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Abstract—Ad hoc localization of wireless sensor nodes is a fundamental problem in wireless sensor networks. Despite the recent

proposals for the development of ad hoc localization algorithms, the fundamental behavior in systems using measurements has not

been characterized. In this paper, we take a first step toward such a characterization by examining the behavior of error inducing

parameters in multihop localization systems in an algorithm independent manner. We first derive the Cramé Rao Bound for Gaussian

measurement error for multihop localization systems using distance and angular measurements. Later on, we use these bounds on a

carefully controlled set of scenarios to study the trends in the error induced by the measurement technology accuracy, network density,

beacon node concentration, and beacon uncertainty. By exposing these trends, the goal of this paper is to develop a fundamental

understanding of the error behavior that can provide a set of guidelines to be considered during the design and deployment of multihop

localization systems.

Index Terms—Multihop node localization, sensor networks, Cramé Rao bounds, position estimation.
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1 INTRODUCTION

NODE localization in multihop sensor networks is a
fundamental component of network self-configuration.

When endowed with the ability to “sense” their location in
space, ad hoc deployed sensor nodes can support a rich set of
geographically awareprotocols, andcanaccurately report the
positions of detected targets or events.

One problem setup that received considerable attention in
the literature is the casewhere a small fraction of the nodes in
a multihop network are aware of their locations and act as
beacons assisting other nodes to estimate their locations [1],
[2], [3], [4], [5], [6]. Nodes with unknown locations use
advertised beacon node locations and a set of distance or
angularmeasurements to their neighboringnodes to estimate
their locations. Despite their encouraging results, the pro-
posedsolutionsdonotprovidea systematicdecompositionof
the resulting error in position estimates. Even in idealized
setups with no obstacles or other external factors, relatively
small error from noisy sensor measurements can induce
much larger errors in node position estimates. This error is
associated with a set of attributes that we refer to as the
network setup attributes. The network setup attributes include
the type of measurement technology used (distance or angle

measurement), the accuracy of the measurement technology
used, network density, uncertainties in beacon node loca-
tions, and beacon node densities.

In this paper, we examine localization error behavior with
respect to the aforementioned network setup attributes. Our
study considers the “idealized” case where measurements
are not impacted by changes in the surrounding environ-
ment, and the underlying measurement error distribution is
known. Under this assumption, we consider the error
characteristics of different measurement technologies and a
set of carefully controlled deployment setups, to develop a
fundamental understanding of how network setup para-
meters affect the error behavior in node position estimates in
systems that use distance and/or angular measurements.
This study reveals a set of guidelines for the multihop
localization problem. The resulting rules expose the trends
associated with each of the network setup attributes and
provides valuable insight into understanding the funda-
mental error behavior in multihop localization. Such knowl-
edge can help to answer questions regarding the scalability of
multihop localization, and provides a set of directions to
consider as part the design cycle and during deployment. In
addition to the preliminary results of our earlier work
presented in [19], this paper provides the details of the bound
derivations and includes a comparison of the error trade offs
associated with the use of angular or distance measurements
for localization. Moreover, it considers a wider range of
scenarios, and provides some indication of how beacon
location errors affect the final location estimates. To thebest of
our knowledge this is the first effort that constructs an
analytical framework that attempts to characterize the trends
error behavior for multihop localization.

Our analysis is based on analytical bounds for the
covariance of localization parameter estimates, given by the
Cramé-Rao bound for the case in which there is no beacon
uncertainty, and the covariance bound on the maximum a
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posteriori (MAP) estimatewhen beacon location uncertainty.
These bounds provide an analytical means of characterizing
localization uncertainty, thus avoiding Monte-Carlo simula-
tions.On the other hand, the bounds are tight in the sense that
maximum likelihood (ML) or MAP estimates of location
parameters achieve these variance bounds for high signal-to-
noise ratio.

This paper is organized as follows: The next section
presents a classification of the error components and
defines the problem. Section 3 presents the Cramé-Rao
bound result for the multihop case. Section 4 describes our
scenario setup and the simulation results. These results are
summarized in Section 5.

2 OVERVIEW

2.1 A Classification of Error Components

Sensor measurement error can be broken down into two
main categories, extrinsic and intrinsic. Extrinsic error is
attributed to the physical effects on the measurement
channel, such as the presence of obstacles, multipath and
shadowing effects, and changes in the signal propagation
speed due to changes in the surrounding environment.
Intrinsic error is caused by imperfections of the sensor
hardware and software. While extrinsic error is more
unpredictable and harder to handle in realistic deploy-
ments, intrinsic error can also cause many complications
when estimating node positions that utilize measurement
information over multiple hops. Even relatively small
measurement errors can significantly amplify the error in
position estimates. This error amplification is inherently
related to the network setup parameters. Denser deploy-
ment, for example, increases the number of possible
measurements and, thus, helps to reduce the error in
position estimates. Other changes such as the use of a lower
precision measurement technology and higher uncertainty
of beacon locations will induce increased errors in position
estimates.

In this paper, we consider a range of intrinsic error
characteristics representative of different measurement
technologies. Table 1 lists the typical intrinsic average
measurement error of four different systems: the ultrasonic
distance measurement system used in the AHLOS project
[4], ultra-wide-band system [7], RF Time-of-Flight system
[8], and a SICK laser range finder [9]. With the trends
exposed in this paper, one should be able to answer a set of
fundamental questions regarding the use of each technol-
ogy. Examples of such questions are listed below:

. What deployment density is required to achieve a
certain localization accuracy with a particular
technology?

. What are the trade offs between the use of distance
versus angular measurements?

. Is the use of measurements over multiple hops
scalable? How does error propagate?

. How does beacon density improve localization
accuracy?

. How does beacon uncertainty affect the node
position estimates?

2.2 Problem Statement

Assumewe have a set ofN sensors in a plane, with unknown

locations fri ¼ ðxi; yiÞgNi¼1 and unknown orientation angles

f�igNi¼1. The orientation angles can be thought of as rotation

angles of the sensor nodes’ local frame of reference with

respect to an absolute reference frame. In addition, a set of B

beacon with locations fri ¼ ðxi; yiÞg0i¼�Bþ1 and orientations

f�ig0i¼�Bþ1 are placed in the plane. The beacon locations and

orientationsareassumed tobeknown,butperhapswith some

uncertainty. We define the location parameter vectors

�B ¼ ½x�Bþ1; y�Bþ1; ��Bþ1; . . . ; x0; y0; �0�T ð3B� 1Þ; ð1Þ
�N ¼ ½x1; y1; �1; x2; y2; �2; . . . ; xN; yN ; �N �T ð3N � 1Þ; ð2Þ

� ¼
�B

�N

� �
ð3ðBþNÞ � 1Þ; ð3Þ

where �B contains beacon node location parameters and �N

contains unknown (nonbeacon) node location parameters.

Each beacon node advertises its location and orientation

and this information is forwarded to the other nodes in the

network.
For node localization, each sensor node and beacon node

emits a known signal that allows neighboring nodes to

estimate their distance and/or angle to the emitting node.
The measurements contain measurement error. We

denote the distance measurement at node i to node j as d̂dij

d̂dij ¼ dij þ edij ; ð4Þ

dij ¼ kri � rjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
; ð5Þ

where edij is the distance measurement error and where dij

is the true distance between nodes i and j. We denote the

angle measurement at node i to node j as �̂�ij
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�̂�ij ¼ �ij þ e�ij
; ð6Þ

�ij ¼ �i þ ffðri; rjÞ ¼ �i þ tan�1 yi � yj
xi � xj

� �
; ð7Þ

where e�ij
is the angle measurement error and where �ij is

the true angle between nodes i and j, measured with
respect to node i’s local frame of reference.

We will consider four localization subproblems. First, the
nodes may or may not measure angles to emitting nodes.
This may be the case for sensor nodes having a single,
omnidirectional sensor. In this case, orientations of sensors
are not identifiable, and the �i elements are removed from
the �B and �N vectors, and their dimensions reduce to
ð2B� 1Þ and ð2N � 1Þ, respectively. If angle measurements
only or if distance and angle measurements are collected,
the localization solution includes both position and orienta-
tion estimates of sensor nodes. Second, the beacon node
locations (and orientations) are either assumed to be known
exactly, or assumed to have uncertainty. When they have
uncertainty, we simultaneously estimate both sensor node
and beacon node locations (and orientations), as the
measurements provide additional information about bea-
con locations (and orientations) that reduce the uncertainty.

We denote the availability of a measurement from node i
from a signal emitted at node j (for i; j ¼ �Bþ 1; . . . ; N)
using the indicator function Iij, where Iij ¼ 1 if the signal is
detected and Iij ¼ 0 otherwise. Depending on the parti-
cular subproblem being considered, Iij ¼ 1 indicates that a
distance measurement, an angle measurement, or both
measurements are observed. The measurement are stacked
into a vector X whose length is defined to be M.

In this paper, we assume the measurement errors are
independentGaussian randomvariableswith zeromean and
known variances �2

d and �2
�, respectively. We acknowledge

that although this uncorrelated-Gaussianmeasurement error
does not capture all practical cases, it is a good starting point
for exposing some of the error trends in multihop networks.
More general cases are considered in [10], [11].

The general localization problem statement is as follows:
Given noisy distance measurements d̂dij and/or noisy angle
measurements �̂�ij, beacon locations ri, and orientations �i
for i ¼ �Bþ 1; . . . ; 0, estimate the locations r̂ri and orienta-
tions �̂�i for i ¼ 1; . . . ; N . We note that the orientations �̂�i are
only estimated when angle measurements are available.

3 LOCALIZATION ERROR

In this section, we develop two analytical expressions for
sensor node localization error. The first assumes beacon
nodes have known locations and orientations. In this case,
the localization accuracy is computed using the the
Cramér Rao bound (CRB) [10]. When beacon nodes have
location uncertainty, we characterize localization accuracy
using a covariance bound that is similar to the CRB. Both
bounds are tight in the sense that localization algorithms
(specifically, maximum likelihood parameter estimates in
the known-beacon case and maximum a posteriori
parameter estimates in the uncertain-beacon case) achieve
these bounds for high measurement signal-to-noise ratio.
In addition, the bounds are computed analytically, and
avoid the need for expensive Monte-Carlo simulations.

The computational advantage afforded by analytical
bounds permit us to study localization performance for
a large number of network topologies.

3.1 Localization Error Bound for Multihop
Topologies with Known Beacon Locations

When beacon nodes have known location (and, if applic-
able, orientation), the CRB is used to bound localization
error. The CRB gives a lower bound on the error covariance
matrix for an unbiased estimate of parameter vector �N

(see, e.g., [12]). The lower bound is given in terms of the
Fisher Information Matrix Jð�NÞ. Let �̂�N be any unbiased
estimate of parameter �N based on observation vector X

having a pdf of fXðxÞ. The error covariance matrix is
defined as

C ¼ Efð�̂N�N � �NÞð�̂N�N � �NÞTg: ð8Þ

This error covariance matrix is bounded below by the CR
bound, which is given by

CRB ¼ Jð�NÞ½ ��1; ð9Þ

where the matrix Jð�NÞ is given by

Jð�NÞ ¼ E r�N
ln fXðX;�NÞ½ � r�N

ln fXðX;�NÞ½ �T
n o

: ð10Þ

The matrix Jð�NÞ is called the Fisher Information Matrix
(FIM).

The ðM � 1Þ measurement vector X in (10) is a vector
formed by stacking the available distance measurements d̂dij
and/or the angle measurements �̂�ij, where the ðijÞ pairs
correspond to those for which Iij ¼ 1. Thus, themth element
ofX has a corresponding value of i and j. Since it is assumed
that themeasurements are Gaussian, themeasurement pdf is
the vector Gaussian pdf

fXðx;�NÞ ¼ N ð�ð�NÞ;�Þ

¼ 1

ð2�ÞM j�j
1
2

exp � 1

2
½x��ð�NÞ�T��1½x��ð�NÞ�

� �
;

ð11Þ

where the mean vector �ð�NÞ is a vector of true distances
and angles whose elements are given by (5) and (7) and are
stacked in the same order as the measurements in X. When
the measurements are uncorrelated, the covariance matrix �
in (11) is diagonal, and the diagonal elements �kk are �2

d for
distance measurements and �2

� for angle measurements.
However, the derivation that follows holds for more general
� matrices.

For the measurement pdf in (11), we find that

Jð�NÞ ¼ ½G0ð�NÞ�T��1½G0ð�NÞ�; ð12Þ
½G0ð�NÞ�m;n ¼ @�mð�NÞ=@�Nn ðM � dimð�NÞÞ: ð13Þ

The partial derivatives in (13) are readily computed from (5)
and (7), (2), and (11).

The mth element �mð�NÞ is either a distance dij or an
angle �ij for some corresponding i and j; thus, for each
m 2 ½1;M� there is a corresponding pair ði; jÞ, and we
denote this correspondence as m $ ði; jÞ. Similarly, the nth
element of �N , denoted �Nn is one of fxi0 ; yi0 ; �i0 g for some
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corresponding i0 2 ½1; N� and we denote the correspondence
�Nn $ xi0 or �Nn $ yi0 or �Nn $ �i0 . With this notation, if
the mth element of �ð�NÞ is a distance dij with m $ ði; jÞ,
then from (5) we have

½G0ð�NÞ�mn ¼

xi�xj
dij

; �Nn $ xi
xj�xi
dij

; �Nn $ xj
yi�yj
dij

; �Nn $ yi
yj�yi
dij

; �Nn $ yj
0; otherwise:

8>>>>><
>>>>>:

ð14Þ

Similarly, if the mth element of �ð�NÞ is an angle, say �ij for
some corresponding values of i and j, then from (7) we have

½G0ð�NÞ�mn ¼

yj�yi
d2ij

; �Nn $ xi

yi�yj
d2ij

; �Nn $ xj

xi�xj
d2ij

; �Nn $ yi
xj�xi
d2ij

; �Nn $ yj

1; �Nn $ �i
0; otherwise:

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

The CRB is then given by the inverse of the FIM as in (9).

3.2 Localization Error Bound for Multihop
Topologies with Uncertain Beacon Locations

When the beacon locations have some uncertainty, we
model the beacon localization parameter vector �B as a
random vector with a (known) prior pdf f0ð�BÞ. We assume
the prior pdf is Gaussian:

f0ð�BÞ � N ð�0;�0Þ; ð16Þ

where �0 is the vector of nominal location (and orientation)
of the beacon nodes and �0 is the beacon location (and
orientation) uncertainty. For the case of distance-only
measurements, �B contains only xi and yi parameters, and
is of size ð2B� 1Þ.

When beacon locations are uncertain, the measurement
vector X informs about node localization for both unknown
nodes and beacon nodes. Thus, we can estimate the
unknown sensor node locations (and orientations) and
simultaneously estimate the beacon locations (and orienta-
tions), thereby reducing beacon uncertainty. We do so by
estimating the combined parameter vector, �, in (3).

The pdf f0ð�BÞ provides prior information about the
parameter vector �B, as given by

J0 ¼ E r� ln f0ð�BÞ½ � r� ln f0ð�BÞ½ �T
n o

:

For the Gaussian pdf assumed in (16), the corresponding
information matrix is found to be:

J0 ¼ ��1
0 0
0 0

� �
: ð17Þ

Wewill assume in the numerical studies in Section 4 that�0 is
diagonal with elements �2

0;d corresponding to location
parameters and�2

0;� corresponding toorientationparameters.
However, (17) applies to more general prior errors. For
example, if the x and y location errors for each beacon node
are correlated, then �0 is block-diagonal, with 2� 2 block
representing the covariance of the ðx; yÞ errors for each node.

In addition, if beacon locations are known (with some
uncertainty) but there is no prior orientation information,
then��1

0 has zeros on thediagonal elements corresponding to
the �i parameters.

The information provided by the measurements and the
a priori information are assumed to be independent, and
can be summed. Thus, the total information matrix is given
by [12]:

JT ¼ Jð�Þ þ J0; ð18Þ

where Jð�Þ is given by (12) with �N replaced by �. Then, as
with the CRB, a lower bound on the mean squared error C
of an estimate of � is given by

C � J�1
T : ð19Þ

The bound J�1
T in (19) is used to study localization

performance for multhop topologies when beacon nodes
have uncertain location (and orientation).

4 LOCALIZATION PERFORMANCE ANALYSIS

In this section, we analyze the localizaton properties of
several multihop network topologies, using the covariance
bounds derived in the previous section. Our goal is to
characterize localization performance as a function of
several sensor network characteristics, such as node
density, percentage of beacon nodes, network size, and
beacon uncertainty. To do so, we generate several network
topologies that have similar characteristics (for example,
similar node density), and compute the localization error
bound using (9) or (19), depending on whether the beacon
node locations are uncertain or not. We then average the
performance over these network topologies.

4.1 Network Generation

In this section, we describe the procedure by which we
generate candidate networks with different characteristics.
We characterize a network of nodes by its density, total size,
and node detection range. Let �nn denote the average number
of neighbors per node, let D denote the density of the
network in nodesm2, and let R be the detection range of the
sensors in meters. We have the following relation

�nnþ 1 ¼ �R2D: ð20Þ

We note that �nn corresponds the average number of
neighbors per node only for nodes on the interior of the
network. Nodes near the edge of the network will have
fewer neighbors. We define the density as the number of
nodes per square meter. As the density increases, the
connectivity increases because there are more nodes within
detection range of each other. The density and connectivity
are are also closely related to the detection range of the
sensors. To expose the trends in our study, the scenarios are
designed so that the density is uniform across the network.

In addition to closely controlling network density, the
generated scenarios also aim to minimize the effects of
geometry. Bad geometry can induce more errors that that
would make it more difficult to isolate the error compo-
nents of the network setup parameters under investigation.
The effects of geometry on computed locations has been

570 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 4, NO. 6, NOVEMBER/DECEMBER 2005



demonstrated as the geographic dilution of precision
(GDOP) factor, described in previous work. A notable
characterization of geometry error for the case where the
locations of 1-hop anchor nodes is shown in (21) described
in Spirito in [13].

GDOP ¼ GDOP ðN; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N

�i�j;j>ij sinð�ijÞj2

s
: ð21Þ

N is the number of nodes used as anchors and �ij is the
angle between each pair of nodes ði; jÞ used as anchor
points by a node during the localization process. The
relation in (21) shows that the error contribution due to
unfavorable geometries is largest when the angles between
two nodes acting as anchor points is very small or when the
anchor points are across from each other, forming an angle
close to 180 degrees.

To minimize the error associated with geometry, the
scenarios are generated using a radial deployment pattern.
Node positions are generated in polar coordinates by
generating a radius r and an angle � for each node. Nodes
are deployed in a circular field, which is divided into a set
of rings. The number of nodes deployed in each ring is
proportional to the fraction of the area of the ring with
respect to the total area of the circular field as shown in
Fig. 1a. This pattern tries to approximate the effect of
hexagonal cells (shown in Fig. 1b). In a hexagonal
placement, a node is placed at the center of each hexagon
and the detection range is set to R as shown in the figure. In
this case, each node that is not part of the perimeter has
exactly six evenly spaced (60� apart) neighbors. While this
placement will isolate the geometry effects, it is only
possible for hexagonal placement. The radial scheme
described above aims to approximate this hexagonal
placement for higher densities. Furthermore, to ensure that
no nodes with unknown positions are placed on the
boundaries, the beacon nodes are deployed in the outer
ring of the circular sensor field. Varying the area of the field
controls network density.

Fig. 2 shows three example networks having different
densities, with beacons drawn as squares and unknowns
drawn as circles. The networks in Figs. 2a and 2b were
generated using the method described above. Both networks
contain a total of 50 nodes, but the denser network occupies a
smaller area and hasmore connections. These networkswere
generated assuming detection range of 10m. Circles in the

figures denote node locations, and edges between nodes

denote that they arewithin detection range of each other and,

thus, that there is a distance and/or angle measurement

between them that appears in the vector X. Fig. 2c is an

example of a hexagonal deterministic deployment pattern

used in some of the simulation experiments. In this network,

all the nodes on the perimeter are beacon nodes, so each node

with unknown location has exactly six evenly spaced

neighbors.

4.2 Network Density

For this experiment, we generated a number of network

scenarios with varying densities using the method de-

scribed above. Each of these networks contain a total of

50 nodes, 10 of which are beacon nodes. The detection range

was set to 10 m. For each density value examined, we

compute the RMS location error for each of 20 different

networks having the same density, using the computed

CRB matrix associated with that network. From the CRB

matrix, we compute the average RMS location error of each

of the 40 nonbeacon nodes, computed as

RMS error ¼

1

40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX40
i¼1

½CRB�ði�1ÞKþ1;ði�1ÞKþ1 þ ½CRB�ði�1ÞKþ2;ði�1ÞKþ2

vuut ;

ð22Þ

where K ¼ 2 when �N is ð2N � 1Þ and K ¼ 3 when �N is

ð3N � 1Þ. We then average this RMS error over the 20 net-

works, and compute the standard deviation of this RMS error

for the 20 networks.Weplot the average value as a function of

network density, and we indicate the �1 standard deviation

of this value with error bars on the figures.
The results using distance only measurements are shown

in Fig. 3a, and results using angular measurements are

shown in Fig. 3b. In these and all remaining figures, we have

plotted the RMS location error (in meters) divided by the

distancemeasurement standard deviation �d inmeters (RMS

error/�d), or by the angle measurement standard deviation

�� in radians (RMS error/��), which we write as (RMS

error/�) for short. By multiplying points on this curve by the

measurement error that corresponds to a given sensor, the

average location error is found. For example, the average

RMS location error in a network with 20 neighbors/node
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and a ranging technology with a 20 mm accuracy is given by
ð0:02Þ 	 ð0:36Þ ¼ 0:007 m.

As we can see from these plots, the error does decrease
with increasing connectivity for both distance and angular
measurements. In the case of distance measurements, the
decrease is rapid at first, then becomes more gradual. This
suggests that after a certain point, increasing the density of
the network may not be very beneficial to the localization
process. We also note that the one standard deviation error
bars are quite small.

Intuitively, one would expect an improvement in
position estimates as the network density increases, due
to the increase in measurement constraints. Both angular
and distance measurements have an asymptotic response to
density effects, where the effect of adding more neighbors
in low density scenarios yields more improvement in
position estimates. Furthermore, when angular measure-
ments are used, density effect is also correlated to range,
since the error contribution of angular measurements
increases with distance.

The plot in Fig. 3b corresponds to angular measurements
for the same set of scenarios as the one used to obtain the
density trends when distance measurements are used in
Fig. 3a. The two plots have similar shapes for a small
number of node neighbors, but the RMS location error

corresponding to angle measurements decreases more
rapidly than for distance measurements when the number
of neighbors becomes large. The primary source of this

more rapid decrease is that when the node density
increases, the average distance between nodes decreases,

and the distance error corresponding to a fixed angular
measurement error correspondingly decreases. Similarly,

increasing the density by increasing the detection range,
would increase the error in the angle measurement case.

This is intuitive since the tangential error increases with
range. Fig. 3c shows how the localization error behaves as

the detection range is scaled for a 61-node hexagonal
placement scenario. In the case of angle measurements, the
localization error scales linearly with range, whereas for the

case of distance measurements it remains constant. Fig. 3d
shows a normalized version of the angle measurement

trend that removes the effect of detection range. This plot
was obtained by normalizing the node locations in each of

the scenarios used with the average internode distance for
the whole network. The trend in Fig. 3d is very similar to

the distance only measurement trend in Fig. 3a.
From Figs. 3a and 3b, we can compare the distance and

angle measurement accuracy requirements to achieve
similar localization accuracy. At 10 neighbors/node and a
distance measurement standard deviation of 20 mm, Fig. 3a
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Fig. 2. Two example 50-node networks with different node densities. (a): 0.03 nodes/m2; (b): 0.06 nodes/m2. Circles are beacon nodes and squares

are unknown nodes. Both networks have a detection range of 10 m, and edges in the graph correspond to node pairs for which distance or angle

measurements are available: (c) A 37-node scenario where every unknown node has exactly six neighbors.



gives an average localization error of 0.012 m. From Fig. 3b,
in order to achieve the same localization accuracy, one
needs an angle measurement standard deviation of �� ¼
:012=4:8 ¼ 0:0025 rad, or 0:14�. Even for very dense net-
works (each node having on average 42 neighbors), DOA
measurements must be accurate to a standard deviation of
0:27� to achieve the same localization accuracy as that
obtained using distance measurements with 20 mm
standard deviation. This suggests that technologies using
distance measurements such as acoustic ultrasonic and laser
will produce higher accuracy locations than technologies
using angle measurement only since very high precision
measurements are required to achieve the same location
accuracy as distance measurement technologies. The role of
angular measurements, however, should not be overlooked.
Recent work by Nicolescu and Nath in [14] have shown
angle-only localization to produce favorable results.

4.3 Network Size

In this section, we investigate how the localization error
varies as the network scales in overall size. We evaluate the
CRB for a number of networks having a fixed density/
connectivity (.03 nodes/m2 or about eight neighbors per

node), a fixed percentage of beacon nodes (10 percent of the
nodes are beacons), and varying size. This means that we
increase the area that the network occupies while increasing
the number of nodes so as to keep the node density
constant. Again, we compute the average RMS error/� over
20 different networks having the same size and perform this
experiment for both distance measurements and angle
measurements. The results are shown in Fig. 4.

From Fig. 4, we can conclude that for both distance
measurements and angle measurements the localization
error is not greatly affected as the network scales. One
might have expected that as a multihop network gets larger
the nodes farther away from beacons might suffer from
error propagation, thereby increasing the localization error.
This is apparently not the case.

To further study the effect of the distance to beacon
nodes on the localization error, we look at the RMS error at
each node as a function of the number of hops to the nearest
beacon node. Using 20 different networks, each containing
140 total nodes (of which 14 are beacon nodes), we compute
the average RMS error as a function of the number of hops
to the nearest beacon when distance measurements are
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Fig. 3. Normalized RMS node localization error, (RMS error/�) as a function of the average number of neighbors per node. (a) Using distance-only
measurements with distance measurement error � ¼ �d. (b) Using angle-only measurements with angle measurement error � ¼ ��. (c) Localization
error in hexagon scenario when internode range is scaled; the linear scaling of error for angle-only measurements corresponds to the linear dilation
of tangential location error with range. (d) Angle-only localization error when node locations are normalized by the average distance between the
nodes.



used, and again when angle measurements are used. The

results are plotted in Fig. 6. For the scenarios examined

here, the localization error does not appear to vary greatly

as the number of hops to the nearest beacon increases when

distance measurements are used. Somewhat counterintui-

tively, the error appears to decrease as the distance to

beacon nodes increases. We hypothesize that this decrease

may be due to the fact that nodes far from a beacon are well

in the interior of the network, and tend to have a slightly

higher average number of neighbors than nodes close to a

beacon; in addition, these neighbors are more likely to be in

all directions, whereas nodes near beacons are also near

boundaries, and tend to have fewer neighbors on one side

than on the other. Initial results, reported in [15], support

this hypothesis, but a more thorough study of this point is

needed in order to make more concrete statements.
Fig. 5 shows how error propagates on a more controlled

hexagonal deployment pattern with a total of 61 nodes, 24 of

which are beacons. Theplot on the left shows theprofile of the

error (magnified by a factor of 10) for the case where angle-

only measurements are used. The plot on the left is a vertical
cut-through that shows how the RMS location error increases
for the nodes that are located toward the center of the
hexagonal field. The error propagation increases sublinearly
with the number of hops. The percentage increase in error
fromhop tohop is shown is shown inTable 2. The table shows
that although the overall error is more when angle measure-
ments are used, the hop-to-hop error propagation is slower
when angle measurements are used.

4.4 Beacon Percentage

We next consider the effect of percent of beacon nodes on
the localization error. In other words, we would like to find
out if increasing the percentage of beacon nodes in the
network improves the location estimates. To do this, we
used a set of network scenarios, each having 100 total
nodes. The number of beacons was varied from 4 to 20. The
network density was held constant at 0.035 nodes/m2 or
about 10 neighbors per node. We again average the RMS
error/� for 20 different networks having the same beacon
percentage to obtain each point on the curve. Fig. 7 shows
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Fig. 4. Normalized RMS node localization error, (RMS error/�) as a function of the number of nodes in the network. (a) Using distance-only

measurements with distance measurement error � ¼ �d. (b) Using angle-only measurements with angle measurement error � ¼ ��.

Fig. 5. RMS node localization error, (RMS for a 61-node hexagonal placement scenario). (a) Error profile when angle-only measurements are used.

(b) Error propagation as the number of hops from the network perimeter increases.



the results of this experiment using distance and angle

measurements. The percentage of beacons does not appear

to have a large impact on the localization error.

4.5 Beacon Uncertainty

The beacon locations may not be known exactly, uncer-
tainty in the beacon locations will affect the accuracy of the
sensor location estimates. For this experiment, we have
used the same network scenarios that were used in the
network density experiment. Each network used contains
50 total nodes, 10 of which are beacons. We vary the relative
beacon uncertainty standard deviation (�0=�) from 0 to 3.
The CRBmatrix is computed using the method of Section 3.2
and the RMS error/� is computed for nonbeacon nodes
only. The results are averaged over 20 different network
scenarios having the same density and for each density, we
plot a curve showing the RMS error/� as a function of the
beacon uncertainty variance.

The resulting curves for distance measurements are

shown in Fig. 8. At low �0, the localization error is

dominated by the distance measurement error, but at

higher �0 (�0=� > 1), the localization error is dominated

by �0 and increases linearly.
For higher beacon uncertainty values, it turns out that

the relative location error between sensors remains small (on

the order of that predicted when �0 ¼ 0) and most of the

location uncertainty error can be attributed to an overall

translation of beacons from their nominal locations. More

details on this aspect, and a derivation of the relative

location error CRB, are found in [16].

5 RELATED WORK

Some of the trends discussed here have been partially
mentioned in works studying specific localization schemes.
The quantitative comparison of different schemes presented
in [17] and the references thereof, is a representative
example of this effort. In [17] a detailed side-by-side
comparison of three localization schemes is presented. This
comparison gives some indications of the resulting localiza-
tion error as observed from each of the three schemes
considered. The drawback of using this approach in
exposing the trends, is that some of the error introduced
into the result is an artifact of the particular localization
algorithm being used. Furthermore, the comparison in [17]
considers a more limited set of scenarios that does not
reveal all the trends and their association with the network
setup parameters.

The most relevant work to this paper is the work
presented in [18] and [6]. In [18], Patwari et al. use Cramé
Rao bound analysis to analyze the performance of a
localization system based on radio received signal strength.
This study was more focused very specific scenarios. More
recently, in [6], the Cramé Rao bounds for radio received
signal strength and round-trip TOA of RF signals are
considered; since RF signals were used, timing accuracies
for TOA measurements on the order of 1 nsec are needed.
The work in this paper presents a similar derivation of the
bounds for different error distributions. Unlike the work
presented here, [6] is focused on a limited set of scenarios
and does not try to reveal the trend behavior by considering
different network setup scenarios. Our previous work in
[19] also outlines some of the issues presented in this paper,
but does not consider angles at all. In contrast to [19], this
paper presents the details of the bounds derivations,
provides a more detailed evaluation over a larger set of
network scenarios, and also includes a comparison of the
error behavior for both distance and angle measurements.
Furthermore, it provides the detailed CRB derivation for
both cases and explores the trends in error propagation
using carefully selected scenarios to account for the
geometry effects.
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Fig. 6. Normalized RMS node localization error, (RMS error/�) as a function of the number of hops to the nearest beacon node. (a) Using distance-

only measurements, with distance measurement error � ¼ ��. (b) Using angle-only measurements with angle measurement error � ¼ ��.

TABLE 2
Percentage Increase in RMS Location Error with Hop Distance



6 CONCLUSIONS

In this paper, we have developed an analytical method for
examining node location error in multihop networks. The
analytical bounds developed here eliminate the need for
expensive Monte-Carlo simulations. Moreover, the bounds
help in developing and understanding the fundamentals of
multihop node localization. In this paper, we applied the
knowledge of the bounds to study the error trends with
respect to network density, network scaling, percentage of
beacons, andbeaconuncertainty.Our simulation resultshave
shown that location uncertainty decreased rapidly until 6-
10 neighbors/node, thenmore gradually. Distance and angle
measurements exhibit similar trends in localization error
with varying network density. The error when angle-only
measurements are used is much higher than when distance
measurements are used. Furthermore, location error when
angle-only measurements are used increased linearly with

the distance between nodes. We also found that multihop
localization is scalable since error propagation is very slow
and since localization accuracy appears to be insensitive to
increases in the number of beacon nodes. Finally, when the
beacon uncertainty is high, most location error is an overall
translation error of the entire network.Overall, we found that
node localization can be more accurate when using distance
measurements since the bounds predict that it is possible to
obtain location estimates with lower uncertainty than the
uncertainty in the distancemeasurement. The understanding
of the error behavior with respect to the network setup
parameters is also important in practical setups when
evaluating localization systems. By applying this knowledge,
one can determine which part of the error is due to setup
parameters, thus helping to isolate and quantify algorithmic
error and the error contribution due to changes in the
surrounding environments.
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