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Maximum Likelihood Estimation of the Parameters of
Multiple Sinusoids from Noisy Measurements
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Abstract—The problem of estimating the frequencies, phases, and
amplitudes of sinusoidal signals is considered. A simplified maximum-
likelihood Gauss-Newton algorithm which provides asymptotically ef-
ficient estimates of these parameters is proposed. Initial estimates for
this algorithm are obtained by a variation of the overdetermined Yule-
Walker method and a periodogram-based procedure. Use of the max-
imum-likelihood Gauss-Newton algorithm is not, however, limited to
this particular initialization method. Some other possibilities to get
suitable initial estimates are briefly discussed. An analytical and nu-
merical study of the shape of the likelihood function associated with
the sinusoids-in-noise process reveals its muitimodal structure and
clearly sets the importance of the initialization procedure. Some nu-
merical examples are presented to illustrate the performance of the
proposed estimation procedure. Comparison to the performance cor-
responding to the Cramer-Rao lower bound is also presented, using a
simple expression for the asymptotic Cramer-Rao bound covariance
matrix derived in the paper.

I. INTRODUCTION

HE problem of estimating the parameters of sinu-

soidal signals from noisy data has received consider-
able attention recently [1}-[9], [18]-[21]. The sinusoid
parameters can be estimated using correlation-based tech-
niques. These include Prony’s method, Pisarenko’s har-
monic decomposition procedure, and the Yule-Walker
method in one of its many versions. Prony’s method (see
[2] for a recent survey) is known to give inconsistent es-
timates. It cannot be used in cases with a low signal-to-
noise ratio since the resulting estimates may be highly
biased. In Pisarenko’s procedure {2] this problem is elim-
inated. This method gives consistent estimates, but in
some cases it has poor accuracy.

The basic Yule-Walker method [1], [2] does not elim-
inate this deficiency of Pisarenko’s method. It gives con-
sistent estimates, but its accuracy may be poor. Since the
Yule-Walker method is attractive from the computational

Manuscript received May 3, 1986; revised May 12, 1988. The work of
B. Friedlander was supported by the Army Research Office under Contract
DAAG29-83-C-0027.

P. Stoica is with the Facultatea de Automatica, Institutul Politehnic
Bucuresti, Splaiul Independentei 313, Sector 6, R-77 206 Bucharest, Ro-
mania.

R. L. Moses is with the Department of Electrical Engineering, The Ohio
State University, Columbus, OH 43210.

B. Friedlander is with Signal Processing Technology, Ltd., 703 Coast-
land Drive, Palo Alto, CA 94303.

T. Soderstrom is with the Department of Automatic Control and Sys-
tems Analysis, Institute of Technology, Uppsala University, P.O. Box 534,
S-751 21 Uppsala, Sweden.

IEEE Log Number 8825662.

standpoint, much effort has been spent in recent years to
improve its accuracy properties.

The overdetermined or high-order Yule-Walker method
is a modification of the basic Yule-Walker procedure,
which was reported to lead to a considerable increase in
estimation accuracy [3}-[6]. This method was proposed
heuristically, and the properties of the corresponding es-
timates were analyzed by Monte Carlo simulations only.
The reasons for the increase of the parameter estimation
accuracy when the number of Yule-Walker equations and
the model order are increased were not too well under-
stood. In [11] and [12] we have tried to fill this gap. Very
briefly, the conclusions of [11] and [12] are that the
asymptotic accuracy of the Yule-Walker estimates will
increase with the number of Yule-Walker equations used
and with the model order, although not necessarily
monotonically. However, even when the number of Yule-
Walker equations and the model order are increased with-
out bound, the limiting accuracy may still be worse than
that corresponding to the Cramer-Rao lower bound
(CRLB). Thus, in general, it is possible to improve the
accuracy of the Yule-Walker-based estimates.

To improve the performance of correlation-based tech-
niques, a number of researchers have studied the use of
the maximum likelihood (ML) method for estimation of
sinusoid parameters; see [7], [8], and [18]-[21]. (Some
of these studies, such as [20] and [21], treat more general
problems that include the sinusoid parameter estimation
as a special case.) The basic idea to all of the estimation
schemes in the above references consists of first obtaining
suboptimal initial parameter estimates and then refining
them through an iterative maximization of the likelihood
function. The suboptimal estimation method and the it-
erative maximization procedure used vary from one ref-
erence to another.

In this paper we consider a similar ‘‘two-stage’” ML
estimation procedure. We use the overdetermined Yule-
Walker (OYW) method to get initial estimates and a pe-
riodogram-based procedure to get improved initial esti-
mates. We also discuss briefly other possibilities for ob-
taining initial estimates, such as the overdetermined and
high-order Yule-Walker method [3], [5], [6] and Tufts
and Kumaresan eigenanalysis procedure [4], [8].

An analysis of the likelihood function associated with
the sinusoid estimation problem reveals that it has a com-
plicated multimodal shape with a narrow trough corre-
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sponding to the global maximum. Thus, there is a strong
possibility that an initial estimate will not be sufficiently
accurate to fall in the global maximum trough. To over-
come this problem, we include a second step in the initial
estimation to search locally for estimates that lie in the
trough. Again, any of several search procedures could be
used; we have used a series of one-dimensional searches
for the maximum of the periodogram in a certain fre-
quency range. This method is relatively simple compu-
tationally, and produces estimates that have a high prob-
ability of lying in the narrow trough of the likelihood
function.

The two-step initialization can be thought of as a com-
promise between pure Yule-Walker-based estimates of [8]
and [19] and pure periodogram-based estimates of [7] and
[18]. The OYW method produces estimates that may not
be in the desired trough of the likelihood function. How-
ever, these estimates are close enough so that the pe-
riodogram step can operate on a small frequency region.
Other initialization procedures are given in [20] and [21],
in conjunction with an iterative algorithm of a special
type.

The refining iterative step of our ML procedure consists
of a simplified Gauss-Newton maximization algorithm.
This algorithm has the computational simplicity of a pure
gradient technique and the convergence rate of a Newton
method. It is tailored to the special structure of the prob-
lem under discussion, which makes it more attractive than
the general Newton-based or other algorithms used in the
works referenced above for the iterative maximization of
the likelihood function. The development of the simpli-
fied Gauss-Newton algorithm is a main contribution of
this paper. Its derivation is based on an expression for the
asymptotic Cramer-Rao lower bound (CRLB) on the co-
variance matrix of any consistent estimator of sinusoid
parameters, which appears interesting in its own right.
Note that the finite-sample CRLB is known (see, e.g.,
[7]) but the expression for the asymptotic bound presented
here appears to be novel (its usefulness is discussed later
in the paper).

We prove that the two-step ML estimation procedure
outlined above achieves the asymptotic accuracy corre-
sponding to the CRLB. This result does not follow from
the ‘‘standard’’ properties of the ML estimator. The fi-
nite-sample properties of the procedure are studied by
Monte Carlo simulations.

Finally, let us make some general remarks on two-stage
(initialization followed by iterative maximization) ML
procedures. The whole procedure cannot, in general, have
a better threshold SNR (signal-to-noise ratio) than the in-
itialization step. The reason, of course, is that the itera-
tive algorithm of the second step cannot converge to the
global maximum of the likelihood function if the initial
estimates have poor accuracy (at some low SNR). How-
ever, for SNR’s above the threshold, the accuracy prop-
erties of the two-step ML method are expected to be better
than those of the initial step (by the statistical efficiency
of the ML estimator). Furthermore, the second ML step
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may improve the ‘‘resolution’’ properties of the initial
step, too.

II. STATEMENT OF THE PROBLEM

Consider the following sinusoidal signal:

x(t) = 2 ogsin (wjt + @), t=1,2,",
i=1

(2.1a)
where
o, ¢;€R,  we(0,7), and w; # w; fori #j.
(2.1b)

The assumption w; # O means that a possible nonzero
constant level of x(¢) has been removed. The condition
w; < wis a consequence of Shannon’s sampling theorem.

Let y(t) denote the noise-corrupted measurements of

x(t)
(1) = x(r) + €(2), (2.2)

where {€(z)} is a sequence of independent and identi-
cally distributed Gaussian random variables with zero
mean and variance \2. We assume that x(¢) and € (s) are
independent for any 7 and s.

The assumption that e (¢) is Gaussian may appear some-
what restrictive. Under the Gaussian hypothesis, it is easy
to write the likelihood function of the data and to obtain
an explicit expression for the CRLB. If, in some appli-
cation, the Gaussian hypothesis fails to be true, the al-
gorithm of this paper is still applicable, but it will no
longer provide the ML estimates. Nevertheless, the esti-
mates obtained by using the algorithm will still give the
minimum variance in a fairly large class of estimators
whose covariance matrices depend only on the second-
order statistics of the data. This is explained further in
Section IV. The commonly used assumption that € (1) is
a sequence of i.i.d. random variables is restrictive. How-
ever, in Section VI it will be shown that the proposed
estimation method may provide accurate estimates even
if e(t) is a correlated sequence (see also [23]). For col-
ored e(¢), the estimates provided by the algorithms are no
longer pure ML estimates; in such a case, they are ‘‘min-
imum output error estimates’’ (using a term from the sys-
tem identification literature).

Next we denote by r, the covariance of y(¢) at lag n (n
=0,1,2, )

r, = E{y(t) y(t + n)} (2.3)

The operator E{ -} denotes statistical expectation. The
sample covariances corresponding to (2.3) shall be de-
noted by 7#,. We will use the following definition of 7,:
N—-n
1

r,,=N_nr§]y(t)y(t+n), n=0,1,2,---
Fon =Py, (2.4)

where N denotes the length of the data sample.
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Collecting the amplitudes { «;}, phases { ¢, }, and fre-
quencies { w;} in a single parameter vector, we define
T
0:[0”7'. swm]'
(2.5)
The problem considered in this paper is the estimation of
6 from N samples of noisy measurements { y(1), - - -,

y(N)}.

III. THE INITIAL OVERDETERMINED YULE-WALKER
ESTIMATES

"am’¢l9'..’¢mawly".

As is well known x(¢), (2.1), obeys a homogeneous
difference equation of order 2m,

x(t) +ax(t—1)+ -+ +ax(t —n) =0,

n&2m, (3.1)
where {a;} € R are such that the polynomial
A(z) =1+az+ -+ + a,7" (3.2a)
has all its zeros located on the unit circle at e*™, j.e.,
A(e*¥™) =0, k=1,---,m (3.2b)
(see [2], [4], [5], and [14]). Since we have
r, = E{x(t)x(t + n)} + N6,.0, (3.3a)
where §; ; is the Dirac delta
5, = {1 =7 (3.3b)
0 i+#j],

it follows from (3.1) that the coefficients {a;} obey the
so-called (modified) Yule-Walker equations

';0 arysi_i =0, k=1 (ao=1). (3.4)
A commonly used technique for estimating the frequen-
cies { w; } is based on (3.4). Consistent estimates { d; } can
be obtained by solving the following linear system of
equations:

Tn r a; T+
Fugr - fy . Fri2
. = -1 . s L = 2n,
-1 TL—n a, L
(3.5)

where {7} are the sample covariances (see [2], [3], and
[22]). The matrix appearing in (3.5) has full rank, at least
for large N [14]. Note that for L > 2n, the system (3.5)
is overdetermined and needs to be solved in a least-squares
sense. Intuitively we can expect that the larger L, the more
accurate will be the estimates { d, }, since the covariances
for large lags contain ‘‘useful information’’ about the
covariance structure of the data. While it is not always
true that increasing L increases estimation accuracy [12],

it was shown by simulations [3], [6] that increasing L is
often useful. A theoretical explanation of this empirically
noticed fact was recently presented in [12]. It was shown
there that while the asymptotic (for N — o0) accuracy of
{d;} does not increase monotonically with L, it improves
considerably in the limit as L = oo. For L < oo, the es-
timation errors (4; — a;) are of order 1/\/IT/ and for L —
o, they are of order 1/L JN. The estimation technique
based on (3.5) with L > 2n is the so-called overdeter-
mined Yule-Walker (OYW) method [3]-[6].

The frequencies {w;} can now be estimated by deter-
mining the roots of

A(z) =1+az+ -+ +a,2"=0.  (3.6)

Note that determining the estimates {&;} from (3.6) im-
plies, in general, some approximations since A(z) is not
guaranteed to have all of its zeros on the unit circle. For
example, one may look at the peaks of 1/|4(e/*)|?, or
at the angles of the roots of A(z).

- The problem of determining estimates of {«;} and
{#;}, once estimates {&;} of the frequencies are given,
can be reduced to a least-squares fit. Rewrite (2.1) and
(2.2) as

y(t) = /Z:l (B sin wet + by cos wit) + e(1), (3.7a)

where

Bi = o cos ¢y, by = ay sin ¢. (3.7b)
Replacing { w; } in (3.7) by their estimates { &; }, the prob-
lem of estimating {3, b, } can be formulated as the fol-
lowing minimization problem:

M 2

min 2 {y(l) - k);] (By sin &t + by cos a)kz)} ,

{Br.bi} 1=1

M < N. (3.8)
The solution to this probem is given by
, . B . }
A B A
\b [Bl b] m
1 2 N
=)= 2 V)V
i Z Vo Vo
1 M
— V(e)y(t) i, 3.9
L E ool es)
where
V(t) & [sin &1, - - -, sin Gpt,
cos @t, *** , oS éo,,,t]r. (3.9b)

The reason for using only the first M data points in (3.8)
and (3.9) will be explained later. It will be shown that if
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M in (3.8) is too large (e.g., M = N ), then the estimation
accuracy may deteriorate considerably. Note that for M
< N, the computational burden is smaller.

Using {B;} and {b;} in (3.7b), we readily obtain esti-
mates of {«;} and {¢;} as given by

b =arcun {6/} (moa2)
A A =1, ,m
& = B;/cos
(3.10)

Next, we discuss some implementation issues related to
(3.9). Straightforward programming of (3.9) would lead
to a large computational burden. The main reason is that
calculation of trigonometric functions on a computer is
time consuming. Note, however, that the solution ¢;(t)
of the following second-order difference equation:

¢i(t) = (2 cos w)ei(t — 1) + ¢i(r —2) =0,

t=3,4,---, (3.11)
with initial conditions
c(1) = cos w;, ¢(2) = cos 2w;, (3.12)
is given by
ci(t)y =cos wit, t=1,2,---. (3.13)

A different set of initial conditions (¢;(1) = sin w;,
¢;(2) = sin 2w;) will produce c¢;(t) = sin w;t. Thus, the
sequences {sin w;?, cos w;t; t =1, -+ M, i =1,

-, m} can be generated using (3.11) at a cost of ap-
proximately 2mM multiplications, and the vector L V(1)
y(t) in (3.9) will require a total of 4mM multiplications.

Next we note that the matrix £ V() V()7 in (3.9) can
be efficiently computed using Lemma A.1. For large M,
we can further simplify the computation of this matrix by
using some approximations. Thus, from Lemma A.1 it
follows that

M

LS viyve =1

2 5 D + O(1/M).

(3.14)
We conclude from (3.14) that for large M, the following
simple estimate:

.22

V=5, 2700 (3.15)
is an approximation of order 1/M of { (3.9). Note, how-
ever, that the smaller inf; . ; | &; — &;|, the larger the value
of M needed for the approximation in (3.14) to be valid
(see the discussion in Appendix A.) If M is not large
enough, then ¢ may not be a good approximation of .
Furthermore, the calculation of { may be problematic in
such a case since the matrix in (3.9) will be ill condi-
tioned.

We conclude this section with a discussion of the
asymptotic properties of the estimates introduced above.
The frequency estimates {&;} obtained by the OYW
method are consistent [15]. The asymptotic (as N, L —
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o) standard deviations of {&; — w;} are of order
1/L VN, provided that L increases not faster than N”, with
v < 1/2 [12]. The condition y < 1/2 is sufficient but
probably not necessary. A necessary and sufficient con-
dition on v is not known. Since the CRLB on the standard
deviation of {&; } is 0(1/N3/?), as is shown in Appendix
A, it seems possible to improve significantly the accuracy
of the OYW estimates.

An analysis of the asymptotic behavior of {&;, &,}
(3.9), (3.10) does not seem to be available in literature.
Due to the use in (3.9) of {&;} instead of {w;}, such an
analysis is not easy. Since {&;} and {&;} are used as
initial estimates, their accuracy is not too important, and
will not be discussed in detail. What is, however, quite
important is the choice of M i . (3.9). To simplify nota-
tion, we will consider the case of a single sinuosid (m =
1). It should be emphasized, however, that the same con-
clusions apply also form > 1.

Form = 1 and large M, we have from (3.9) and (3.14)

M rsin &t
b—y==2 {S ¢ 1{)}([) — [sin &t cos &r]y}

cos &t

M ! cos wt
+3 2 {[ ) ]e(t)
M =1 ([ -1 sin wt

sin wt )
- [t cos wt, — rsinwt]y (& — w)
Ccos wt
M 2
] —1” sin wt
+ = 2 {{ ) }(t)
M =1 (| —# cos wt
t cos wt )
- i [7 cos wr, ~1sin wr]y
—1 S wt

sinwt |, , 2
+ [7* sin wt, 1° cos wt]y (& — w)
COs wt

+ - +0(1/M), (3.16)

where ¥ = [B8, b]7 is the vector of the true parameters.
It is not difficult to see that the first term in (3.16) is
0(1/\/A—/1). Since & — w = O(I/L\/IT/) (see the discus-
sion above), it can be shown that the second term is
0(M/L~N), the third is 0(M> /(LN )?), etc. Thus, if
M increases faster than L\/ﬁ (for example, if we set L =
N'/27% for some & > 0, and M = N), then difficulties
may occur. Indeed, in such a case, the estimate i may not
even be consistent. If the condition M << LN is im-
posed, then the first and second terms in (3.16) are
asymptotically the dominant ones. Note that the magni-
tude of the first term decreases with M while that of the
second increases with M. To get good asymptotic prop-
erties for ¢ (i.e., small estimation error § — ), M should
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be chosen such that these two terms have the same mag-
nitude. Thus, the “‘optimal’’ rate of increase of M is given
by

M = (LYN)". (3.17)

The estimation error ({ — /) corresponding to this choice
of M is of the order 1/vM.

Note from the analysis above that we can use all N data
points in (3.9) only if the estimation error (& — w) is
O(1/N3%/?), i.e., & achieves the CRLB (see Appendix
A). If the estimation error of & is larger than O (1 /N3/2 ),
only a fraction of the data samples should be used in (3.9).
The poorer the frequency estimates, the smaller this frac-
tion has to be. This important property, which albeit is
rather intuitive, is often overlooked in the literature.

IV. A MAXxIMUM LIKELIHOOD ALGORITHM

The ML estimate of 6 is obtained as the minimum point
of the following loss function (see [7], [8], [19]-[21] and
also Appendix A):

N

LF = g)l €1, 9), (4.1a)

where
e(t, 8) = y(1) — ;l a; sin (w;t + ¢;). (4.1b)

We use the Gauss-Newton algorithm to minimize (4.1).
Let #* denote the parameter estimate at iteration k. The
updated estimate 8**' is computed by

N

-1
PEHl = Pk {E} eo(t, B%) €l (1, 9k)]
=

. [Z;] eo(t, 0%) e(t, ék)j| (4.2a)
where
e(t, 0) 2 W, (4.2b)

and where 90, the initial estimate, should be given. The
elements of the gradient vector ¢, (¢, ) are given by

ae(t, 0) = —sin (w,t + (b,)
aai
%—)= —a; cos (w;it + ¢;) i=1, , m
de(t, 0)
awi = ta,' Cos ((L)‘t + QS,)
(4.3)

The matrix to be inverted in (4.2) contains entries of very
different magnitudes. The elements of its left-top m X m
block are of order N, while those of the right-bottom m
X m block are of the order N°. Thus, it is desirable from

the numerical standpoint to ‘‘balance’’ the elements of the
matrix. This will also be convenient for some subsequent
theoretical considerations.

Let us introduce the notation

N2, 0
KN =

4.4
0o N, (44)

where I denotes the K X K identify matrix. The follow-
ing recursion is equivalent to, but numerically more reli-
able than, (4.2a):

K8 ' = Ky0* — Hy'(8%)

. {K{,l § eo(1, 8% (2, 9k)}, (4.5a)

where
N

Hy(0) = Kﬁl{ Zl (2, 0) el (2, 0)}1{;‘. (4.5b)
(=
Evaluation of the vector L™ | ¢, (1, 0y e(r, 8%y is straight-
forward. Its elements contain trigonometric functions
which could be computed efficiently by the technique dis-
cussed in the previous section. Evaluation of the matrix
Hy(8*) can be done similarly but it appears quite costly.
To overcome this difficulty, we propose an approximate
version of the iterative algorithm (4.2a).
As is shown in Appendix A,

Hy'(0) = G(8) + 0(1/N), (4.6)
where
1, 0 0 7
4 6
— 0 |-— 0
o] o
0
4 6
G(o) =2 0 ) 0 2
6 12
-= 0 —= 0
ol ol
0 }
6 12
0 -7 0 2
Ay Ay
(4.7)

Replacing {-I,T,'(@") in (4.5) by its large sample approxi-
mation G (8*), we get
KNélH—l = KNék - ukG(ék)
N

- {K,\j' 2 a9 (s ak)} (4.8)

where {1} is a sequence of positive scalars which can
be used for controlling the step size (u; can be deter-
mined, for example, by using a line search algorithm).
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The algorithm (4.8) is much simpler than (4.2a). The two
algorithms have clearly the same convergence point. Fur-
thermore, for large N, they will also have similar conver-
gence rates.

We conclude this section with a discussion of the
asymptotic accuracy of the limiting (as k& — oo ) estimate
obtained by (4.8). Let this estimate be denoted by 8:

lim 8%

koo

6= (4.9)
Since we will initialize the recursion (4.8) with a consis-
tent estimate, it is expected to converge in a few itera-
tions. In fact, paralleling the calculations in the proof of
Theorem 4.1 below, it is possible to show that (4.8) will
asymptotically (as N = o) converge in one iteration pro-
vided that the initial estimate #° is good enough.

Under the Gaussian hypothesis, 8 is the ML estimate.
We expect, therefore, that its asymptotic covariance ma-
trix equals the CRLB P0CR = NG (0) (see Appendix A for
the derivation of P%R). However, this does not follow im-
mediately since some of the standard assumptions of ML
theory [10] fail to hold in our case (e.g., €(z, ) is a
nonstationary process).

If we relax the Gaussian hypothesis, then 8 is the pre-
diction error (PE) estimate [16]. Again, the standard PE
theory does not apply to our problem. If it were applic-
able, it would follow from [16] that the asymptotic co-
variance matrix of § is still given by the matrix Pl de-
fined below.

The asymptotic covariance matrix of the normalized es-
timation errors Ky (8 — 6) is derived next. We show that
this matrix equals P%y for any distribution function of the
data.

Theorem 4.1: Consider the process y(t) generated by
(2.1) and (2.2) under the assumptions stated except that
(1) is allowed to be non-Gaussian. Let 8 be the estimate
given by (4.9). Then

lim E[Ky(8 — 6)(8 — 0)'Ky] = Ple. (4.10)
N— o

where K is defined in (4.4) and P%; = NG (9).
Proof: See Appendix C.

It follows from the above theorem that in the case of
Gaussian data, the estimate 6 of § is asymptotically effi-
cient. For non-Gaussian data, f will asymptotically be the
minimum-variance estimate in a fairly large class of es-
timators whose covariance matrices depend only on the
second-order statistics of the data.

V. THE PROBLEM OF LocAL MINIMA

A major concern in any iterative minimization algo-
rithm is the presence of local minima in the function to
be minimized. Below we analyze the shape of the Loss
Function (LF). For an arbitrary parameter vector 8 we can
express LF(@) as

LF(8) = N - {LF,(8) + LF,(9) + R} (5.1a)

33
where

LF,(§) = %/é [x(r) = 2(0)]’ (5.1b)

L) = 2 E colx( - 5] (510

R = %%} (1) (5.1d)

and where £(7) is defined as in (2.1) but with elements of
] replacing elements of § there. Comparing (5.1c¢) and
(C.7) in Appendix C, we see that LF,(8) is 0(1/@).
Also, writing out (5.1b) and using Lemma A.1 in Appen-
dix A, it is easy to show that

m N
LF,(9) = ;l <% g)l [ sin (@it + &)
— &; sin (&;t + ‘35,)]2> + 0(1/N)
= 2] Fi(&i’ a)’_! (%,) + O(I/N) (5.23)
where
1 N
E(d[, (:’,', (2),) = 1_\‘] ;] [C(,' sin (w,‘t + d),)
- &,‘ sin ((’J:),t + &)l‘)]z. (52b)

Thus, to within 0(1/N), LFS((A?) is the sum of m decou-
pled functions F;; moreover, all of the F;’s have the same
form. Understanding the shape of the LF in (5.2a) asymp-
totically reduces to understanding the shape of the func-
tion

2

N
F(&,&,9) =%/I§ [asin(wr + ¢) — &sin(ar + <2>)]
(5.3)

It is easy to check that F is quadratic in & and sinusoidal
in &; thus, the local minima of F with respect to these two
variables are the global minima. However, F is not so
well behaved as a function of &. A plot of F (&) for N =
40, w =047, ¢ =¢ =0,and « = & = 1 is shown in
Fig. 1. From this figure, it is apparent that the initial es-
timate of & must be within the deep valley if we expect
the Gauss-Newton algorithm to find the global minimum.

In Appendix B we show that the width of the valley is
in the range Aw € [27 /N, 4w /N ]. Thus, the initial es-
timate must have a standard deviation that is on the order
of 1/N. However, the standard deviation of & estimates
obtained from (3.5) are O(I/L\/N) (when L < N'/?)y,
which asymptotically is too large for use with the Gauss-
Newton method. Thus, we need to improve the initial fre-
quency estimates before starting the minimization.

It is known [7] that, for large N, the ML estimates of
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F(@)
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w

Fig. 1. Aplotof F(&) forN =40, w = 0.47, ¢ =¢ =0, and ¢ = & =
1.

{w;} are approximately given by the maxima of the pe-
riodogram. Therefore, one method for improving initial
frequency estimates is to search in some small interval
about each &; say [&; — €, &; + €], for the maximum of
the periodogram. Note that we need only perform m one-
dimensional searches (one for each frequency) instead of
a more computationally intensive search on an m-dimen-
sional region; this simplification is possible because the
LF in (5.2a) asymptotically decouples to the sum of m
independent functions. Thus, the following search pro-
cedure can be used.

Choose appropriate values for Aw and /.

Foreachi=1,2, - ,m:

1) compute the periodogram «; of the data at fre-

quencies
=01, - (5.4)

&’il = &’i + lAw ’ lmax

using

ay = (B + by a
where 8;; and b; are computed using (3.15) but with M =
N;
2) choose as the new initial frequency estimate the
&; whose corresponding «;; is largest; compute the new
initial amplitude and phase estimates using (3.15).

From the above discussion, Aw should be chosen less
than 27 /N to ensure that one of the &; is in the deep
trough of LF; in our simulations, we used Awe[27 /3N,
w/N1]. In addition, [, should be chosen so that Pr
{wie[ & — lpax * Aw, & + lna - Aw]} is sufficiently
large. For example, since the OYW method was used to
obtain &;, /., could be chosen based on the asymptotic
probability distribution of the &; given in [12]. Finally,
one must ensure that the search interval for two adjacent
frequencies do not overlap.

Because the improvement step is periodogram based, it
is unable to resolve sinusoids whose frequencies are within
27 /N of each other. To avoid adverse effects of this res-
olution limit, we imposed the following restriction to the

improvement step: no search interval could include a
“‘dead zone’’ of width 4x /N between any two frequen-
cies. Specifically, for two adjacent OYW frequency esti-
mates &; and &, no improvement search could include
the interval [@ — (27 /N), w + (2w /N)] where & =
(&; + &;1,)/2. This restriction, in essence, permits the
improvement step to operate only in cases where the finite
resolution of the periodogram will not adversely affect the
estimation procedure.

A consequence of the restriction is that, in most cases,
if the OYW frequency estimates are within 4« /N of each
other, no improvement takes place. Thus, in order for the
Gauss-Newton algorithm to converge, the OYW fre-
quency estimates must lie in the narrow trough of the loss
function. For large N, the OYW frequency estimates have
a standard deviation of ¢/ xfﬁ, where ¢ is some constant
that depends on (among other things) the SNR and the
frequency separation. If the frequency separation and/or
SNR are too small, the initial OYW estimates will not be
sufficiently accurate and the Gauss-Newton algorithm will
converge to a false local minimum; it is this effect that
results in a threshold SNR for good performance of the
composite algorithm for closely spaced sinuosids.

In order to reduce the threshold SNR, other algorithms
for obtaining initial estimates for the ML Gauss-Newton
algorithm can be used. The overdetermined and high-or-
der Yule-Walker (HOYW) method of Cadzow and Chan
[31, [5], [6] and the eigenstructure analysis (EA) method
of Tufts and Kumaresan [4], [8] can be used to obtain
accurate frequency estimates. It can be shown (see [11])
that the asymptotic estimation errors {&; — w;} corre-
sponding to these two methods are of the order
1/L3/>N'/?, where L denotes the number of YW equa-
tions and the model order used. Thus, for large L, the
parameter estimates obtained by HOYW or EA methods
are likely to lie in the deep valley of the likelihood loss
function and can, therefore, be used for properly initial-
izing the ML Gauss-Newton algorithm (a periodogram-
based ‘‘refining’’ step being no longer needed). Note that
the HOYW and EA methods are expected to be more ac-
curate than the OYW/periodogram-based procedure and
to have lower SNR thresholds, but they are also more
complex computationally (a main computational task for
both HOYW and EA lies in finding the roots of a large
degree polynomial). In general, one should choose an in-
itialization estimation algorithm which is the most com-
putationally simple, and which is effective at resolving
the sinusoidal frequencies for the data length and SNR of
interest.

In summary, the initial estimates provided to the itera-
tive ML Gauss-Newton algorithm are obtained by the fol-
lowing procedure.

i) Determine rough initial estimates of { w;, o;, and 6, }
by the OYW method (3.5), (3.6), (3.15).

ii) Obtain improved initial estimates of {w;, «;, and
6;} by the periodogram-based procedure (5.4).

We used the initialization method above in the numer-
ical experiments, which we report in this paper.
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VI. NUMERICAL EXAMPLES

We present some numerical experiments that indicate
the performance of the proposed algorithm. We first con-
sider the problem of estimating 6 from a signal of the form
(2.1), where m = 2,

oy = 1.0 w, = 0257 ¢, = 1.0

Oy = 1.0 wy = 027 ¢2 = 0.0.

In all examples, L = VN, and M is chosen as in (3.17).
The white noise variance \? was varied so that the SNR
ranges between 10-40 dB in 5 dB increments. (Here, SNR
is defined for each signal, e.g., SNR = af/2\°.) For
each SNR, J independent data sets were generated, and
average sum-squared errors (SSE) of the resulting esti-
mates KN9 were computed. For each element of 6, the
normalized SSE is computed by

14 N 2
7 2 (K06 = 0],

(J = 50 in these simulations) where [ }; denotes the ith
element of the vector, and where 9]- is the jth estimate
vector.

The SSE of the estimated parameters for N = 500 are
shown in Figs. 2-4. In these figures, initial estimates are
those obtained using the method of Section III. Equation
(3.15) was used for estimates in these plots; however, the
SSE for estimates obtained using (3.9) are not signifi-
cantly different (and, in particular, no better on the aver-
age). From these initial estimates, improved estimates
were obtained as outlined in the previous section, then the
Gauss-Newton algorithm [equation (4.8)] was used. In
(4.8), u; was at each iteration set to 1; if LF increased,
e was decreased by a factor of 4 until the resulting step
was such that LF decreased.

From these figures, it is apparent that the SSE’s of the
ML estimates are very close to the Cramer-Rao bound for
SNR’s at and above 20 dB. (In a few instances, the esti-
mated SSE is below the CR lower bound; this is a result
of using a relatively small number of Monte-Carlo ex-
periments.) High SSE’s for SNR’s below this threshold
are due to poor initial estimates which result in conver-
gence to a false local minimum of the loss function. For
a given initial estimate algorithm, the threshold depends
most strongly on the relative frequency separation Aw -
N; as this ratio decreases, the threshold SNR increases.

The effect of the improvement step in the estimation
procedure can be seen in Table I. Listed in this table are
the number of Monte Carlo experiments (out of the 50)
which gave ‘‘good’’ initial estimates from the HOYW
equations alone, and from the HOYW equations followed
by the periodogram-based improvement step. Good initial
estimates are those from which the ML algorithm con-
verges to the global minimum of the loss function. For
SNR’s in the 5-20 dB range, the improvement step is ef-
fective in increasing the likelihood that the ML algorithm
will converge to the global minimum. For SNR’s below
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Fig. 2. SSE’s of amplitude estimates for N = 500 and white noise. Curves

with “‘x”" are initial estimates; curves with ‘0’ are ML estimates, and
the solid line is the Cramer-Rao bound.
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Fig. 3. SSE’s of phase estimates for N = 500 and white noise. Curve la-
‘bels are as in Fig. 2.
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Fig. 4. SSE’s of frequency estimates for N = 500 and white noise. Curve
labels are as in Fig. 2.

or above this range, the improvement step is of little use.
Note that the improvement step lowers the threshold SNR
by 5 dB in this case. Note also that even though only one
of the 50 Monte Carlo experiments for 15 dB had a poor
initial guess, the SSE’s for this case in Figs. 2-4 are much
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TABLE 1
NUMBER OF CORRECT ML ESTIMATES OBTAINED FROM 50 MONTE CARLO
SIMULATIONS WITH AND WITHOUT THE INITIAL FREQUENCY ESTIMATE
IMPROVEMENT STEP

SNR Without With
(dB) | Improvement Improvement
0 0 1
5 4 30
10 28 46
15 41 49
20 42 50
25 50 50

20

N - var(a)

“%o 15 20 25 30 35 40
SNR (dB)

Fig. 5. SSE’s of amplitude estimates for N = 500 and colored noise. Curve
labels are as in Fig. 2.

higher than the CR lower bound; thus, the SSE for one
bad estimate dominates the total SSE in these figures.

Figs. 5-7 show average error results for N = 500 data
points when the additive noise is colored. The noise used
is MA(1):

n(t) = [e(r) + 0.9¢(t — 1)]/V1.81.

Note that n(r) has the same total power as e(¢) does. It
can be seen that the ML method provides significant im-
provement over Yule-Walker estimates for colored noise.
The Yule-Walker method does not give consistent esti-
mates in this case because the first row of (3.5) should not
be used (the data can be modeled as a limiting ARMA (4,
5) process, in which case (3.5) holds only for k = 2).
However, for large L, the effect of the first equation is
small, and ‘‘reasonable’’ estimates could still result (as
seen in the figures). We note also that for colored noise,
the proposed method is not a maximum likelihood esti-
mate, but it is still an output error method.

The minimization procedure converged in a few itera-
tions in most cases. For the above example, the average
number of iterations in the SO Monte Carlo experiments
ranged from 9 to 4.5 (as the SNR ranged from 10-40 dB)
to achieve a tolerance of 10™* (where no element of
KN9 changed more than ‘‘tolerance’’ in one iteration).
This rapid convergence rate was seen for (Aw/27)N
greater than about 4; for smaller frequency differences,

AND SIGNAL PROCESSING, VOL. 37. NO. 3. MARCH 1989

N -var(g)

o 15 20 25 30 3 40
SNR (dB)

SSE’s of phase estimates for N = 500 and colored noise.
labels are as in Fig. 2.

Fig. 6. Curve

50

N3 . var(@)

o 15 20 25 30 35 40
SNR (dB)

Fig. 7. SSE’s of frequency estimates for N = 500 and colored noise. Curve
labels are as in Fig. 2.
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Fig. 8. Error between sin (wt) computed directly and computed by differ-
ence equation for w = 0.47.

the convergence was slower. Slower convergence is not
unexpected in this case because the algorithm was derived
under the assumption that Aw >> 2 /N.
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As a final note, the recursive computation of sin w? or
cos wr using (3.11) required only about 1 /6 the CPU time
of direct computation. The error between the recursively
and directly computed values remained below 1072 for N
< 1000 (using single-precision arithmetic); a typical plot
of the error is shown in Fig. 8.

VII. CONCLUSIONS

We derived a simplified maximum-likelihood Gauss-
Newton algorithm for estimating the parameters of sinu-
soidal signals in noise. The algorithm has the computa-
tional simplicity of a pure gradient technique and the con-
vergence rate of a Newton method. It can be initialized
by a set of preliminary estimates obtained via the over-
determined Yule-Walker method and a periodogram-
based procedure.

The asymptotic properties of the proposed techniques
are discussed, and it is shown that the parameter estimates
are consistent and asymptotically efficient for the Gauss-
ian case. In the non-Gaussian case, the estimator provides
a minimum-variance solution within a large class of esti-
mators based on second-order statistics.

The finite-sample performance of the proposed tech-
nique was studied by Monte Carlo simulations. It was
shown that the maximum-likelihood Gauss-Newton pro-
cedure can improve the accuracy of the initial estimates
significantly. Comparisons to the performance corre-
sponding to the CRLB were also presented, using a sim-
ple expression for the asymptotic CRLB covariance ma-
trix derived in this paper.

APPENDIX A
CRAMER-RAO LoweR BOUNDS

The estimation problem formulated in Section II falls
into the class of nonlinear regression problems. The
CRLB, say P, for any unbiased estimator of 6 and \?
can be easily derived [7]. In this appendix, we will be
interested in the asymptotic CRLB: P &. The reason for
this interest is threefold.

i) P& has a much simpler expression than P¥g and is,
therefore, much easier to compute. Yet P& is a good ap-
proximation of P whenever
27

inf‘w,-—wv > —

inf | > 2 (A1)

This will become apparent in the following, where it will
be shown that the smaller the minimum separation in fre-
quency inf |w; w;j|, the slower the convergence of
PP to P& Tt is worth noting that a main conclusion of
the study of P in [7] was that PY increases rapidly as
the minimum frequency separation goes below the critical
value 27 /N. In such a case, P{ is much larger than
Pg.

ii) PP can be attained only under certain restrictive
conditions [10] which apparently are not satisfied for the
problem under study. On the other hand, P & is attained
in the limit (as N = o) by the covariance matrix of the
ML estimate; see Theorem 4.1. Furthermore, for other
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estimation methods (such as the OYW method) only
asymptotic results are available. Thus, it is P ¢ which is
of interest in any analytical study comparing the perfor-
mance of the ML method to that of other estimation meth-
ods.

iii) The expression of P is useful in the derivation of
the simplified ML Gauss-Newton algorithm in Section IV.

Note than an expression for P does not seem to be
available in the literature, except for the special case of
m = 1; see [9] and its references.

For the estimation problem under discussion, the log-
likelihood function is given by

N

N
2y . Y 0 2 2
L8, N) = =5 In (27) = S In N - 2)\2 Z eX(1),
(A.2)
where
e(r)y = y(r) - ;} a; sin (w;t + ¢;).  (A.3)
The CRLB,
oL(6, N\*)
o 39
" AL(8, \2)
ON?
-1
aL(6, N*)\ 3L (8, xz)}
. A4
[( a6 > N > (A4)
can be evaluated by straightforward calculations:
oL 1 2
0 N 1; e(7) (1)
oL N 1 "
- e N (1) (A.S)
aL [faL\'] 1 & ,
E{aa <£> } = VZJ: e (1) €5(1)
3L dL| N ”
I:ae a)\Z:l - 2)\4 “ 66(’) E{é([)}
1 N N
R
~ (1) E{e(r) €(s)} =
E{?L} NN
N ANt
1 N N
2 2
Y ,21 ZJ E{e¥(r) €(s)}
N RS
ANt e 4N
N
=-=. (A.6)
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In (A.5) and (A.6), we used the assumption that e(t) is
white Gaussian noise. It follows that

P 0
P = ¢ | (A7)
N
where
N -
Y= a0 do] . s

and where the derivatives of e (7) with respect to the pa-
rameters {a,-, ¢;, w; } are given by (4.3). The expression
(A.8) for P%Y appears, for example, in [7] However, the
calculations necessary to show that P¥: has the block-
diagonal form of (A.7), which in turn implies that PiY is
given by (4.8), were not included there.

In the following, we will study the limit of PoY as N
— oo, The following results will be useful for this study.

Lemma A.1: For w € [0, 27)

.
— 2‘ cos (wt + ¢)

=z

cos ¢ forw =0
1 sin (Nw/2) cos [(N + 1) w/2 + ¢]
N sin (w/2)

forw # 0.

(A.9)

Proof: [17].
Corollary' For w € [0, 27)

lim
N
N— o N

g " cos (ot + ¢)

cos ¢ w=210
={k+1 . k=0
0 w#0

(A.10)

Proof: Fork = 0, the limit follows immediately from
(A.9). For k > 0, the limits follow from relations similar
to (A.9) obtained by differentiation of (A.9) with respect
to w.

Let us denote
PER = KnPCRKn, (A.11)
where Ky is given by (4.4). Clearly, P%7 is the CRLB on
the covariance matrix of the following normalized esti-
mation error vector:

VN(& — a)
VN($ — ¢) | (A.12)
NVN(& — )

where & = [, * -, oyl T and & is any unbiased esti-
mator of a. ¢, ¢, and w, & are similarly defined. In the

following we will show that

Pip & lim P

N— o

(A.13)

exists and has a simple expression.
By making repeated use of Lemma A.1 and its corol-
lary, we can write

Lg de()  de(2)

A}I_I,ILNr i Oq; dq;
1 1Y
= 2 N ; {cos [(w; — wj)t + ¢ — ¢]]
— cos [(w, + ow)t + ¢+ ¢j]}
1
=3 b: )
N
im L de(r) de(r)
N— o NI 1 aa,‘ aqu
LN
2 A}LII:QN{ZI {Sln [((.01 + wj)t + d),‘ + ¢I]
+ sin [(w; — W)t + ¢ — d),]}
=0
N
1 de(r) de(r)
}\}Er:o NIZI a¢, a¢j
oo 1 d
— " fim — - W — b
== lim o2& {cos [(w = @)t + ¢ = 9]
+cos [(w + @)t + & + )]
[eFle A
- T’aw'
o1 ae(t) de(1)
A}l-{r; NS da; dw;
_Y% A}‘“;]W ; t{sin [(wi + wj)t + ¢; + ¢j]
+ sin [(o; — @)t + ¢; = ¢j]}
=0
N
1 1) 9e(1)
1 - .
New N2 ; . oo
o0
= 2113_,00N2 Et{cos [(w - )t + ¢ — ¢j]
+ cos [(w; + o))t + & + ¢j]}
;0
= _Z_f 8i)
N
! de(t) de(r)
1 Z e )
Nl—r»lla NS Qo dw
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N
= % lim NL ; {COS [(w, - (A)j)t + ¢i - ¢]]

2 N—
+cos [(w + w)t + ¢; + qu]}
e o 5
6 b

where §; ; denotes the Dirac delta function (3.3b). There-
fore,

(A.14)

o |
=1 0 0
2 m
aj o
— 0 |— 0
2 4
0 " .
Y
5 2 4
Ple =\ 5 5 , (A.15)
e I =T
4 6
O .
2 2
(03 [04
0 patiin s —m
L 4 6

which, after some straightforward calculations, gives

IN'I 0 0
4 6
— 0 |-— 0
o o)
0
4 6
Ply = 2\ 0 — | 0 -—
am am
6 12
—= 0 = 0
af )
0
6 12
0 -— 10 -
_ m %m |
(A.16)

Note that the bounds for phases and frequencies are
proportional to the noise-to-signal ratios corresponding to
the frequency in question. However, somewhat contrary
to intuition, the bound for the amplitudes of the sinusoids
is independent of these amplitudes. Note also the almost
diagonal structure of P%;. The estimation errors of the
phase and frequency of the same sinusoid are asymptoti-
cally cross correlated. All the other estimation errors are
asymptotically uncorrelated.

It is also mterestm§ to note that the bounds for (&; —
w;) are of order N73/2 (see also [9] and its references).
This order of the CRLB is rather unusual for a stationary
estimation problem for which the corresponding bounds
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are, in general, of the order N2, However, the problem
of estimating the parameters of a sinusoidal signal is not
a strictly stationary estimation problem: the derivative of
€(t) with respect to w; is clearly a nonstationary signal.

It follows from Lemma A.1 that the smaller the mini-
mum frequency separation inf; .; |w; — w;|, the slower
the convergence in (A.13). Consider, for example, (A.9)
for w small but nonzero. Then the left-hand side of (A.9)
will generally be small provided that Nw, rather than N,
is large enough [see the right-hand side of (A.9)].

APPENDIX B
WipTH OF THE Loss FuNcTioN TROUGH

We restrict attention to the case w = &, o = &, and ¢
=~ ¢. From (5.3), the derivative of F with respect to & is

gi 11/,2 t[esin (wr + ¢) = & sin (&t + ¢)]
- [ 24 cos (ar + ¢)] (B.la)
= _ad ;tsm[(w+w)t+(¢+¢)]
A2 N
+ % g] tsin (201 + 2)
N N
O(W ; 1 sin [(w - o)+ (¢ — ¢)]

(B.1b)

We claim that the zeros of 3F /dd in the region of interest
are nearly equal to those of the third term of (B.1b). To
support this, a plot of

*Ztsmwt

N = (B.2)

versus w is shown for N = 100 in Fig. 9. It can be seen
that for w not near zero, this function is near zero. Also,
near w = 0, the zero crossings have large slopes and are
therefore insensitive to small additive disturbances.

Defining & = w — d and ¢ = ¢ — @, the third term in
(B.1b) can be expressed as

~ N
an ~
——— 2 rsin (ot +
N 2 tsin(er+9)

=1

IZ: t cos wt>]

=1

l N
= —a&[cos J’(ﬁ 2 tsin Cot)
+ sin <Z><N (B.3)

Since ¢ is small, the second term in (B.3) can be ne-

glected. Thus, forw = &, a = &, and ¢ = ¢, the zeros
of 8F /3& are nearly those of the function
N
1
N '§4 ¢ sin Q. (B.4)

It is not difficult to see that (B.4) is zero for @ = 0. More-



390 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 37, NO. 3, MARCH 1989

40

30

20

=20
0 0.5 1 15 2 25 3 35

¥

Fig. 9. A plotof (1/N) I, 1sin (Jr) versus § for N = 100.

over, for 0 < & < w/N, (B.4) is positive (since each
element of the sum is positive). For & = 2w /N, (B.4) is
negative for large N; thus, the first zero of (B.4) occurs

0 —diag [cos (w;t + ;)]
diag [o; sin (wiz + ¢;)]
diag [roy sin (w;t + é)]

e(1, 8) = | —diag [cos (w;r + @;)]

—diag [t cos (w;t + ¢;)]

for » € [« /N, 2w /N ]. Since (B.4) is an odd function of
&, and since the zeros of (B.4) are approximately equal
to the zeros of 8F /d&, we conclude that the width of the
main valley of F(&) is in the range

el ()3 ()]

AppENDIX C
PrOOF OF THEOREM 4.1

Note that
N
Ky ZI (1, 0) e(1, 0) = 0. (c.1)
Thus, for large N, we can write
N
0 = Ky' Zl e(, 0) e(t) + F(8) Ky(6 — 0)
t=
3m
1 = aF(0) -
+3 igl (8 = 6) =5, Ky(6 — 0) + ,
(C.2)
where 0; is the ith component of § and
N
F(8) = Ky' Zl {eg(t, 0) el (1, 0)
=
+ eg(t, 0) e(1, )} KR (C.3)

The first term in (C.2) is asymptotically independent of
N. To see this, note that its asymptotic covariance matrix,

say P, is given by [see (4.5b) and (4.6)]

>

P £ lim E{KN [Z Z e(t, 0)

N— o 1=1s=

- el(s. 0) (1) e(s)]K,;‘}

N
N lim K,Q{ 21 (1, 0) €5 (1, 0)}KN‘
/=

N—=> o
= N(Pl) (C.4)

where PYy is defined in Appendix A. The last equality in
(C.4) is also proven in Appendix A.
Next we show that for large N,

K,;‘[Z)l ego (1, 0)4:)]1{,;‘ = 0(1/JN). (C.5)

The matrix eg( *,
by

+) of second-order derivatives is given

—diag [ cos (wit + ;)]
diag [ta; sin (w;iz + ;)] |, (C.6)

diag [ %o sin (w;t + ¢;)]

where each block of the matrix has size m X m. The ge-
neric element of the matrix in (C.5) can therefore be writ-
ten as

N
W

A
VN - N6+1 =1

sin (wt + ¢) e(1), (Cc.7)

where 8 = {0, 1,0r2}, a = { o 0or £1}, w = o,
and ¢ = {¢;or ¢; + (w/2)}. The variance of Vy is read-
ily evaluated:

NN
E{V}} = 2ﬁ+2 {21 ;1 %% sin (ot + @)

- sin (ws + &) (1) e(s)}

N g
= NP2 g %8 sin? (wt + ¢).
Thus,
E{V}} = const. NZB” § = 0(1/N),

which proves (C.5).
It follows from the calculations above and from Appen-
dix A that
F(0) = N(P%) ™ + 0(1/N).

Next we show that the higher order terms in (C.2) can
be neglected asymptotically. Note that
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aF(6
% is of the same order of magnitude as F(6),
fori=1,---,2m,
aF(6
—BE)— is of the order of magnitude of F(6) - N,
fori=2m+1, -+ ,3m.
Since
@~ 8) iO(l/\/ﬁ), i=1,-+,2m,
C T L0(1/NVN),  i=2m4 1, - 3m,

and since F(f) is asymptotically independent of N as
shown above, we conclude that the higher order terms in
(C.2) are 0¢( l/\/ﬁ). Thus, for large N,
N
~ 1
Ky(B — 0) = —PP@CR - KR! Zl eo(1, ) €(1)
P

which implies that [cf. (C.4)]
lim E{Ky(f — 6)(8 — 6) 'Ky}
N—

- 1
=PP06R' >\4(P0CR) ! PPﬁ:R:P%R
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