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Abstract— In this paper we consider the design of planar
arrays that optimize direction-of-arrival (DOA) estimation per-
formance. We assume that the single source DOA is a random
variable with a known prior probability distribution and the
sensors of the array are constrained to lie in a region with
an arbitrary boundary. The Cramér-Rao Bound (CRB) and
the Fisher Information Matrix (FIM) for single source DOA
constitute the basis of the optimality criteria. We relate the design
criteria to a Bayesian CRB criterion and to array beamwidth;
we also derive closed-form expressions for the design criteria
when the DOA prior is uniform on a sector of angles. We show
that optimal arrays have elements on the constraint boundary,
thus providing a reduced dimension iterative solution procedure.
Finally, we present example designs.

Index Terms— array design, planar arrays, direction of arrival
estimation, Cramér-Rao bound

I. Introduction

Direction-of-arrival (DOA) estimation from the outputs of
an array of sensors is an important and well-studied problem
with many applications in radar, sonar, and wireless commu-
nications. A large number of DOA estimation algorithms and
analytical performance bounds have been developed (see,e.g.,
[1]). The DOA estimation performance of an array strongly
depends on the number and locations of the array elements.
In this paper we consider planar array geometry design for
“good” DOA estimation performance.

A number of researchers have considered the design of
arrays to achieve or optimize desired performance goals. Much
of the array design literature is devoted to linear arrays ([2]-
[6]). For planar arrays, performance comparisons of some
common array geometries are given in [7]-[9]. In [10], a mea-
sure of similarity between array response vectors is introduced
and a tight lower bound for this similarity measure is derived.
This bound is suggested as a performance criterion in the
sense that the array with highest bound has best ambiguity
resolution. In [11], differential geometry is used to characterize
the array manifold and an array design framework based on
these parameters is proposed. In [12], a sensor polynomial
is constructed using prespecified performance levels, such as
detection resolution thresholds and CRBs on error variance,
and roots of the polynomial are the sensor locations of the
desired linear or planar array. The Dolph-Chebyshev criterion
is proposed for optimal element positioning in [13]. The
method proposed in [13] minimizes the mainlobe area while
satisfying the prespecified sidelobe levels.
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Most of the above papers consider designs for a single
desired DOA or they implicitly assume that the DOA is equally
likely in all directions. In many applications, including radar,
sonar, and wireless base station design, the DOA of interest
may be constrained to lie in a sector, or may be more likely
in some directions than others. In this paper, we consider
design of optimal planar arrays for such scenarios by modeling
the DOA of the single source as a random variable whose
prior probability distribution function (pdf) characterizes any
prior constraints or arrival angle likelihood. To keep the paper
concise, we present results for planar arrays that estimate
DOA in azimuth angle only. However, the design method and
main results also apply to volume arrays, and to arrays which
estimate the DOA in both azimuth and elevation. In addition,
the results apply to both narrowband and wideband arrays.

We adopt a Bayesian approach and employ the average CRB
and average FIM as design criteria. We relate both the average
FIM and average CRB to the Bayesian CRB (also called the
global CRB). The CRB gives a lower bound on the variance
of any unbiased estimate of a non-random parameter. The
Bayesian CRB is a lower bound on the mean-squared error
of the estimate of a random parameter and is independent of
any particular estimator [14].

Because the array locations are nonlinear functions of the
resulting cost criteria, closed-form solutions are not available
except in a few special cases; thus, we adopt nonlinear function
minimization techniques. We show that the optimal element
locations lie on the boundary of the element constraint region,
so the dimension of the minimization problem can be reduced
from 2m to m, wherem is the number of array elements. In
the case of FIM criterion, the function to be minimized is a
quadratic function of the array elements, so efficient quadratic
optimization procedures can be used.

Both the CRB and FIM are closely related to the mainlobe
width of the array [15], [13], [16]. We show that average FIM
and average CRB can be interpreted as the average mainlobe
width of the array, averaged over the steering angle. Arrays
that have small mainlobe width perform well in moderate or
high SNRs and they have high resolution.

An outline of this paper is as follows: In Section II we
describe the system model, state our assumptions and give
the expression for the CRB on the single source DOA. In
Section III we introduce the performance measures and define
the optimization problems. We discuss that both CRB and FIM
based cost functions can be related to the Bayesian CRB. We
also give the closed form integrals for FIM and CRB based
cost functions when the probability distribution of the DOA is
uniform. In Section IV, we prove that sensors of the both CRB-
optimal and FIM-optimal arrays should lie on the boundary of
the constraint region. We give example optimal array designs
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in Section V. Section VI concludes the paper.

II. System Model and Single Source CRB

We consider an array ofm identical sensors on the(x, y)
plane. Each sensor is located atri = [xi, yi]

T for i ∈ [1, m].
We definera = [xa, ya]T = 1

m

∑m
i=1 ri as the centroid of

these sensors. The array is represented by the2 × m array
location matrix

r = [r1, r2, . . . , rm] =

[
x1 x2 . . . xm

y1 y2 . . . ym

]

(1)

A single, narrowband far field sources(t) centered at fre-
quencyωc = 2π

λ
and coplanar with the array impinges on the

array from directionθ. A set of N snapshots are sampled by
the array, giving them × 1 measurement vectors

x(t) = Aθ(t)s(t) + n(t) t = 1, 2, . . . , N (2)

wheren(t) is them × 1 noise vector,s(t) is a scalar, and

Aθ =
[

ej 2π
λ

d1(θ), ej 2π
λ

d2(θ), . . . , ej 2π
λ

dm(θ)
]T

(3)

wheredk(θ) = uT (θ)·rk

c
is the propagation delay associated

with the kth sensor, c is the speed of propagation, and
u(θ) = [cos(θ), sin(θ)]T is the unit vector pointing towards
the signal source. The noise at the sensors is assumed to be
white Gaussian, and independent of the source signal.

Under the system model described above, the Fisher In-
formation Matrix (FIM) for the DOA estimate from mea-
surements{x(t)}N

t=1 is given by [17], [18] and some simple
algebra:

FIM(r, θ) = G(r, θ) · P (4)

G(r, θ) =
du(θ)

dθ

T

B
du(θ)

dθ
(5)

B =
1

m
(r − rA)(r − rA)T (6)

where P is an SNR term that is independent of the source
DOA θ and of the array geometry, and whererA =
[ra, ra, . . . , ra] is the 2 × m array centroid matrix (see also
[19]). The CRB on the DOA estimate is the inverse of the
FIM given in (4).

For the purpose of array design, the narrowband signal
assumption is not needed. Ifs(t) is wideband, the expression
for the FIM is still given by (4)–(6); only the expression for
P changes (see [18], [16]).

III. Problem Statement and Cost Functions

We are interested in array geometry designs,i.e., the se-
lection of r, that yield good DOA estimation performance.
We assume that the single source DOA is a random variable
characterized by a known prior pdff(θ). We further assume
that the sensor elements are constrained to lie in a closed,
connected regionDΓ ⊂ R

2 which is bounded by a closed
curve Γ. Let D = DΓ × · × DΓ ⊂ R

2×m denote the
constraint region for the array element location matrix; thus,
an admissible array geometry satisfiesr ∈ D.

In determining optimal array designs we adopt a Bayesian
approach and propose two different but related cost functions.

We define a CRB-optimal arrayr
C

as one whose element
locations satisfy:

r
C

= arg min
r∈D

JC(r) (7)

where the CRB cost functionJC(r) is given by:

JC(r) = Eθ {CRB(r, θ)} =

∫ π

−π

CRB(r, θ)f(θ)dθ

=

∫ π

−π

1

FIM(r, θ)
f(θ)dθ (8)

Similarly, we define the FIM-optimal arrayr
F

by:

r
F

= arg max
r∈D

JF (r) (9)

JF (r) = Eθ {FIM(r, θ)} =

∫ π

−π

FIM(r, θ)f(θ)dθ (10)

In general,r
C

6= r
F

because of the integrations in (8) and
(10).

The FIM cost criterion is a quadratic function of the array
locations. From equations (4) and (10), we have

JF (r) = P · tr

{
1

m
(r − rA)T K(r − rA)

}

(11)

K =

∫ π

−π

du(θ)

dθ

du(θ)

dθ

T

f(θ) dθ (12)

which is quadratic inr. Quadratic optimization functions
are useful because they lead to closed-form solutions for
certain array boundaries, and they permit the use of efficient
quadratic programming techniques for iteratively solving (9)
when closed-form solutions are not available.

A. Relationship to Bayesian CRB

The cost functionsJC(r) and JF (r) can be related to the
Bayesian CRB as we show below. The Bayesian CRB has
been proposed for random parameter estimation and is a lower
bound on the mean-squared error of the estimated parameter
(see [14]). The Bayesian CRB is a global bound that includes
thea priori DOA information encoded in the prior probability
distribution function.

For our problem the Bayesian CRB on the DOA angleθ,
denotedBCRB(r, θ), is given by

BCRB(r, θ) = [JF (r) + IΘ]−1 (13)

whereJF (r) is given in equation (10) and

IΘ = Eθ

{
∂2 ln f(θ)

∂θ2

}

(14)

is the Fisher information of the prior. SinceIΘ is independent
of array geometry, the FIM-optimal arrayrF also minimizes
the Bayesian CRB on the DOA angle. The Bayesian CRB can
also be related toJC(r). Since(·)−1 is a convex function for
positive arguments, by Jensen’s inequality it follows that

1

Eθ {FIM(r, θ)} ≤ Eθ

{
1

FIM(r, θ)

}

(15)
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Combining (13) and (15) gives the following relation:

BCRB(r, θ) =
1

JF (r) + IΘ
≤ 1

JF (r)
≤ JC(r) (16)

The Bayesian CRB is thus bounded above by the CRB cost
function and the CRB-optimal arrayrC minimizes that bound.

In [20] it is shown that the Bayesian CRB is unrealistically
low for uniform distributions onθ since the termIΘ tends
to infinity for uniform distributions. The FIM-optimal array
design above minimizes the Bayesian CRB, but removes the
term in the Bayesian CRB that tends to infinity and that is
anyway independent of the array element locations; similar
comments apply toJC(r). Thus, the functionsJC(r) and
JF (r) appear to be better suited than the Bayesian CRB for
array design in scenarios where the DOA angle has uniform
distribution.

The FIM and CRB are derived using a small perturbation
analysis. The resulting bounds are tight bounds for maximum
likelihood estimates of DOA for high SNR, but they are
typically not tight bounds at low SNR, mainly because they do
not take into account the effects of high sidelobes or ambiguity
directions in the array beampattern. Other possible bounds for
random parameter estimation are the Ziv-Zakai lower bound
(ZZLB) and the Weiss-Weinstein lower bound (WWLB) [20],
[15], [21]. A design framework based on WWLB is presented
for linear arrays in [22]. Although the ZZLB and WWLB
provide tighter and more realistic bounds (especially at low
SNRs) they are computationally intensive to determine. When
optimizing for a single DOA, the computational expense may
be acceptable, but when the optimization criterion contains
a range of DOAs as in (8) or (10), the computation of the
ZZLB becomes significant. For most cases, minimizing (8) (or
maximizing (10)) involves an iterative search forr. With the
FIM criterion, the integral in (12) is evaluated once, whereas
with the CRB criterion, the integral in (8) must be evaluated at
each iteration onr. Both integrals are computationally simple.
In contrast, the ZZLB involves computing an integral forevery
θ in the support off(θ) and at each iteration onr; this
is a significant increase the required computational load. An
approximate closed-form expression for the ZZLB is derived
in [15], but the approximation assumes that the array geometry
is such that sidelobes of the beampattern are not significant,
which is precisely the assumption we would attempt to avoid
in replacingFIM(r, θ) with a different bound. Thus, to keep
computation tractable while maintaining a criterion that is
based on a bound that is tight above a threshold SNR, we
adopt the FIM and CRB criteria.

B. Relationship to Beamwidth

The beamwidth of the mainlobe for a delay-and-sum beam-
former is proportional with the square root of the CRB
(with the asymptotic standard deviation). Using the second
order Taylor series approximation of the array gain around
the steering angleθ0, one can approximate the half-power
beamwidth of the array asλ0

2π

√
1

G(B,θ0)
[19], [15], [16]. The

CRB cost function can thus be thought of as the average
beamwidth of the array (averaged over steering angle) and the

CRB-optimal array gives the minimum average beamwidth.
For high SNRs, the mainlobe width is a good indicator of the
DOA estimation performance and resolution of the array.

C. Cost Functions for Uniform Prior Distributions

It is possible to obtain closed form expressions for the
integrals in the cost functionsJC(r) and JF (r) when the
DOA to be estimated has uniform probability distribution over
a subset of[−π, π]. Such a special case is useful in many
practical scenarios. For example, when no prior knowledge
is available about the DOA, one typically assumesf(θ) is
uniformly distributed on[−π, π]. In addition, for arrays that
monitor a certain sector of angles, the prior DOA pdf may be
chosen as uniformly distributed in that sector.

Assume f(θ) is uniformly distributed in the interval
[θ1, θ2] ⊂ [−π, π] with θ1 < θ2. By suitably rotating the
element constraint region, we can without loss of generality
takeθ1 = − θ0

2 andθ2 = θ0

2 .
The array geometry dependent termG(r, θ) in the CRB

can be written as a function of the eigenvaluesλi and entries
Bij of the array covariance matrix B given in equation (6). Let
λ1 ≥ λ2 be the eigenvalues of B. A straightforward calculation
gives:

G(r, θ) = a − b cos(2θ − α) (17)

a =
B11 + B22

2
= 1

2 (λ1 + λ2) (18)

b =

√
(

B11 − B22

2

)2

+ B2
12 = 1

2 (λ1 − λ2) (19)

α = tan−1

(
B11 − B22

2B12

)

(20)

When f(θ) is uniform over [− θ0

2 , θ0

2 ], the FIM and CRB
cost functions are given by:

JF (r) = a − b cos α
sin θ0

θ0
(21)

JC(r) =
1

θ0

1√
λ1λ2

[

tan−1

(√

λ1

λ2
tan

(
θ0−α

2

)

)

+ tan−1

(√

λ1

λ2
tan

(
θ0+α

2

)

)]

(22)

Note that forθ0 = π (that is,f(θ) is uniformly distributed on
[−π, π)) then

JF (r) =
1

2
(λ1 + λ2) = a (23)

JC(r) =
1√

λ1λ2

=
1√

a2 − b2
(24)

The term a = 1
2 tr(B) can be interpreted as an average

aperture size, and increases as the sensors are moved away
from the origin. The termb can be interpreted as an isotropy
term — the array has constant CRB performance for all
angles if and only ifb = 0 (see [16]), and larger values
of b correspond to larger changes in CRB performance as
a function of DOA θ. Thus, we see that the FIM criterion
attempts to maximize the average aperture, whereas the CRB
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criterion also tends to favor isotropic arrays. These properties
are seen in the examples in Section V.

IV. Boundary Result

For general boundaries or prior pdfs, it is not possible to find
an analytic solution for either of the optimization problems in
(8) or (10), so iterative optimization procedures are employed.
The optimal solution is found as a2m-dimensional search for
element locations{xi, yi}m

i=1. In this section we show that
optimal solutions have all array elements on the boundary of
the constraint region. If the constraint regionDΓ is convex,
this boundary result is a direct consequence from optimization
theory sinceG(r, θ) is a convex function inR

2m. In this
section we show that for the optimal array all elements are
on the boundary even for nonconvex constraint regions.

The boundary result not only reduces the search dimension
from 2m to m, but provides a convenient ordering of elements
along the boundary to eliminate the nonuniqueness of solution
corresponding to interchanging element locations of two or
more elements. In particular, by parameterizing the boundary
Γ as Γ(t) for t ∈ [0, 1] and correspondingly parameterizing
each array element locationri as a point byr(ti) on the
boundary, we reduce the search space to the compact subset
[t1, . . . , tm]T ∈ R

m with 0 < t1 < · · · < tm ≤ 1.
To establish the boundary result, we first show that moving a

sensor away from the array centroid increases the termG(r, θ)
that appears in the CRB. We note thatG(r, θ) is invariant to
translation of the entire array (see (5) and (6)), we will without
loss of generality assumerA = 0.

Lemma 1: Assume thatr is the array location matrix of an
m element array centered at the origin. Consider another array
r̃ formed by moving thejth sensor, away from the origin:

r̃ = [r1, r2, . . . , (1 + β)rj , rj+1, . . . , rm] (25)

whereβ > 0. Then

G(r̃, θ) > G(r, θ) for θ ∈ [−π, π) − {γ, γ + π}
G(r̃, θ) = G(r, θ) for θ ∈ {γ, γ + π}

whereγ = tan−1
(

yj

xj

)

.

Proof: For r̃ in (25), the array centroid is̃ra = β
m

rj

and the corresponding centroid matrix isr̃A = β
m

[rj , . . . , rj ].
Then

G(r̃, θ) =
∂uT

∂θ
(r̃ − r̃A)(r − r̃A)T ∂u

∂θ

=
∂uT

∂θ

(

rr
T +

(

2β +
m − 1

m
β2

)

rjr
T
j

−βrj

1

N

m∑

k=1

rk

)
∂u

∂θ

= G(r, θ) +

(

2β +
m − 1

m
β2

)
∂uT

∂θ
rjr

T
j

∂u

∂θ
︸ ︷︷ ︸

ζ(θ)

Sinceβ > 0, ζ(θ) ≥ 0 and is equal to zero only when∂u
∂θ

⊥
rj , or, equivalently, whenθ = γ or θ = γ + π.

When a sensor is moved away from the array centroid, the
term G(r, θ) strictly increases except at two DOA angles.
As long asf(θ) has support region greater than just these
two angles, the optimization criteriaJC(r) and JF (r) will
strictly increase. Thus, optimal arrays have all elements on
the boundary of the constraint region. The following theorem
establishes this result.

Theorem 1: Assume the prior pdff(θ) has support on a set
of nonzero measure. Then elements of the FIM-optimal and
CRB-optimal arraysr

F
and r

C
lie on the design constraint

boundaryΓ.
Proof: We will prove Theorem 1 usingJC(r); the proof

for JF (r) is nearly identical. Letr = [r1, . . . , rm] be the array
location matrix of an optimal array, sor is a solution to (7).
Assume without loss of generality that the centroid of this
array is at the origin.

Assume that sensorrj (for some1 ≤ j ≤ m) is not on the
boundaryΓ. Then there is a neighborhood aroundrj that lies
in DΓ. Consider another array with element locations given
by r̃ in (25) whereβ > 0 is chosen such that̃rj ∈ DΓ. By
Lemma 1,

JC(r̃) =

∫ π

−π

P−1G(r̃, θ)−1f(θ)dθ < JC(r)

which contradicts the statement thatr minimizes JC(r) in
(7). Thus, every optimal array must have all elements on the
boundaryΓ.
From the discussion above Theorem 1, the assumption that the
pdf f(θ) has support of nonzero measure can be replaced by
the (weaker) assumption thatf(θ) has nonzero measure on a
set of greater than two points.

Theorem 1 provides a qualitative explanation for array
geometries designed according to the criteria proposed in [13]
and [6]. The aim in [13] is to find the array that minimize
the mainlobe area while satisfying a sidelobe constraint. In
[13] it is noted that optimal designs have most elements
either on or near the constraint boundary. Without the sidelobe
level constraint, minimizing the mainlobe width corresponds
to minimizing the CRB criterion, because the single source
CRB is directly related to mainlobe width (see,e.g., [19],
[15], [16]); by Theorem 1, all array elements would be on
the boundary in this case. Apparently, the sidelobe constraint
does not significantly alter the array placement. In [6], an ML
estimator (which asymptotically achieves the CRB) is used to
estimate the DOAs and the optimal nonuniformlinear array
is designed by minimizing the variance of the DOA estimates.
Since the CRB describes the asymptotic ML performance, we
expect elements to lie on the boundary in this case as well.

V. Examples

We present two examples of arrays designed using the cost
functions JC(r) and JF (r). First, consider an example in
which the sensors are constrained to lie in a disk of radius
R0. By Theorem 1, all elements of the optimal array satisfy
|ri| = R0. For the cases in which eitherf(θ) is a uniform
distribution over[0, π] or [−π, π), it can be shown that every
solution for r

C
and r

F
is an isotropic array. Isotropic arrays



OKTEL AND MOSES: BAYESIAN ARRAY DESIGN (T-SP-01274-2003.R1) 5

18070180

θ

4x

x

70

f(θ)

(a)
ο

ο0

90

α=78

αβ

β=45
0

90ο

ο

(b) (c)

Fig. 1. An example array geometry design when the boundary of the
constraint region is a circle. (a) The pdf,f(θ), of the single source DOA, (b)
5-element FIM-optimal array, (c) 5-element CRB-optimal array,α = 78◦,
β = 45◦.

are studied in [16]; a planar isotropic array is one whose single
source CRB is independent of the arrival angleθ.

If the prior DOA pdf is not uniform as above, then the
optimal array is no longer isotropic. As an example, consider
the circular constraint region as above along with a DOA pdf
shown in Figure 1(a). The pdf represents a scenario where the
signal can be impinging on the array from any direction but
it is expected primarily from a particular sector. Figure 1(b)
shows the resulting 5-element FIM-optimal array (which is
also the Bayesian CRB-optimal array); note that all elements
cluster at the top and bottom, to give the widest aperture for
signals arriving around0◦. This is similar to the optimum
linear array design, in which half of the array elements are
clustered at each end of the constraint line segment [23].
The CRB-optimal array geometry, in Figure 1(c) has elements
spread around the boundary. While the CRB-optimal array is
not isotropic (an isotropic array has equally-spaced elements),
it is nearly so, but has lower beamwidths for arrival angles
close to 0◦ and 180◦. These observations agree with the
maximum aperture character of FIM-optimal arrays and the
aperture-and-isotropic character of CRB-optimal arrays as
discussed at the end of Section III.C. In addition, the CRB-
optimal array designs generally have lower sidelobe levels than
do FIM-optimal designs. For these reasons, the CRB-optimal
designs are preferable in most applications.

VI. Conclusions

We have considered optimal planar array designs using the
average CRB and average FIM as performance criteria. Prior
information on the source DOA is encoded as a prior proba-
bility density function; this allowed us to address applications
in which not all directions are equally likely. Closed form

expressions for the optimization criteriaJC(r) andJF (r) were
derived when DOA prior is uniform on a sector of angles.

We showed that sensors of both CRB-optimal and FIM-
optimal arrays lie on the boundary of the array constraint
region, even when that region is not convex. As a result, the
dimension of the design optimization is reduced from2m to
m.

We also related the two proposed optimization criteria to the
Bayesian CRB and to average array beamwidth. We showed
that the FIM-optimal array also minimizes the Bayesian CRB,
and the CRB-optimal criterion bounds the Bayesian CRB. The
boundary result, in conjunction with expressions relating the
CRB to the array beamwidth, provided geometric interpreta-
tion of the optimality criteria and the resulting array designs.

Because the CRB is a realistic bound for moderate to high
SNRs and can be optimistic for low values of SNR, the
design criteria we consider apply to moderate or high SNR
applications. In [20] it is shown that the WWLB and ZZLB
provides tighter bounds than the BCRB and they converge
to the BCRB above a threshold SNR. However, the use of
the WWLB or ZZLB increases the computational cost of
the approach substantially. In practice our geometry designs
should perform well for SNRs that are above this threshold
SNR. For lower SNR applications, it may be interest to design
arrays with low sidelobe levels. The methods presented in this
paper are based on the FIM and CRB, whose properties relate
to mainlobe width but not sidelobe level. The CRB-based
designs tend to have lower sidelobe levels than the FIM-based
designs, and are therefore preferable in most applications. If
low sidelobe level is an additional design requirement, the
FIM and CRB criteria may be combined or augmented with
other criteria or constraints, such as those in [10], [13], to
obtain desired sidelobe performance; alternately, a ZZLB- or
WWLB-based criterion can be used.

Although we have focused on design of planar arrays that
estimate azimuth DOA, the methods apply to other scenarios
as well. The design method applies to volume arrays, to DOA
angles in azimuth and elevation, and to both narrowband and
wideband arrays. The design procedure follows because in all
of these cases the expression for the Fisher information matrix
can be partitioned as in equations (4)–(6), whereP is a scalar
andG(r, θ) contains the array geometry terms.
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[16] Ü. Baysal and R. L. Moses, “On the geometry of isotropic arrays,”IEEE
Transactions on Signal Processing, vol. 51, pp. 1469–1478, June 2003.

[17] A. J. Weiss and B. Friedlander, “On the Cramér-Rao bound for direction
finding of correlated signals,”IEEE Transactions on Signal Processing,
vol. 41, pp. 495–499, 1993.

[18] M. A. Doron and E. Doron, “Wavefield modeling and array process-
ing. iii. resolution capacity,”IEEE Transactions on Signal Processing,
vol. 42, pp. 2571–2580, October 1994.

[19] H. Messer, “Source localization performance and the array beampattern,”
Signal Processing, vol. 28, pp. 163–181, August 1992.

[20] H. Nguyen and H. L. Van Trees, “Comparison of performance bounds
for DOA estimation,” inIEEE Seventh SP Workshop on Statistical Signal
and Array Processing, (Quebec City, Canada), pp. 313–316, 1994.

[21] K. L. Bell, Y. Steinberg, Y. Ephraim, and H. L. Van Trees
[22] F. Athley, “Optimization of element positions for direction finding with

sparse arrays,” inProceedings of the 11th IEEE Signal Statistical Signal
Processing Workshop on Statistical Signal Processing, (Singapore),
pp. 516–519, 2001.

[23] V. H. MacDonald and P. M. Schultheiss, “Optimum passive bearing
estimation in a spatially incoherent noise environment,”Journal of the
Acoustical Society of America, vol. 46, pp. 37–43, 1969.


