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Convergence of the SMI and the Diagonally
Loaded SMI Algorithms with Weak
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Abstract— The sample matrix inversion (SMI) algorithm is commonly
used in adaptive arrays since it offers rapid convergence to the maxi-
mum signal-to-interference-plus-noise ratio (SINR) solution. However,
in some applications, such as digital communications or satellite televi-
sion communications, other measures of performance such as the signal-
to-interference ratio (SIR) may be equally important. In this paper
approximations are derived for the power levels at the output of an
adaptive array that uses the diagonally loaded SMI algorithm. Diagonal
loading is a technique where the diagonal of the covariance matrix is
augmented with a positive or negative constant prior to inversion. We
examine how SINR and SIR at the array output vary with the number of
samples taken when the input signals are continuous wave. It is shown
that positive loading produces more rapid convergence with a reduction
in output SIR. Negative loading provides an improved SIR level, but it
is shown that the output power levels are erratic and slow to converge.
Simulation results are given which verify the theoretical predictions.

1. INTRODUCTION

N ADAPTIVE ARRAY is a phased array antenna in

which the element weights are adaptively controlled.
Adaptive arrays can be used to protect radar and communi-
cation systems from interference by steering antenna pattern
nulls in the directions of undesired signals. The weights are
controlled by an algorithm that maximizes some performance
measure. The most often used performance measure is the
signal-to-interference-plus-noise ratio (SINR). The weights
that produce the maximum SINR solution are often called the
Wiener weights because they solve the Wiener-Hopf equation
[1]. In digital adaptive arrays the covariance matrix, which ap-
pears in the Wiener weight solution, is typically estimated by
a maximum likelihood estimate called the sample covariance
matrix [2]. These arrays are often referred to as sample matrix
inversion (SMI) arrays.

Most of the past studies of adaptive array performance have
used the SINR as the measure of system performance. How-
ever, as is shown by Gupta in [3] and Ganz and Compton
in [4] and [5], SINR is not always the best measure of sys-
tem performance, especially when the interference is coherent
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or non-Gaussian. Other solutions have been proposed which
maximize other performance measures. For instance, Gupta
[3] has shown that if a small term is subtracted from each
diagonal element of the sample covariance matrix prior to in-
version, the resulting weights will produce deeper nulls on
weak interfering signals. This technique can be useful in ap-
plications such as television reception from geosynchronous
satellites, where weak interference from adjacent satellites can
produce ghosts that are unacceptable to viewers. Alternatively,
Gabriel [6], Cox et al. [7], Carlson [8], and others have sug-
gested adding a small term to each diagonal element of the
covariance matrix prior to inversion; this has the effect of in-
creasing the convergence rate of the weights at the cost of
reduced suppression of weak interference. We refer to the
augmentation of the diagonal terms of the covariance matrix
with a negative constant as negative diagonal loading and we
refer to augmentation of the diagonal terms with a positive
constant as positive diagonal loading.

Since the Wiener weights produce the maximum array out-
put SINR, either positive or negative diagonal loading pro-
duces suboptimal solutions as measured by SINR. The pri-
mary advantage of positive diagonal loading is faster weight
convergence (albeit to a suboptimal solution). As shown in
[6] and [8], the sidelobe level of a pattern obtained with a
small number of samples is generally lower and more sta-
ble when positive loading is used. Negative diagonal loading
produces a suboptimal SINR value but it produces a signal-
to-interference ratio (SIR) higher than that of unloaded SMI
[31.

Reed, Mallet, and Brennan, in a well-known paper [2],
show that the SINR at the output of an array using the (non-
diagonally loaded) SMI algorithm converges to within 3 dB
of its optimum value more than half the time when more than
2N — 3 samples are taken (where N is the number of antenna
elements). This result is derived under the assumptions that
the interfering signals at the array input are Gaussian and the
desired signal is not included in the sample covariance matrix.
Boroson [9] extends these results and considers the effects of
the desired signal data and steering vector errors. Boroson
shows that convergence can be much slower when the desired
signal is included in the sample covariance matrix.

In this paper we develop large-sample expressions for the
desired, interfering, and noise power levels at the output of an
SMI array as a function of the number of samples used in es-
timating the covariance matrix. These expressions are simple
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and easily programmed on a computer. As a result they can be
used instead of tedious and computationally expensive Monte
Carlo simulations to obtain array performance estimates. In
addition, since these expressions provide closed-form perfor-
mance measures as a function of array and scenario param-
eters, one can quickly see the effects of these parameters on
system performance.

The results we derive are used to examine the expected
value of the SINR and SIR at the output of SMI arrays with
and without diagonal loading. We show that positive loading
tends to reduce the null depth on weak interfering signals while
it decreases the convergence time. Conversely, negative load-
ing tends to increase the null depth on weak interfering signals
while increasing convergence time. We show that, with nega-
tive loading, it can often take thousands of samples before the
SIR at the array output approaches the theoretical predictions
based upon SMI with the true (i.e., nonsampled) covariance
matrix. We also show that the output SINR and SIR with nega-
tive diagonal loading are erratic until a relatively large number
of samples are taken. We present several examples that show
how the theoretical predictions compare with simulated data
and discuss the limitations of the theoretical results.

The next section contains the theoretical predictions of the
system performance. Section III presents the example calcu-
lations and simulation resuits. Finally, Section IV contains the
conclusions.

II. ANALYSIS

Consider an N-element adaptive array with isotropic ele-
ments spaced one-half wavelength apart. We assume a contin-
uous wave (CW) desired signal in an environment of J CW
Jammers. The desired signal and interfering signals are as-
sumed to be of the form

d(t) = Ag exp [j(wqgt + U,)], (1)

ig (1) =Aq exp Li(wat + v)l, a=1,2,...,J 2)

where Ay and A, are the desired and interfering signal am-
plitudes and ¥, and the ¥, are the signal phases. ¥, and
¥, are independent and identically distributed uniformly on
[0, 27]. We assume that independent thermal noise signals,
each with power o2, are present on each element.

Fig. 1 shows a typical linear array geometry.! The desired
signal arrives from an angle 6, and the ath interfering sig-
nal arrives from an angle f,. We assume that Wy Wy SO
that the element-to-element phase shifts for the desired and
interfering signals are given by ¢y = = sin 0s and ¢, =
w sin 0, respectively.

We define the signals at the element inputs by x,---,xpn,
and we define the input signal vector by X =[x, -, xn],
where T denotes the transpose. Note that we use boldface
type for vectors or matrices and subscripted normal type to
indicate vector or matrix elements.

The (true) diagonally loaded covariance matrix is defined

! For ease of understanding, we present our results for a simple array
geometry with CW desired and interference signals. However, most of the
derivation in this paper applies to more complicated array geometries and
signal scenarios as well; see the comments below 27).
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Fig. 1. A four-element SMI adaptive array.
by
R =E[X*X"] +FI, (3)

where E[ -] denotes expectation, the asterisk indicates com-
plex conjugate, and I is the N x N identity matrix. The
(scalar) parameter F denotes the amount of diagonal load-
ing. If F = 0, no diagonal loading is present, and (3) gives
the standard covariance matrix. Note that F can be positive or
negative, but /" must be greater than — ¢ for the covariance
matrix to be positive definite (and thus invertible). In general,
values of F very close to — o2 should be avoided to ensure
numerical stability during matrix inversion.

The corresponding diagonally loaded array weight vector is
given by

W =R"'S, 4
where S is the steering vector which, for identical linearly
spaced elements, is given by S = [1, e/%, ... e(N—Disg|T

When F = 0, W is the maximum SINR (Wiener) weight
vector.

In the SMI algorithm the covariance matrix is estimated by
sampling the incoming data. The diagonally loaded sample
covariance matrix R is given by

R .
R= E;[x (mXT(m)] + F1, (5)

where X(m) is the mth snapshot of the signal vector. The kth
element of X(m) is given by

J
Xi(m) = d(mye’®d %=1+ N (myel4*=D 4 n(m), (6)

a=1

where d(m) and i,(m) are the samples of the desired and
interfering signals on the first elements. We assume that the
sampling instants are chosen asynchronously with the carriers
and modulation so that the d(m) and i(m) are given by

(7

where y4(m) and ¥, (m) are independent and identically dis-

d(m) :Adej(s&d(m)), io(m) :Aaej(%‘(m”,
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tributed random variables uniformly distributed on [0, 27].
ng(m), the thermal noise on element k at the mth sample
time, is Gaussian distributed as N(O, 02).

The k/th element of the true covariance matrix is obtained
by evaluating the expectation

Ry = E{x;x; + Foy}, (8)
J
— |Ad‘281¢d(lfk) + |Aa|2ej¢“(1_k)
+ 026k + Fép, 9
£ R + R + R + (R, (10)

where Ry, R, R,, Rp are, respectively, the desired, inter-
ference, noise, and diagonal loading parts of the covariance
matrix and &, is the Kronecker delta.

We define the error covariance matrix R to be the difference
between the true covariance matrix and the sample covariance
matrix. That is,

R=R-R. (11)
The sample weights are then given by
W=R'S. (12)
Likewise, we can define the error weight vector by
W=W-W. (13)
The inverse of the sample covariance matrix is given by
R'=R-R'=[I-R'RI"'R". (14
We expand the bracketed term as [10, p. 301]
I—R'R]™! :i(R*IR)" =I+R7'R+---. (15

i=0

It will be shown that the standard deviation of the elements
of R™IR is inversely proportional to the square root of the
number of data samples, that is, they are O(1/+/K). It follows
that the elements of (R™'R) are O(K ~//2). Thus, for large
K, the matrix [I — R™'R]~! is well approximated by its first

two terms. With this approximation we have
R'~[I+R'RR". (16)

Strictly speaking, the expansion in (15) is valid only when the
following inequality is satisfied

IR'R|| <1, (17)
where || || is any valid matrix norm used to evaluate the
closeness of approximation in (16); see [10, p. 290]. We will
return to this point later.

From (4), (12), (13), and (16) we find that the weight error
vector is given by

W=R'S—R'S=-R'RW.

The array output signal obtained with the sample weights is

(19

(18)

s=W'X.

The average power at the array output is given by

P = %E[s*s], (20)
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= EE[WTX*XTW], (21

_ %WTE[X*XT]W + %E[WTX*XTWL 22)

where the dagger indicates Hermitian transpose and we have
assumed that E[W] = 0.

The first term in (22) is the power that we would have at the
array output with an infinite number of samples. To evaluate
the second term in (22) we must determine E[w;w;], which
involves the fourth-order moments of the input signal. This
term introduces the effects of finite sampling. We can expand
the second term in (22) and then separate P into its desired
(Py), interfering (P;), and noise (P,) components as

1 AR
P, = EWTRdW + EICZ:ZE[WkW/](Rd)kIs (23)

=l/=1

1 1N N o
P = sWIRW + 222 EURRIRY, 24

N N
Lot 1 _—
Py = WIR,W + Eggﬂwkwmm. (25)
In order to evaluate these expressions we must calculate
E[Ww}w], the covariance of the weight errors. From (18) this
expectation is given in matrix form by

EWWT] = ElR-'RWWIRT(R-T]. (26)

An expression for the ijth element E[W}w,] is given by

N N N N
EDwfw;1 =3 33 (RTHLR™jwi wiEIRSRu)-
s=11=1k=11=1
@7

Note that (27) was derived without any assumptions about
array geometry or signal scenario. Thus, this equation holds
for a large class of arrays. The particular array assumptions
are all contained in the particular form of E[R;‘,Rk,]. For
the linear array of identical elements with CW signals this
expectation is given by [11]

E[R;,Ry/]
1 J U . ‘
:E 0455,(5”+ZZ‘Aa|2|AB|2e/¢a(s~k)e1¢a(lft)
a=1 =1
a#B

+ ZJ:|Ad |2 IAa |2[ej®d(5_k)ej¢u({_1) + ej%(/ft)ej%(S—k)]
a=1
J
4 Zaz A [P[6e/%=—0 4 5 ei®=0)

a=1

+ 02| Aq [ [64e7% R 4 byel 0] (28)
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SINR and SIR versus K, the number of samples, input SNR = —10
dB, input INR = —10 dB, no diagonal loading.

Fig. 2.

Equation (28) shows that the variance of R is proportional to
1/K, so its standard deviation is O(1/v/K), as we assumed
earlier.

By substituting (28) into (27), and this result into (23)-(25),
we obtain expressions for the expected values of the output
powers as a function of data sample size K. These powers can
then be used to compute figures of merit for the array. The two
figures of merit that we consider are the signal-to-interference
ratio and the SINR defined by

SIR = &, SINR = T4
+Pn

B P (29)

III. REsuLTS

In this section we look at several examples which illus-
trate the results derived above. We first examine a case where
we have two weak signals incident upon a four-element ar-
ray. In this case we have a desired signal with a —10 dB
(per element) signal-to-noise ratio incident from the broad-
side direction (64 = 0°) and an interfering signal with a —10
dB interference-to-noise ratio (INR) arriving from 6, = 35°.
Fig. 2 shows the SINR and SIR as functions of K, the number
of samples taken. The curves in this plot show the asymp-
totic SINR and SIR values, i.e., the values obtained using the
true covariance matrix, or equivalently, the values obtained
from the sample covariance matrix as the number of samples
approaches infinity. Also shown are the values predicted by
the analysis of the previous section, and the averaged results
from 100 computer simulation runs. We note that the SINR
converges quickly within 3 dB of its asymptotic value while
SIR converges much more slowly. From these figures we see
excellent agreement between the theoretical and simulation re-
sults. We note that the approximation given in (16) is good
for the case shown in this example since the signals incident
upon the array are weak.

As a second example we show SIR and SINR curves for a
case where we have increased the SNR to 10 dB and increased
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Fig. 3. SINR and SIR versus K, the number of samples, input SNR = 10
dB, input INR = 0 dB, no diagonal loading.
TABLE I
APPROXIMATE NUMBER OF SAMPLES REQUIRED FOR (17) TO BE
SATISFIED
SNR INR K REQUIRED
-10 -20 14
0 -10 17
10 0 36
220

20 10

the INR to 0 dB. The results for this case are shown in Fig.
3. From this figure we again see close agreement between the
predicted and simulated results; however, the simulation re-
sults do not track the predictions quite as well in this case.
We also note that convergence of the SINR curves to within 3
dB of the asymptotic value takes approximately 200 samples.
This value is much larger than 2N —3 = 5 and verifies Boro-
son’s results that SMI convergence is slowed by the addition
of the desired signal in the covariance matrix [9].

In order to determine the region where the approximation
(16) is good we examine how the Euclidean norm [10] of
R7'R varies with K and INR. We consider several cases
where we have different input signal levels. In each case we
have an input SIR of 10 dB. We determine the minimum value
of K required for (16) to be satisfied using a Monte Carlo sim-
ulation. The results are shown in Table 1. This table shows
that, as the signal strengths increase, the minimum value of K
where we expect good agreement between theory and simula-
tion increases. Here, 100 trials were averaged for each value
given in the table. The signal arrival angles were the same as
those used for Figs. 2 and 3.

From Table I we see that, for the case shown in Fig. 3, we
do not expect good performance until K is greater than 36.
From this figure we see that, for K > 36, the predicted and
simulated SINR curves are within about 2 dB of each other
and the predicted and simulated SIR curves are within about
3 dB.

We next consider the effect of diagonal loading of the sam-
ple covariance matrix. We consider the effects of both positive
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Fig. 4. SINR and SIR versus K, the number of samples, input SNR = 10
dB, input INR = 0 dB, F = ¢? (positive diagonal loading).
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Fig. 5. SINR and SIR versus K, the number of samples, input SNR = 10
dB, input INR = 0 dB, F = —0.502 (negative diagonal loading).

and negative loading. Fig. 4 shows the effects when 3 dB of
positive loading is added to the covariance matrix (i.e., o?is
added to each diagonal element of R). All the other param-
eters are unchanged from the case shown in Fig. 3. We see
from this figure that the SIR asymptote is approximately 5.8
dB lower than it was without diagonal loading but the SINR
asymptote is only negligibly lower. We see that the positive
loading has decreased the number of samples required for con-
vergence of the SINR curves to their asymptotic value. In this
case the predicted and simulated curves for both SINR and
SIR are within approximately 2 dB to each other for K > 36.

Finally we consider the effects of negative diagonal loading.
Fig. 5 shows the results when 0.502 is subtracted from each
term of the covariance matrix. Again the signal scenario is
that of Fig. 3. From Fig. 5 we see that the SINR asymptote
is again only negligibly lower than that achieved without the
loading, but the SIR asymptote is 5.9 dB higher. This is the
result shown by Gupta in [3] and is the primary motivation for
negative diagonal loading. We notice that, although a better

SIR is achieved with the negative loading, convergence to the
asymptotic value is slower than for the unloaded case. Again
we see good tracking between the theoretical and simulated
results. However, we found that in all our simulations with
negative loading the output SIR and SINR are quite erratic
when a small number of samples are taken. This is because
the variance of the output powers are large for small sample
lengths. This is evidenced by the jagged curves in Fig. 5
for K values below about 50; the average of 100 computer
simulations was not enough to obtain an accurate statistical
average of the powers for these small values of K.

IV. CoNCLUSION

In this paper we have examined how the standard and diag-
onally loaded SMI algorithms converge with CW input signals
as the number of samples taken increases. We developed ap-
proximations for the weight covariance and the output power
levels from the array as a function of the number of sam-
ples taken. We presented several examples that show the per-
formance for several signal scenarios and loading levels. We
showed that, although SINR converges to within 3 dB of the
asymptotic value within approximately a few hundred sam-
ples, SIR can converge much more slowly. This is especially
true when negative diagonal loading is applied to the sample
covariance matrix. The results derived here can be used to
predict the number of samples required for SIR convergence
without resorting to simulation. These results were shown to
hold best when the incoming signals are weak or when the
number of samples taken is large.

REFERENCES

B. Widrow, P. E. Mantey, L. J. Griffiths, and B. B. Goode, * Adaptive
antenna systems,” Proc. IEEE, vol. 55, no. 12, pp. 2143-2159, Dec.
1967.

I. S. Reed, J. D. Mallett, and L. E. Brennan, ‘‘Rapid ‘convergence
rate in adaptive arrays,” IEEE Trans. Aerospace Electron. Syst.,
vol. AES-10, no. 5, pp. 853-862, Nov. 1974.

I. I. Gupta, “SMI adaptive antenna arrays for weak interfering sig-
nals,” IEEE Trans. Antennas Propagat., vol. AP-34, no. 10, pp.
1237-1242, Oct. 1986.

M. W. Ganz and R. T. Compton, Jr., “Protection of PSK communica-
tion systems with adaptive arrays,”” IEEE Trans. Aerospace Electron.
Syst., vol. AES-23, no. 4, pp. 528-536, July 1987.

(1]

21

131

[4]



GANZ et al.: SMI AND DIAGONALLY LOADED SMI ALGORITHMS

[5]

(6]

7

9]

[10]

[11]

——, ““Protection of a narrow-band BPSK communication system with
an adaptive array,” IEEE Trans. Commun., vol. COM-23, no. 10,
pp. 1005-1011, October 1987.

W. F. Gabriel, ““Using spectral estimation techniques in adaptive pro-
cessing antenna systems,”” IEEE Trans. Antennas Propagat., vol.
AP-34, no. 3, pp. 291-300, Mar. 1986.

H. Cox, R. M. Zeskind, and M. N. Owen, “Robust adaptive beam-
forming,”” IEEE Trans. Acoust. Speech, Signal Processing, vol.
ASSP-25, no. 10, pp. 1365-1376, Oct. 1987.

B. D. Carlson, ‘“‘Covariance matrix estimation errors and diagonal
loading in adaptive arrays,” IEEE Trans. Aerospace Electron. Syst.,
vol. AES-24, no. 4, pp. 397-401, July 1988.

D. M. Boroson, *‘Sample size considerations for adaptive arrays,”
IEEE Trans. Aerospace Electron. Syst., vol. AES-16, no. 4, pp.
446-451, July 1980.

R. A. Horn and C. A. Johnson, Matrix Analysis. Cambridge, Eng-
land: Cambridge Univ. Press, 1985.

M. W. Ganz, R. L. Moses, and S. L. Wilson, “Convergence of the di-
agonally loaded SMI algorithm,”” MIT Lincoln Lab., Lexington, MA,
Tech. Rep. RST-40, Apr. 1989.

Matthew W. Ganz (S'82-M’85) was born in
Toledo, OH, on March 18, 1959. He received the
B.S., M.S., and Ph.D. degrees in electrical engi-
neering from The Ohio State University, Columbus,
in 1981, 1982, and 1986, respectively.

In 1980-1982 and 1985-1986 he was a University
Fellow, a Graduate Research Associate, and a Post-
doctoral Research Associate at The Ohio State Uni-
versity ElectroScience Laboratory where he studied
communications and radar applications of adaptive
antenna systems. From 1982-1984 he was an As-

sociate Engineer in the Space Department of The Johns Hopkins University
Applied Physics Laboratory. There he worked primarily on satellite commu-
nication and tracking systems. He is currently a Member of the Technical

399

Staff in the Radar Systems Group at MIT Lincoln Laboratory, Lexington,
MA, where he is working on radar applications of adaptive arrays.
Dr. Ganz is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.

Randolph L. Moses (S’78-M’84) received the
B.S., M.S., and Ph.D. degrees in electrical en-
gineering from Virginia Polytechnic Institute and
State University Blacksburg, in 1979, 1980, and
1984, respectively.

During the summer of 1983 he was an SCEEE
Summer Faculty Research Fellow at Rome Air De-
velopment Center, Rome, NY. From 1984 to 1985
he was with the Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands, as a NATO Post-
doctoral Fellow. Since 1985 he has been an Assis-
tant Professor in the Department of Electrical Engineering, The Ohio State
University. His research interests are in digital signal processing, and include
parametric time series analysis, system identification, and model reduction.

Dr. Moses is a member of Eta Kappa Nu, Tau Beta Pi, Phi Kappa Phi,
and Sigma Xi.

Sanford L. Wilson was born in Coral Gables, FL,
on August 4, 1958. He received the B.S. degree
in physics and the B.S. degree in mathematics in
1981, the M.S. degree in physics in 1982 from the
Georgia Institute of Technology, Atlanta, and the
Ph.D. degree from the University of Texas, Austin,
in 1987.

He is currently a member of the Technical Staff
in the Radar Systems Group at the MIT Lincoln
Laboratory, Lexington, MA, where he is working
on clutter rejection techniques and detection theory.




