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A Bayesian Approach to Array Geometry Design

Ulkii Oktel and Randolph L. MoseSenior Member, |EEE

Abstract—In this paper we consider the design of planar Most of the above papers consider designs for a single
arrays that optimize direction-of-arrival (DOA) estimation per-  desired DOA or they implicitly assume that the DOA is equally
formance. We assume that the single source DOA is a random |a|y in all directions. In many applications, including radar,

variable with a known prior probability distribution and the . . . .
sensors of the array are constrained to lie in a region with SONar and wireless base station design, the DOA of interest

an arbitrary boundary. The Cramér-Rao Bound (CRB) and May be constrained to lie in a sector, or may be more likely
the Fisher Information Matrix (FIM) for single source DOA in some directions than others. In this paper, we consider
constitute the basis of the optimality criteria. We relate the design design of optimal planar arrays for such scenarios by modeling
criteria to a Bayesian CRB criterion and to array beamwidth; the DOA of the single source as a random variable whose

we also derive closed-form expressions for the design criteria _ . o oS - .
when the DOA prior is uniform on a sector of angles. We show Prior probability distribution function (pdf) characterizes any

that optimal arrays have elements on the constraint boundary, Prior constraints or arrival angle likelihood. To keep the paper
thus providing a reduced dimension iterative solution procedure. concise, we present results for planar arrays that estimate

Finally, we present example designs. DOA in azimuth angle only. However, the design method and
Index Terms— array design, planar arrays, direction of arrival ~Main results also apply to volume arrays, and to arrays which
estimation, Cramér-Rao bound estimate the DOA in both azimuth and elevation. In addition,

the results apply to both narrowband and wideband arrays.
) We adopt a Bayesian approach and employ the average CRB
I Introduction and average FIM as design criteria. We relate both the average
Direction-of-arrival (DOA) estimation from the outputs ofr'M and average CRB to the Bayesian CRB (also called the
an array of sensors is an important and well-studied problgpbal CRB). The CRB gives a lower bound on the variance
with many applications in radar, sonar, and wireless commgt any unbiased estimate of a non-random parameter. The
nications. A large number of DOA estimation algorithms angayesian CRB is a lower bound on the mean-squared error
analytical performance bounds have been developedésge, of the e;timate of a random parameter and is independent of
[1]). The DOA estimation performance of an array strongl§ny Particular estimator [14].
depends on the number and locations of the array elementd3ecause the array locations are nonlinear functions of the
In this paper we consider planar array geometry design fgysulting cost criteria, closed-form solutions are not available
“good” DOA estimation performance. except in a few special cases; thus, we adopt nonlinear function
A number of researchers have considered the design@flimization techniques. We show that the optimal element
arrays to achieve or optimize desired performance goals. MU@g2tions lie on the boundary of the element constraint region,
of the array design literature is devoted to linear arrays ([23° the dimension of the minimization problem can be reduced
[6]). For planar arrays, performance comparisons of sorff@M 2m t0 m, wherem is the number of array elements. In
common array geometries are given in [7]-[9]. In [10], a medbe case of FIM criterion, the function to be mmlmlzed is a
sure of similarity between array response vectors is introducggdratic function of the array elements, so efficient quadratic
and a tight lower bound for this similarity measure is derive@Ptimization procedures can be used. _
This bound is suggested as a performance criterion in theBOth the CRB and FIM are closely related to the mainlobe
sense that the array with highest bound has best ambigUififith of the array [15], [13], [16]. We show that average FIM
resolution. In [11], differential geometry is used to characteriZ8'd average CRB can be interpreted as the average mainlobe
the array manifold and an array design framework based Wiflth of the array, averaged over the steering angle. Arrays
these parameters is proposed. In [12], a sensor polynon{mt have small mainlobe W|_dth perform well in moderate or
is constructed using prespecified performance levels, suchih SNRs and they have high resolution. .
detection resolution thresholds and CRBs on error varianceAN outline of this paper is as follows: In Section Il we
and roots of the polynomial are the sensor locations of t§€scribe the system model, state our assumptions and give

desired linear or planar array. The Dolph-Chebyshev criteridi€ expression for the CRB on the single source DOA. In
is proposed for optimal element positioning in [13]. Theection Ill we introduce the performance measures and define

method proposed in [13] minimizes the mainlobe area whitge optimization problems. We discuss that both CRB and FIM
satisfying the prespecified sidelobe levels. based cost functions can be related to the Bayesian CRB. We

also give the closed form integrals for FIM and CRB based
U. Oktel is with Aselsan, Inc., Ankara 06370, Turkey (e-mail: uoktelasec0st functions when the probability distribution of the DOA is

san.comt). _ uniform. In Section IV, we prove that sensors of the both CRB-
R. L. Moses is with the Department of Electrical and Computer Engi-

neering, The Ohio State University, Columbus, OH 43210 USA (e-mafPPtimal and_ FIM'thimal arrays should lie on the boundary of
randy@ece.osu.edu). the constraint region. We give example optimal array designs
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in Section V. Section VI concludes the paper. We define a CRB-optimal array- as one whose element
locations satisfy:
1. SystemMdel and Si ngl e Sour ce CRB

We consider an array oh identical sensors on ther, y)
plane. Each sensor is locatedrat= [z;, y;]T for i € [1,m)].
We definer, = (4,7, = L7, r; as the centroid of
these sensors. The array is represented by2them array
location matrix

rc = argmin.Jo (r) (7)
where the CRB cost functioti-(r) is given by:

Jo(r) = By {CRB(,0)} = | CRB(x,0)7(9)d0

T1 T ... Tm 4 1 -
v Y2 - ym} @ - FIM(g,Q)f (6)df ®

A single, narrowband far field sourcet) centered at fre- Similarly, we define the FIM-optimal array; by:
quencyw, = 2* and coplanar with the array impinges on the

r= [T17T27-'~7T771] == |:

array from directiord. A set of N snapshots are sampled by rp = argmax Jp(r) 9)
the array, giving then x 1 measurement vectors N
x(t) = Ag(t)s(t) +n(t) t=1,2,...,N 2 Jp(r) = Eg {FIM(xr,0)} = / FIM(x,0)f(6)dd (10)

wheren(t) is them x 1 noise vectors(t) is a scalar, and ) ) )
®) s(t) In general,r # rp because of the integrations in (8) and

Ay = [ei00) %o i%d.]" (g (10).
The FIM cost criterion is a quadratic function of the array
where dj,(0) = @ is the propagation delay associatedPcations. From equations (4) and (10), we have

with the k" sensor,c is the speed of propagation, and 1

u(f) = [cos(0), sin(h))T is the unit vector pointing towards Jr(r) = P-tr {m(r—rA)TK(r— I”A)} (11)

the signal source. The noise at the sensors is assumed to be - T

white Gaussian, and independent of the source signal. K = / du(0) du(0) £(6) do (12)
Under the system model described above, the Fisher In- —x dodo

formation MatrixN(F.IM).for the DOA estimate from mea-yhich is quadratic inr. Quadratic optimization functions
surements{z(¢)};=, is given by [17], [18] and some simple 5re yseful because they lead to closed-form solutions for

algebra: certain array boundaries, and they permit the use of efficient
FIM(x,0) = G(r,0) P 4 guadratic programming techniques for iteratively solving (9)
T when closed-form solutions are not available.
Gr.0) — du(6) Bdu(@) 5)
= - df de
1 A. Relationship to Bayesian CRB
B = —(r—ry)r-ry)" (6) p 1o =Y

The cost functions/c(r) and Jz(r) can be related to the
where P is an SNR term that is independent of the SOur@gayesian CRB as we show below. The Bayesian CRB has
DOA ¢ and of the array geometry, and where, = peen proposed for random parameter estimation and is a lower
[PasTas- .- 7a] IS the2 x m array centroid matrix (see alsopound on the mean-squared error of the estimated parameter
[19]). The CRB on the DOA estimate is the inverse of thgsee [14]). The Bayesian CRB is a global bound that includes
FIM given in (4). thea priori DOA information encoded in the prior probability
For the purpose of array design, the narrowband signg@ktribution function.
assumption is not needed. df¢) is wideband, the expression Fqor our problem the Bayesian CRB on the DOA anle
for the FIM is still given by (4)—(6); only the expression fordenotedBCRB(g, 6), is given by
P changes (see [18], [16]).
BCRB(x,0) = [Jr(r) + Ie] ! (13)
I11. Probl emStatenment and Cost Functi ons

) ) . where Jz(r) is given in equation (10) and
We are interested in array geometry designs, the se-
lection of r, that yield good DOA estimation performance. 9%In £(0)
We assume that the single source DOA is a random variable 00?
characterized by a known prior pg‘f(e).'We furth.er.assume is the Fisher information of the prior. Sindg is independent
that the sensor elements are constrained to lie in a close

. . Of array geometry, the FIM-optimal array. also minimizes
connected regionDr C R? which is bounded by a closed ; .
cuve I. Let D = Dp x - x Dr C R®™ denote the the Bayesian CRB on the DOA angle. The Bayesian CRB can

; ; . ... also be related tdc(r). Since(-)~! is a convex function for
constraint region for the array element location matrix; thus, ... - o
- L pobsitive arguments, by Jensen’s inequality it follows that
an admissible array geometry satisfies D.
In determining optimal array designs we adopt a Bayesian 1

1
approach and propose two different but related cost functions. Eo {FIM(r,0)} < By {FIM(L 0) } (15)

Io = Ey { (14)
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Combining (13) and (15) gives the following relation: CRB-optimal array gives the minimum average beamwidth.
1 1 For high SNRs, the mainlobe width is a good indicator of the
BCRB(r,0) = < < Jo(r) (16) DOA estimation performance and resolution of the array.
Jr(r) +Io = Jr(x)

The Bayesian CRB is thus bounded above by the CRB C(Et
function and the CRB-optimal array, minimizes that bound. ~ i ) ]
In [20] it is shown that the Bayesian CRB is unrealistically 't IS possible to obtain closed form expressions for the
low for uniform distributions ord since the termle tends Nteégrals in the cost funct|o_nsTc(§) and _JF@_) when the
to infinity for uniform distributions. The FIM-optimal array POA to be estimated has uniform probability distribution over
design above minimizes the Bayesian CRB, but removes fhesubset of—m, 7]. Such a special case is useful in many
term in the Bayesian CRB that tends to infinity and that gractical scenarios. For example, when no prior knowledge
anyway independent of the array element locations; simili§r available about the DOA, one typically assumg¥) is
comments apply toJo(r). Thus, the functions/c(r) and umfo_rmly dlstrlt_)uted on[—m,x]. In addltlo_n, for arrays that
Jr(r) appear to be better suited than the Bayesian CRB fgjonitor a certain sector of angles, the prior DOA pdf may be
array design in scenarios where the DOA angle has unifofH0S€n as uniformly distributed in that sector. _
distribution. Assume f(¢) is uniformly distributed in the interval
The FIM and CRB are derived using a small perturbatioff1-¢2] C [=7, 7] with 6, < 6>. By suitably rotating the
analysis. The resulting bounds are tight bounds for maximupEment cor;stramt region, we can without loss of generality
likelihood estimates of DOA for high SNR, but they ard@k€f = —3 andé, = 3. _
typically not tight bounds at low SNR, mainly because they do 1"€ array geometry dependent terif(r,0) in the CRB
not take into account the effects of high sidelobes or ambigufgun be written as a function of the eigenvalugsand entries
directions in the array beampattern. Other possible bounds fow ©f the array covariance matrix B given in equation (6). Let
random parameter estimation are the Ziv-Zakai lower bouﬁ‘(j > Ao be the eigenvalues of B. A straightforward calculation
(ZZLB) and the Weiss-Weinstein lower bound (WWLB) [20]9/V€S:
[15],. [21]. A design framework based on WWLB is presented G(r,0) = a — bcos(20 — ) (17)
for linear arrays in [22]. Although the ZZLB and WWLB

Cost Functions for Uniform Prior Distributions

o - ! By + B
provide tighter and more realistic bounds (especially at low a= % =1+ M) (18)
SNRs) they are computationally intensive to determine. When
optimizing for a single DOA, the computational expense may b— \/(Bu — Bas

2
2 _ 1

be acceptable, but when the optimization criterion contains 2 ) + Bz =5 =) (19)
a range of DOAs as in (8) or (10), the computation of the _, (B — By
ZZ1 B becomes significant. For most cases, minimizing (8) (or o = tan (2312>
maximizing (10)) involves an iterative search ftarWith the
FIM criterion, the integral in (12) is evaluated once, whereas When f(6) is uniform over[—% %], the FIM and CRB
with the CRB criterion, the integral in (8) must be evaluated &pst functions are given by:

(20)

each iteration omr. Both integrals are computationally simple. sin

In contrast, the ZZLB involves computing an integral évery Jr(r) = a—bcosa (21)
6 in the support of f(§) and at each iteration om; this 0

is a significant increase the required computational load. An j.(r) = L1 {tanl \/Tltan (90;a)
approximate closed-form expression for the ZZLB is derived 00 VA1 2 Az

in [15], but the approximation assumes that the array geometry b\

is such that sidelobes of the beampattern are not significant, +tan~! (\/;tan (%*“)N (22)
which is precisely the assumption we would attempt to avoid 2

in replacingF'IM (r, ¢) with a different bound. Thus, to keepNote that ford, =  (that is, f(6) is uniformly distributed on
computation tractable while maintaining a criterion that is_7 7)) then

based on a bound that is tight above a threshold SNR, we

adopt the FIM and CRB criteria. Jrp(r) = %()\1 +X)=a (23)
1 1
B. Relationship to Beamwidth Jolr) = e Va2 (24)

The beamwidth of the mainlobe for a delay-and-sum beafpe termq — Ltr(B) can be interpreted as an average

former is proportional with the square root of the CRByperture size, and increases as the sensors are moved away
(with the asymptotic standard deviation). Using the secoRgm the origin. The ternb can be interpreted as an isotropy
order Taylor series approximation of the array gain arouRgyy, — the array has constant CRB performance for all
the steering anglé,, one can approximate the half—powerang|es if and only ifb = 0 (see [16]), and larger values
beamwidth of the array a8,/ 5547 [19], [15], [16]. The of b correspond to larger changes in CRB performance as
CRB cost function can thus be thought of as the averagefunction of DOA#. Thus, we see that the FIM criterion
beamwidth of the array (averaged over steering angle) and #teempts to maximize the average aperture, whereas the CRB
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criterion also tends to favor isotropic arrays. These propertiesWhen a sensor is moved away from the array centroid, the
are seen in the examples in Section V. term G(r,d) strictly increases except at two DOA angles.
As long as f(0) has support region greater than just these
two angles, the optimization criterid:(r) and Jg(r) will
strictly increase. Thus, optimal arrays have all elements on

For general boundaries or prior pdfs, itis not possible to finfle boundary of the constraint region. The following theorem
an analytic solution for either of the optimization problems igstaplishes this result.
(8) or (10), so iterative optimization procedures are employed.Theorem 1: Assume the prior pdf (6) has support on a set
The optimal solution is found asZn-dimensional search for ot nonzero measure. Then elements of the FIM-optimal and
element locations{z;, y;};",. In this section we show that cRB.optimal arraysr, andr lie on the design constraint
optimal solutions have all array elements on the boundary l%undaryl“.
the constraint region. If the constraint regi@h- is convex, Proof: We will prove Theorem 1 usingc (r); the proof
this bouqdary result i_s a direct consequence from optimi.zati@cg} Jr(r) is nearly identical. Let = [r, . .. ,rm]ibe the array
theory sinceGi(r,6) is a convex function inR>™. In this |5cation matrix of an optimal array, seis a solution to (7).
section we show that for the optimal array all elements ai&syme without loss of generality that the centroid of this
on the boundary even for nonconvex constraint regions. array is at the origin.

The boundary result not only reduces the search dimensiomssyme that sensor; (for somel < j < m) is not on the
from 2m to m, but provides a convenient ordering of eleme”tﬁoundaryl“. Then there is a neighbo_rhoad aroungthat lies
along the boundary to eliminate the nonuniqueness of solutiQpDF_ Consider another array with element locations given

corresponding to interchanging element locations of two 8y & in (25) whereg > 0 is chosen such that; € Dr. By
more elements. In particular, by parameterizing the boundgr¥mma 1

I asT(¢) for t € [0,1] and correspondingly parameterizing .
each array element locatioy as a point byr(¢;) on the Jo(F) = P7LG(E,0)" f(0)d0 < Jo(r)
boundary, we reduce the search space to the compact subset - —r a a

T mo\wi . . L.
(1, ] . €R™ with 0 < t; < < t_m = L . which contradicts the statement thatminimizes Jo(r) in
To establish the boundary result, we first show that movmg(:71)_ Thus, every optimal array must have all elements on the

sensor away from the array centroid increases the &fme) boundaryl .
that appears in the ?RB- We note thafr, ) is mvarlgnt .to From the discussion above Theorem 1, the assumption that the
translation of the entire array (see (5) and (6)), we will wﬂhmﬂdf £(6) has support of nonzero measure can be replaced by

IosLs of ge?.e’rfhty assuhrrpA. :r?' | . i of the (weaker) assumption th#fd) has nonzero measure on a
emma 1: Assume that is the array location matrix of an gg4 ¢ greater than two points.

m element array centered at the origin. Consider another armayrpaorem 1 provides a qualitative explanation for array

 formed by moving thej'" sensor, away from the origin: geometries designed according to the criteria proposed in [13]

(25) and [6]. The aim in [13] is to find the array that minimize
the mainlobe area while satisfying a sidelobe constraint. In
wheres > 0. Then [13] it is noted that optimal designs have most elements
either on or near the constraint boundary. Without the sidelobe

| V. Boundary Result

T=[ri,ra, ..., (L+B)rj st s Tl

G(E0) > G(r,0) forfel-mm)—{y,y+m} level constraint, minimizing the mainlobe width corresponds
G(,0) = G(x,0) forde{y,y+r} to minimizing the CRB criterion, because the single source
, CRB is directly related to mainlobe width (seeg., [19],
wherey = tan™" (&%) [15], [16]); by Theorem 1, all array elements would be on
Proof: For t in (25), the array centroid i, = %rj the boundary in this case. Apparently, the sidelobe constraint
and the corresponding centroid matrixrig = %[rj, ...,r;]. does not significantly alter the array placement. In [6], an ML
Then estimator (which asymptotically achieves the CRB) is used to
oul ou estimate the DOAs and the optimal nonunifolimear array
G(&,0) = W(i —T,y)(r— iA)T% is designed by minimizing the variance of the DOA estimates.
T Since the CRB describes the asymptotic ML performance, we
- % (rrT + (25 + ”‘_152> Tjro expect elements to lie on the boundary in this case as well.
m
_5r.1§:r>&‘ V. Exanpl es
IN £ ) 96
k=1

. We present two examples of arrays designed using the cost
_ G0+ (254- m — 1ﬂ2) %Tﬂr@ fun.ctlons Jo(r) and Jg(r). F|r§t, consu.ier. an example in
09 7 06 which the sensors are constrained to lie in a disk of radius
Ry. By Theorem 1, all elements of the optimal array satisfy
|ri| = Ro. For the cases in which eithef(#) is a uniform
Since > 0, ¢(f) > 0 and is equal to zero only wheg% L distribution over[0, 7] or [, ), it can be shown that every
rj, or, equivalently, wherd = v or 0 = v + 7. B solution forrs andrg is an isotropic array. Isotropic arrays

40)]
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1) expressions for the optimization critetig(r) and.Jp(r) were
derived when DOA prior is uniform on a sector of angles.
We showed that sensors of both CRB-optimal and FIM-
Ax optimal arrays lie on the boundary of the array constraint
region, even when that region is not convex. As a result, the

’— """""" IX—‘ 9 dimension of the design optimization is reduced frém to

180 70 70 180 m

We also related the two proposed optimization criteria to the
Bayesian CRB and to average array beamwidth. We showed
that the FIM-optimal array also minimizes the Bayesian CRB,
and the CRB-optimal criterion bounds the Bayesian CRB. The
boundary result, in conjunction with expressions relating the
CRB to the array beamwidth, provided geometric interpreta-

- o° tion of the optimality criteria and the resulting array designs.

Because the CRB is a realistic bound for moderate to high
SNRs and can be optimistic for low values of SNR, the
design criteria we consider apply to moderate or high SNR
applications. In [20] it is shown that the WWLB and ZZLB
provides tighter bounds than the BCRB and they converge

(b) © to the BCRB above a threshold SNR. However, the use of

. _ the WWLB or ZZLB increases the computational cost of
Fig. 1. An example array geometry design when the boundary of th

constraint region is a circle. (a) The pdf(6), of the single source DOA, (b) tﬁe approach substantially. In practice our geom_etry designs
5-element FIM-optimal array, (c) 5-element CRB-optimal array= 78°, should perform well for SNRs that are above this threshold

B = 45°. SNR. For lower SNR applications, it may be interest to design
arrays with low sidelobe levels. The methods presented in this

N ) . . . . paper are based on the FIM and CRB, whose properties relate
are studied in [16]; a planar isotropic array is one whose sm%a mainlobe width but not sidelobe level. The CRB-based
source CRB is independent of the arrival angle .

If the orior DOA pdf is not uniform as above. then thedesigns tend to have lower sidelobe levels than the FIM-based
. prior. P . . ' . designs, and are therefore preferable in most applications. If
optimal array is no longer isotropic. As an example, consider

. . . . w sidelobe level is an additional design requirement, the
the circular constraint region as above along with a DOA p IM and CRB criteria may be combined or augmented with
shown in Figure 1(a). The pdf represents a scenario where '}

sianal can be impinging on the arrav from anv direction b Rer criteria or constraints, such as those in [10], [13], to
SI9 impinging ay y dairecti tbtain desired sidelobe performance; alternately, a ZZLB- or
it is expected primarily from a particular sector. Figure 1(

shows the resulting 5-element FIM-optimal array (which is LB-based criterion can be used.
9 P y Although we have focused on design of planar arrays that

also the Bayesian CRB-optimal array); note that all elements.. : .
cluster at the top and bottom, to give the widest aperture f%glmate azimuth DOA, the methods apply to other scenarios

signals arriving around)®. This is similar to the optimum as well. The design method applies to volume arrays, to DOA

i . X . angles in azimuth and elevation, and to both narrowband and
linear array design, in which half of the array elements are. . .
ideband arrays. The design procedure follows because in all

clustered at each end of the constraint line segment [23]. . ) : i :
; N these cases the expression for the Fisher information matrix

The CRB-optimal array geometry, in Figure 1(c) has elemencgn be partitioned as in equations (4)—(6), wheres a scalar

spread around the boundary. While the CRB-optimal array is P q '

not isotropic (an isotropic array has equally-spaced elemen%r)W,d G(x, 0) contains the array geometry terms.
it is nearly so, but has lower beamwidths for arrival angles
close to 0° and 180°. These observations agree with the Ref er ences
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