorithm is based on a (weighted) [,
error norm, which results in a quadratic error function in (10).
If an /, norm is used for 1 < p < oo, the above algorithm can
still be used; the only difference is that J, is no longer qua-
dratic in ry, so its minimum on —1 < r, < 1 must be found by
some other means. For 1 < p < o, J, is a continuously dif-
ferentiable function of r(, and can be minimized using standard
techniques. Forp = 1 orp = o0, J, is not continuously differ-
entiable, and more care must be taken to find its minimum.

In the case « = 0 and 8 = 0, J, is independent of r;. Theo-
retically, we can choose any number on [ —1, 1] for r,. How-
ever, we must be careful about the selection of r;, values, oth-
erwise the algorithm can get ‘‘stuck.”’ As an example, forn =
2 we know

a=r(l+r), a=r.

Assume b = [2, —2]7 and that the initial value is r® = [0,
—11". Then if we do the minimization procedure with respect
to r; with r, = —1 fixed, we have « = 0 and 8 = 0. If we
select r, = 0, then the minimization with respect to r, gives r,
= —1. Thus, r' = [0, —1]" and the algorithm fails to converge
to the true solution of r° = [1, 0.5]". However, if we select
any value for r; on [ —1, 1] except 0, we can continue the min-
imization procedure. In fact, if we chose any number r, €
[—1, 1] and any number r, € (—1, 1] as the initial values, the
algorithm converges to the true minimum. In general, if the
algorithm ‘‘sticks’’ at an iteration, we can perturb the coeffi-
cients slightly and proceed.

Since §, is not convex, there is the possibility of convergence
to a local minimum. One way to overcome this situation is to
try several initial values. Because we can use the quadratic
function property, we have a very efficient minimization algo-
rithm for each initial condition. The choice of a ‘‘good’” initial
guess can often eliminate problems of convergence to local
minima. In most applications, the given polynomial is an esti-
mate of a stable polynomial, and is therefore expected to be not
too far away from a stable polynomial. In this case a good initial
guess can be found using the following procedure [7].

e From B(z) compute the Schur parameters r’

-,

e For each i, if | r?| > 1 replace it by sign(r?) - (1 — @)
for some small positive o (we use o = 0.001). This modified
Schur sequence is used as the initial sequence r°.

Note that r° € S,. Also, r° is close to r®, and their corre-
sponding polynomials are close to each other [7].

Another initial guess can be found using the following pro-
cedure.

* Find all the zeros {z;} of B(z) = 0.

o Form another sequence {z/}, where z/ = z; if |z;| < 1
andz! and = (1 — &)z;/| |, for some small positive a, if | z;|
= 1.

e Use {z]} as the zeros to form a polynomial B'(z).

® From B’'(z) compute the Schur parameters, and use them
as the initial r°.

This initial guess requires more computation, as the zeros of
B(z) must be found. However, we found that this method gives
a better initial guess than does the previous method.

We close this section by extending the minimization to the
case where the leading polynomial coefficient is not unity. If

b
= [rla
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the unstable polynomial is given by
B(z) = boz" + byz" ' + -+ + b, (12)
and the corresponding stable polynomial is
CZ)=coz" + 2" "+ -+ + ¢ (13)
We can write C(z) as
Ciz) =colz" + ayz" ' + -+ + a,] = cd(z) (14)

with @; = ¢;/¢y, i =0, 1, + - -, n. Thus we can determine a; -
in terms of Schur parameter vector r, and ¢, can be determined
by minimizing
T
J, = (¢ = b) W(c — b)

= (a"Wa)c} — 2(a"Wb)c, + b"Wb (15)

wherea = [1, @, - -+, a,1", b = by, by, - -+ , b,]", and ¢
= [cov Cy, "0 % s Cn]T'

Taking the derivative with respect to ¢, of (15) and setting it
to zero, we have

(a™Wa)cy — a"Wb = 0

which gives

a" Wb
= . 16
= aTWa (16)
The corresponding J; function is given by
Jo = b"Wb — f(r) (17)
where
a"WbY' _ dor} + diri + d
f(rk) =( ) = 07 k 17k 2 (18)

a’'Wa eors + e + ey

It is obvious that dy = 0, ¢; = 0, d,/e; = 0, and

dor} +diry +dy 20, eri +ern +e>0.

Minimizing J, is equivalent to maximizing f(r,) with respect
to r, over [—1, 1]. Except when f(r,) = constant, we can
prove that f(r;) has a unique maximum on [—1, 1], and this
maximum can be found analytically in a similar manner as be-
fore. In this way, we can still make use of the alternating pro-
jection algorithm in the more general case.

V. EXAMPLES

Below we present some examples which illustrate the theory
discussed above. To study the computation time, we consider
searching the minimum in all directions once (J,, k = 1,

-, n) as one step. In all cases the accuracy is € = 107°.

Example 1: n=2and W = L

All of the examples for n = 2 are quite simple. Moreover,
the minimum point to the stabilization problem can be found
immediately by inspection of Fig. 1. For the all n = 2 cases we
obtain the optimal solution within two iterations of the algo-
rithm.

Example 2: Consider the stable polynomial from [14]

A(z) = z* — 2.76077° + 3.81062% — 2.6535z + 0.9238

soa = [—2.7607, 3.8106, —2.6535, 0.92381".

We add Gaussian noise N (0, 0.0001) to the vector a. If the
perturbed coefficients give an unstable polynomial, we stabilize
it by using the algorithm discussed; if the perturbed coefficients
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Fig. 1. Optimal solutions for n = 2.

TABLE 1
SoLuTIONS TO EXAMPLE 2 UsiNG OPTIMAL METHOD

Before Stabilization After Stabilization

a True Value Mean Stdev Mean Stdev
a -2.7607 -2.762t 0.0100 -2.7625 0.0083
a, 3.8106 3.8086 0.0091 3.8079 0.0091
a ~2.6535 —2.6555 0.0102 —2.6560 0.0083
a, 0.9238 0.9237 0.0105 0.9233 0.0077
Avg Distance 3.9556 x 107* 2.7901 x 107*

give a stable polynomial, we will not do anything. The weigh-
ing matrix W is chosen as the identity matrix, and 50 Monte
Carlo simulations are performed.

Table I shows the mean and standard deviation of the poly-
nomial coefficients before and after stabilization. In this case,
30 of the 50 polynomials required stabilization. It can be seen
that the standard deviation is lower for the stabilized polyno-
mial coefficients. Table I also shows the average distance square
(J)) between the true polynomial coefficients and the perturbed
polynomial coefficients (before and after stabilization, respec-
tively). For the stabilized case, a smaller distance measure is
observed.

Figs. 2 and 3 show the zero distribution of 50 simulations
before and after stabilization, respectively.

In this example, the minimization procedure converged to the
optimal solutions for 26 out of 30 stabilizations using the mod-
ified Schur parameters as the initial conditions. For the case of
finding the initial conditions from the zeros of B(z), the min-
imization procedure converged to the optimal solution for all 30
stabilizations.

To compare this stabilization method with others, stabilized
the polynomial using two other methods. In the first method,
we computed the zeros of the noisy polynomial, and any zeros
outside the unit circle were reflected inside; that is, the mag-
nitude of the zero was inverted, and the angle of the zero was
left unchanged. We note that this method is the asymptotic re-
sult of the planar least squares inverse (PLSI) techniques ap-
plied twice to the polynomial [ 15, pp. 173-1741, [ 16, pp. 234~
236]. In the PLSI technique, a Levinson recursion is used to
find a stable inverse polynomial; applying this method twice
gives a stable approximant to the original unstable polynomial.
The PLSI stabilization method is computationally efficient be-
cause we need only compute two Levinson recursions. As the
order of the first inverse polynomial approaches infinity, the
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Fig. 2. Zero distribution before stabilization of example 2.
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Fig. 3. Zero distribution after stabilization of example 2, using optimal
method.

PLSI method approaches the zero reflecting method discussed
above.

The second method of stabilization is similar to the first
method except that the magnitude of the zero is set to one in-
stead of inverted. This method provides the minimum distance
stable polynomial, where distance is measured in ‘‘zero space.’’

The results of the above two stabilization methods are shown
in Table II. It can be seen that both of these stabilization meth-
ods give much higher distances to the true polynomials than the
optimal method does; in this case, the squared error J is about
two orders of magnitude higher. Figs. 4 and 5 show the zero
plots for the two other stabilization methods. Comparing these
with the zero plots for the original and optimally stabilized
polynomials in Figs. 2 and 3, we see similar results, with the
optimal method giving slightly tighter zero clusters than the
other two methods.

Example 3: This example considers stabilization of an esti-
mated polynomial B(z) obtained by AR modeling of a stochas-
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TABLE 1I
SoruTioNs To EXAMPLE 2 UsING ZERO MOVING METHODS
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TABLE II1
SoLuTioNns To ExaMPLE 3 UsING OpTIMAL METHOD

Zero Reflecting Zero to Unit Circle

a True Value

Before Stabilization After Stabilization

Mean Stdev Mean Stdev a True Value Mean Stdev Mean Stdev
a, —2.7606 —-2.7167 0.0730 —2.7389 0.0381 a, 0.1000 0.0457 0.1896 0.0425 0.1943
a, :3.8106 3.6874 0.1905 3.7462 0.0991 a, 1.6600 1.5601 0.2105 1.5305 0.2161
as —2.6535 —2.5348 0.1876 —2.5931 0.0979 a, 0.0930 0.0446 0.2076 0.0425 0.1957
a, 0.9238 0.8689 0.0833 0.8953 0.0432 a, 0.8469 0.7599 0.2434 0.7327 0.2369
Avg Distance 8.3744 x 1072 2.2723 x 1072 Avg Distance 0.1826 0.1789
1.5 -
1.5 T T
1t i
1+ i
05 g
05 B
o 1
[ 4
-0.5 B
05k -
Ny 4
F g
-15 ; ‘ : . ;
15 -1 -0.5 0 0.5 1 15 155 K} 03 o 05 1 1s

Fig. 4. Zero distribution after stabilization of example 2, using zero re-
flection method.
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_. Fig. 5. Zero distribution after stabilization of example 2, moving unstable
zeros to the unit circle.

tic time series. The data is generated by an AR(4) model with
A(z) = z* + 012> + 1.662% + 0.093z + 0.8649.

This example was taken from [14]. Thus, the data x(7) is gen-

erated by the recursion

x(k) = —‘; ax(k — i)+ u(k)

Fig. 6. Zero distribution before stabilization of example 3.

where {u(k)} is a N(0, 0.5) white noise sequence. We gen-
erate 50 sets of data points {x(k )}, and from each set we
obtain an estimate of the AR parameter vector a using the co-
variance method (see [1]). If the estimated polynomial is not
stable, we stabilize it using the minimization algorithm.

It is known that such an AR parameter vector estimate is
asymptotically a Gaussian distributed random vector. The co-
variance matrix of the estimate can be found in, e.g., [8, p.
212]. For this vector, the natural distance metric is the weighted
I, norm with the weighting matrix W chosen to be the inverse
of the asymptotic covariance matrix of AR parameter vector; in
this way, the stabilization procedure corresponds to a minimum
variance update. Therefore, we have used the inverse of the
covariance matrix as the weighting matrix in this example.

Table III shows the means and standard deviations of the es-
timated AR coefficients before and after stabilization (20 of the
50 polynomials were unstable). Table I also shows the aver-
age distance square (J ) from the true polynomial coefficients
to the realized polynomial coefficients before and after stabili-
zation, respectively. For the stabilized case, a smaller distance
measure is also observed. The distance measure is only slightly
smaller because the variance of the estimates is the dominant
factor in this distance.

Figs. 6 and 7 show the zero distribution of 50 simulations
before and after stabilization, respectively. While the stabilized
zeros are all within the unit circle, there was not much move-
ment needed to change the unstable polynomials to stable ones.
In this example, the minimization procedure did not converge
to the optimal solution only for one of the 20 stabilizations using
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Fig. 7. Zero distribution after stabilization of example 3, using the optimal
method.

the modified Schur parameters as the initial conditions. It con-
verged to the optimal solutions for all 20 stabilizations for the
initial conditions from the zeros of B(z).

The spectral peaks corresponding to the stabilized polyno-
mials will be very sharp because the stabilized AR estimates
have poles on the unit circle. However, if it is known a priori
that the spectral peaks must have a certain minimum bandwidth,
then the stabilization procedure can be modified to give poles
which lie in the disk {|z| < 1 — e} for some appropriate value
of e. Such a modification will be dependent on the particular
application of the modeling procedure.

VI. CONCLUSIONS

We have considered the problem of finding the closest stable
polynomial to a given unstable one. The measure of error be-
tween these two polynomials is the weighted Euclidean distance
in coefficient space. This problem has no closed form solution
in general. We developed an efficient minimization procedure
using the alternating projection approach in Schur parameter
space. In each step in the iteration we minimize a scalar qua-
dratic function, which is very efficient to implement. As a re-
sult, each iteration of the algorithm requires only 4.5n% + 1.5n
+ 2 multiplications and one division. For the case W = [, iden-
tity matrix, there are only 1.5 + 1.5z + 2 multiplications
and one division per iteration. Simulation examples illustrate
the effectiveness of the algorithm for both a polynomial stabi-
lization application and an autoregressive (AR) modeling ex-
ample.

As a final note, we used an /, distance as a measure of close-
ness in polynomial coefficient space. However, other distance
measures could easily be employed in this procedure. If other
distance measures are used, the alternating projection approach
can still be used, with only a small change in the error mini-
mization procedure for the error function J(r,).
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