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Abstract: Proper design of receiver flight paths allows three-dimensional information to be
encoded in sensed bistatic SAR phase history data. The authors show how the flight path taken by
the receiving platform determines the resolution of nonparametric scene reconstructions and
determines the variance of three-dimensional scattering centre location parameter estimates.
Based on these relationships, a bistatic SAR data collection strategy can be designed, involving
a nonlinear receiver trajectory that allows preservation of three-dimensional scene information.

1 Introduction

Synthetic aperture radar (SAR) is a widely used sensor
for all-weather air-to-ground surveillance. Applications for
SAR imagery include target detection, recognition and
classification. SAR-based automatic target recognition and
classification algorithms are hampered by the fact that SAR
images are typically two-dimensional reconstructions of the
three-dimensional world. For the common case in which
a monostatic SAR platform traverses a linear (or nearly
linear) aperture, three-dimensional information about the
scene of interest is lost in the data collection process [1–3].
To recover 3-D information from linear synthetic apertures,
one must have available multiple apertures at different
look angles, thereby allowing interferometric [4–6] or
stereo [7, 8] processing. Recent works [9–15] have also
shown that using a curved aperture in monostatic SAR may
allow three-dimensional scene information to be retained
without use of multiple SAR platforms, although the
curvature required for accurate 3-D localisation of scatter-
ing centres may be difficult to achieve in many applications.

An increasing military interest in unmanned aerial
vehicle (UAV) technology has sparked renewed interest in
bistatic synthetic aperture radar. In bistatic SAR data
collection, a transmitting platform and a receiving platform
each traverse some flight path with respect to a scene of
interest. As in monostatic SAR, when the transmitter and
receiver traverse linear flight paths, three-dimensional scene
information is lost in the data collection process [16]. This
happens when the surface swept out in frequency space by
the bistatic line-of-sight (to be defined later) is a plane.
All scatterers within the three-dimensional scene project
orthogonally onto this data collection plane, in the same
manner as defined by the projection-slice theorem for
monostatic SAR [3, 16].

As we will show, allowing the transmitter and=or receiver
to traverse an out-of-plane nonlinear flight path alters the

shape of the data collection surface in frequency space.
The degree to which three-dimensional scene information is
preserved is determined by the shape, dimensions and
orientation of the frequency space manifold. We will
quantify the amount of 3-D information retained by
considering both nonparametric and parametric methods
for scene reconstruction. For a nonparametric reconstruc-
tion, the Fourier resolution gives a measure of one’s ability
to localise a scatterer’s position in three dimensions.
For parametric reconstructions, the Cramér–Rao lower
bound (CRLB), on the variance of the 3-D scattering centre
location parameter estimates, provides an information-
theoretic measure of the amount of 3-D information stored
in a given data set. Based on these two measures for 3-D
scene reconstruction quality, we propose a method for
designing a receiver’s flight path.

2 Bistatic SAR data collection

Consider the bistatic SAR geometry in Fig. 1. The
transmitting and receiving platforms each traverse some
flight path with respect to a scene of interest, which is
centred on the co-ordinate origin. The slant ranges of the
transmitter and receiver are denoted as RtðtÞ and RrðtÞ; and
ftðtÞ and frðtÞ (ytðtÞ and yrðtÞÞ are their respective
azimuth (elevation) angles. The location of the transmitter at
a given time t is

rtðtÞ¼½xtðtÞ ytðtÞ ztðtÞ�T

¼RtðtÞ½cosftðtÞcosytðtÞ sinftðtÞcosytðtÞ sinytðtÞ�T

ð1Þ
and the location of the receiver is

rrðtÞ¼½xrðtÞ yrðtÞ zrðtÞ�T

¼RrðtÞ½cosfrðtÞcosyrðtÞ sinfrðtÞcosyrðtÞ sinyrðtÞ�T

ð2Þ
rtðtÞ and rrðtÞ are column vectors. We assume that the
transmitter flies a linear path and that the receiver flies an
arbitrary curved path. This assumption is motivated by
applications in which the transmitter is at (much) longer
range to the scene of interest than is the receiver, so a linear
approximation of the transmitter flight path is justified. This
assumption does not significantly limit the variety of data
collection manifolds (defined later) that may be considered,
and the results presented below readily extend to the case
wherein both the transmitter and receiver traverse nonlinear
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paths. We also assume that motion measurement errors in
the system are removed using methods in, e.g. [1, 2, 16], and
residual errors result only in image translations without
defocus or distortion.

At regular intervals during the data collection period
t 2 ½�T=2;T=2�; the transmitting platform spotlights the
scene of interest with radiated energy. The projected energy
is assumed to have uniform power over the frequency range
f 2 ½ f0; f0 þ B�; where f0 is the lowest transmitted fre-
quency, and over the transmitted beam. Reflectors within
the scene behave as ideal point scatterers, returning uniform
responses at all frequencies f 2 ½ f0; f0 þ B� and all obser-
vation angles. The receiving platform records the reflected
responses without introducing any spectral distortions, and
gates the recorded data at each look angle such that a
scatterer at the origin has zero time delay. We therefore
represent the total received signal at slow time t in the
frequency domain as

Sð f ; tÞ ¼
X

m

Am exp �j
2pf

c
DRmðtÞ

� �
þ wð f ; tÞ ð3Þ

where DRmðtÞ=c is the round-trip time delay to the mth
scatterer relative to the round-trip time delay to a scatterer
located at the origin and Am is the complex amplitude of the
mth scattering centre. The speed of light is represented by c,
and wð f ; tÞ is a noise term that includes thermal noise in the
receiver and modelling errors (e.g. residual motion
measurement errors). In this paper, wð f ; tÞ is assumed to
be white and Gaussian.

If the imaged scene is small relative to the platform
ranges, a far-field assumption accurately approximates the
differential range DRmðtÞ [16]. This approximation may be
written as

DRmðtÞ 	 � xmðcosftðtÞ cos ytðtÞ þ cosfrðtÞ cos yrðtÞÞ
� ymðsinftðtÞ cos ytðtÞ þ sinfrðtÞ cos yrðtÞÞ
� zmðsin ytðtÞ þ sin yrðtÞÞ

ð4Þ
where the contribution of motion measurement errors [16]
has been neglected, under the assumption that their impact
on the phase history data may be removed via autofocus in
post-processing [1, 2, 16].

Using (4), our expression for the recorded data (3) may be
rewritten as

Sð f ;tÞ	
X

m

Amexp j
4p
c

�
xm fxð f ;tÞþymfyðf ;tÞþzmfzð f ;tÞ

�� �

þwðf ;tÞ

ð5Þ
where

fxð f ; tÞ ¼ f

2

�
cosftðtÞ cos ytðtÞ þ cosfrðtÞ cos yrðtÞ

�

fyð f ; tÞ ¼ f

2

�
sinftðtÞ cos ytðtÞ þ sinfrðtÞ cos yrðtÞ

�

fzð f ; tÞ ¼ f

2

�
sin ytðtÞ þ sin yrðtÞ

�
ð6Þ

The data collection manifold is defined in frequency space
as the surface of points fð fxð f ; tÞ; fyð f ; tÞ; fzð f ; tÞÞg for
f 2 ½ f0; f0 þ B� and t 2 ½�T=2; T=2�: This manifold may
also be viewed as the surface swept out by the bistatic
line-of-sight, written in vector form as

uLOSðtÞ ¼
1

2

cosftðtÞ cos ytðtÞ þ cosfrðtÞ cos yrðtÞ
sinftðtÞ cos ytðtÞ þ sinfrðtÞ cos yrðtÞ

sin ytðtÞ þ sin yrðtÞ

2
4

3
5
ð7Þ

as shown in Fig. 2. For future reference, we define the
bistatic look angle in azimuth as

fb ¼ tan�1 fyð f ; 0Þ
fxð f ; 0Þ


 �
ð8Þ

and in elevation as

yb ¼ tan�1 fzð f ; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxð f ; 0Þ2 þ fyð f ; 0Þ2

q
0
B@

1
CA ð9Þ

Fig. 1 Top view a bistatic data collection geometry

x–y plane is the ground plane

Fig. 2 Bistatic SAR data collection manifold in 3-D frequency
space
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These are the azimuth and elevation angles of the bistatic
line-of-sight vector at the midpoint ðt ¼ 0Þ of the data
collection.

3 Nonparametric three-dimensional scene
reconstruction

3.1 Scene reconstruction via matched
filtering

Given a set of bistatic SAR phase history data fSð fxð f ; tÞ;
fyð f ; tÞ; fzð f ; tÞÞg for f 2 ½ f0; f0 þ B� and t 2 ½�T=2; T=2�;
we now consider nonparametric three-dimensional scene
reconstruction. One typically wishes to form an image
defined by a uniformly spaced grid of sample points, or
voxels, in three-dimensional space. By analysing one voxel
at a time, one may assume that a scattering centre is located
at each grid location. Then, the value of that voxel is
computed as the maximum-likelihood estimate of the
complex reflection coefficient P(x, y, z) at that location
from the measurements fSð fxð f ; tÞ; fyð f ; tÞ; fzð f ; tÞÞg:
This method is not strictly nonparametric, as it does call
for the weak parametric assumption that the scene is
composed strictly of point scatterers of unknown amplitude
located at the defined voxel centres. Maximum-likelihood
estimation of P(x, y, z), for a single scatterer, under the
assumption of white Gaussian measurement errors in the
phase history data requires minimisation of a least squares
cost function written as

J ¼
XNf

i¼1

XNt

k¼1

����Sð fi; tkÞ � Pðx; y; zÞ

� exp j
4p
c

�
xfxð f ; tÞ þ yfyð f ; tÞ þ z fzð f ; tÞ

�� �����
2

ð10Þ
Note that maximum-likelihood estimation of P(x, y, z) for
multiple scatterers would require nonlinear least squares
minimisation of a similar cost function. Differentiating the
cost function J with respect to the real and imaginary parts
of P(x, y, z) and setting it equal to zero allows one to
solve for the least squares estimate of the voxel value,
expressed as

Pðx; y; zÞ ¼ 1

Nf Nt

XNf

i¼1

XNt

k¼1

Sð fi; tkÞ

� exp �j
4p
c

�
xfxð f ; tÞ þ yfyð f ; tÞ þ zfzð f ; tÞ

�� �

ð11Þ
The matched filtering (MF) image formation algorithm [16]
is given by (11) for each image voxel centred at location
(x, y, z).

3.2 Nonparametric scene resolution

The shape and size of the data collection manifold determines
the quality of the MF image. The resolution of a two-
dimensional scene reconstruction is inversely proportional to
the bandwidth of the phase history data in the range and
crossrange dimensions [1, 2]. By simple extension to three
dimensions, the resolution of the 3-D reconstruction
rendered by matched filtering in a particular direction is
inversely related to the bandwidth of the frequency space
data collection manifold in that same direction.

The relationship between bandwidth and resolution is
most clearly seen by considering frequency domain
measurements of a scatterer in one dimension, written as

Sð fuÞ ¼ A0 exp j
4pu0

c
fu

� �
ð12Þ

We assume that the data is uniformly sampled over the
frequency band fu 2 ½ f0; f0 þ Bu�; such that these samples
may be expressed as fu ¼ f0 þ kBu=N for k ¼ 0 . . .N � 1:
The 1-D position of the scatterer is u0: Therefore, the result
of the 1-D MF operation is

PðuÞ¼
XN�1

k¼0

exp j
4pu0

c
f0þ

kBu

N


 �� �
�exp �j

4pu

c
f0þ

kBu

N


 �� �

¼exp �j
4pf0

c
ðu�u0Þ

� �
�exp �j

2pBu

c
ðu�u0Þ 1� 1

N


 �� �

�
sin

2pBu

c
ðu�u0Þ


 �

sin
2pBu

cN
ðu�u0Þ


 �

ð13Þ

Equation (13) yields two observations. First, the quantity
ðu � u0Þ is unambiguously represented in P(u) only over the
range ðu � u0Þ 2 ½�cN=ð4BuÞ; cN=ð4BuÞ�: This gives
the unambiguous range of the reconstruction in the
ûu direction. Secondly, the first nulls of P(u)
occur at ðu � u0Þ ¼ 
c=ð2BuÞ: The Fourier resolution
is typically defined to be one-half the mainlobe width
[1, 2], implying the MF resolution in the ûu direction is
du ¼ c=ð2BuÞ:

Based on the above discussion, the resolution of the 3-D
MF reconstruction is most easily analysed by considering
the bandwidth of the frequency space manifold in three
orthogonal directions. The standard x, y, z co-ordinate
system is ill suited for this analysis, as the orientation of the
frequency space manifold is rarely oriented along the
standard co-ordinate axes. As an alternative, we study three
orthogonal directions defined by the geometry of our data
collection.

The first and most obvious direction to consider is the
range direction defined by the bistatic look angles
as r̂r ¼ ½cosfb cos yb sinfb cos yb sin yb�T : The band-
width of the frequency space manifold in the range direction
is equal to the bandwidth of the collected phase histories
times the cosine of half the bistatic angle between the
transmitter and receiver, defined by

cos b ¼ rtð0ÞT rrð0Þ
krtð0Þkkrrð0Þk

ð14Þ

Therefore, the range resolution may be written as

dr ¼ c

2B cos b=2
ð15Þ

We next define the horizontal crossrange direction to be
ĥh ¼ ½� sinfb cosfb 0�T ; which is orthogonal to the
range direction and parallel to the fx � fy plane. Note that

ðr̂r; ĥhÞ define the traditional slant plane for 2-D image
formation. As shown in Fig. 3b, the bandwidth of the
frequency space manifold in the horizontal crossrange
direction BH is lower bounded by

BH � 2f0 sin
Df
2


 �
cos yb ð16Þ

where
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Df ¼ max
t

tan�1 fyð f ; tÞ
fxð f ; tÞ


 �

�min
t

tan�1 fyð f ; tÞ
fxð f ; tÞ


 �
ð17Þ

Equation (16) implies that the horizontal crossrange
resolution is approximately equal to

dh ¼ c

2BH

¼ c

4f0 sin
Df
2

� �
cos yb

ð18Þ

By default, the vertical crossrange direction is defined to be
the direction orthogonal to the previous two directions, and
is given by v̂v ¼ ½� cosfb sin yb � sinfb sin yb cos yb�T :
As shown in Fig. 3a, the bandwidth of the manifold in this
direction is lower bounded below by

BV � 2f0 sin
Dy
2


 �
ð19Þ

where

Dy ¼ max
t

tan�1 fzð f ; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxð f ; tÞ2 þ fyð f ; tÞ2

q
0
B@

1
CA

�min
t

tan�1 fzð f ; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxð f ; tÞ2 þ fyð f ; tÞ2

q
0
B@

1
CA ð20Þ

This defines the vertical crossrange resolution to be

dv ¼ c

2BV

¼ c

4f0 sin
Dy
2

� � ð21Þ

Given approximations for the manifold dimensions in the
r̂r; ĥh; and v̂v directions, one may also approximate the
resolutions in the directions of the standard co-ordinate
axes through use of the rotation transformation

Bx

By

Bz

2
4

3
5 ¼

cosfb cosyb sinfb cosfb sinyb

� sinfb cosyb cosfb � sinfb sinyb

� sinyb 0 cosyb

2
4

3
5 B

BH

BV

2
4

3
5

ð22Þ

For example, Bx ¼ B cosfb cos yb þ BH sinfb þ BV cosfb

sin yb implies that the x-resolution may be approximated as

dx 	 c

2Bx

¼ 2

2½B cosfb cosyb þBH sinfb þBV cosfb sinyb�
ð23Þ

It is important to note that (15), (18) and (21) approximate
the resolution of an ideal three-dimensional reconstruction
using matched filtering, by assuming uniform sampling in
each direction. The sparse and non-uniform sampling
provided by a nonlinear aperture will give an asymmetric,
nonseparable ideal point response function. The main lobe
widths are well approximated by 2dr; 2dh and 2dv: However,
the point response function may have side lobes which are
higher than the side lobes corresponding to a filled aperture
response. Furthermore, the presence of motion measure-
ment errors during data collection can significantly degrade
resolution, especially in the crossrange directions [1, 2, 16].
Nonetheless, (15), (18) and (21) provide (approximate)
upper bounds useful for analysis and design.

4 Parametric three-dimensional scene
reconstruction

A parametric approach to 3-D scene reconstruction may
offer performance that is superior to the above nonpara-
metric method, provided that the associated parameteric
assumptions are accurate. For example, we can assume that
the scene of interest contains scattering centres that may be
represented by members of a library of scattering centre
models fSQð f ; t;QÞg parameterised by the elements of the
column vector Q: A simple example of a bistatic SAR
scattering model would be a single point reflector in three
dimensions

SQð f ;t;QÞ¼A1 exp½ jc1�

�exp j
4p
c

�
x1 fxð f ;tÞþ y1 fyð f ;tÞþ z1 fzð f ;tÞ

�� �

ð24Þ
where the parameter vector is Q ¼ ½A1;c1; x1; y1; z1�T :
A richer library class could include canonical scattering

Fig. 3 Data collection manifold projected in frequency space
onto different planes

a Onto plane defined by fz-axis and ðcosfb; sinfbÞ direction
b Onto fx � fy plane
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shapes, such as trihedrals, dihedrals, tophats, etc. Similar
methods for parametric modelling of monostatic scattering
centres [9, 17–19] have shown promise in SAR automatic
target recognition applications.

In practice, one assumes that the recorded phase histories
may be represented by a superposition of M scattering
centres corrupted by additive noise, written as

Sð f ; tÞ ¼
XM

m¼1

SQð f ; t;QÞ þ wð f ; tÞ ð25Þ

where wð f ; tÞ is white Gaussian noise, independent of the

signal terms. Here, Q ¼ ½ðQð1ÞÞT ; . . . ; ðQðMÞÞT �T where,

QðmÞ ¼ ½Am;cm; xm; ym; zm�T for m ¼ 1; . . . ;M: One may
then solve for the set of parameters Q̂Q; which are assumed
to describe the observed scene, through the nonlinear
least squares minimisation (with respect to the set of
parameters Q̂Q)

Q̂Q ¼ argmin
Q̂Q

XNf

i¼1

XNt

k¼1

Sðfi; tkÞ �
XM

m¼1

SQð fi; tk;Q
ðmÞÞ

�����
�����
2

ð26Þ
If the scene is truly composed of M or fewer scattering
centres, all represented in the library of scattering models
fSQð f ; t;QÞg; then complete and accurate information
about the scene may be extracted. The extracted
information provides great versatility with respect to the
display of the three-dimensional reconstruction. For
example, using the estimated parameters, one may
compute the noise-free component of Sð f ; tÞ at a desired
resolution (typically a finer resolution) to be ‘imaged’ or
to be input to a nonparametric estimator, or one may
directly display the extracted scattering centres.

4.1 Parametric resolution using the CRLB

The resolution of a parametric model reconstruction is
theoretically limited only by the signal-to-noise ratio.
Analysis using a Cramér–Rao lower bound [9, 17–19]
gives performance limits and serves as a measure to
quantify the resolving power of a parametric model
reconstruction. Using (24) and (25) and following the
methods outlined in [9, 19, 20], we first compute Fisher’s
information matrix, which for the case of additive white
Gaussian noise evaluates to

Fpq ¼ 2

s2

@SQð f ; t;QÞ
@Qp


 �H @SQð f ; t;QÞ
@Qq


 �
ð27Þ

where SQð f ; t;QÞ represents the phase history data in
vector form and s2 is the variance of wð f ; tÞ: The model
parameters are contained in the vector Q ¼ ½y1jy2j . . .�;
where each yi is a scalar element of Q (e.g. in (25) y1 ¼ A1;
y2 ¼ c1; etc.). The CRLB on the variances of estimates of
the parameters in Q are then given by the diagonal elements
of the inverse of Fisher’s information matrix CQ ¼ F�1;
such that varðyiiÞ � ½CQ�ii: A more detailed derivation of the
CRLB for the parameters of (24) is given in the Appendix.

Scene reconstruction via parametric modelling comes
with some limitations. First and foremost, an accurate
reconstruction is dependent on selecting a sufficient number
of scattering centres M and on having a library of scattering
centres fSQð f ; t;QÞg that is truly representative of the
scene content. Failure in either of these areas may give
unpredictable results. Secondly, even if the model order and
library of scattering centres is chosen accurately, parametric

models are sensitive to the phase errors introduced by
MMEs, even more so than in nonparametric reconstructions.
Lastly, solving the nonlinear least squares problem in (26) is
computationally intensive, thus limiting the number of
scattering centre that may be modelled and the size of the
data collection that may be processed.

5 Receiver flight path design

To achieve high-resolution 3-D scene reconstructions,
curved receiver paths can be designed to maximise the
dimensions of the frequency space manifold described in
Section 2. The range resolution is fixed by the
transmitter=receiver bandwidth B. However, from (18)
and (21), we see that the crossrange resolutions of a
matched filtering reconstruction can be manipulated by
altering the angular spans of the data collection surface. The
horizontal crossrange bandwidth increases with the azi-
muthal span Df of the data collection surface, and the
vertical crossrange bandwidth increases with the elevational
span Dy of the data collection surface. Similarly, the
resolution of a parametric modelling reconstruction, as
defined by the Cramér–Rao lower bounds on location
estimates, can be affected through choice of the data
collection surface. The following design examples illustrate
how varying the receiver flight path may be used to adjust
the angular span of the frequency space manifold and to
alter the CRLB on scatterer location estimation.

In this simulation, the transmitting platform traverses a
straight and level flight path centred on and orthogonal to
the positive X-axis, and the receiver’s trajectory is similarly
symmetric over the positive X-axis, but is shorter and at
closer range, with altitude 3 km and ground range 8 km. The
transmitter altitude is 10 km, and its ground range is 30 km.

In the first example, we maintain a constant receiver
altitude but add curvature to the receiver flight path by
varying it in the quadratic form

xrðtÞ ¼ xrð0Þ � ayrðtÞ2 ð28Þ
where a controls the eccentricity of the receiver’s trajectory.
Recall that the receiver’s position vector is rrðtÞ ¼
½xrðtÞ yrðtÞ zrðtÞ�T : Figure 4 shows receiver flight
paths for values of a of 0–0.0331.

The effect of increased flight path eccentricity on the
angular spans is shown in Fig. 5a, and the resultant resolution
of a nonparametric 3-D reconstruction are shown in Fig. 5b.
Figure 6 shows the square root of the diagonal elements of

Fig. 4 Receiver flight paths (shown as heavy lines) for a values of
0–0.0331

The dotted lines show the receiver line-of-sight to scene centre at the
aperture end points
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F�1; corresponding to the range, and horizontal and vertical
crossrange, parameter estimate variances. Note the strong
similarity between Figs. 5b and 6. This is not surprising, for
filled apertures, the nonparametric resolution is known to be
proportional to the parametric resolution, and they are
expected also to be similar in the sparse aperture case. It is

clear in both cases that added flight path eccentricity
improves the reconstruction resolution. Note that the flight
path length increases with increasing path eccentricity,
which is why the vertical crossrange resolution improves
without sacrificing horizontal crossrange resolution in
this case.

In the second design example, we keep the eccentricity
constant at a ¼ 0:0331 and we tilt the receiver flight path

Fig. 8 Effects of receiver flight path tilt

a Effect on angular spans of the data collection surface
b Effect on range, horizontal crossrange and vertical crossrange resolutions
Angular spans are related to the crossrange resolutions via (18) and (21)

Fig. 5 Effects of receiver flight path eccentricity

a Effect on angular spans of the data collection surface
b Effect on range, horizontal crossrange and vertical crossrange resolutions
as computed from (18) and (21)

Fig. 6 Effect of receiver flight path eccentricity on the
performance of a parametric model scene reconstruction

Fig. 7 Receiver flight paths (shown as heavy lines) for tilt angles
from �50� to 50�

The dotted lines show the receiver line-of-sight to scene centre at the
aperture end points
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about the line Z ¼ zrð0Þ; X ¼ xrð0Þ: By varying the amount
of flight path tilt, as shown in Fig. 7 we achieve the angular
spans plotted in Fig. 8a, the resolutions shown in Fig. 8b and
the CRLB curves plotted in Fig. 9. One may therefore
observe that, for the best 3-D resolution, the receiver flight
path should not only be nonlinear, but the plane in which
this path lies should be approximately orthogonal to the
receiver line-of-sight. At a tilt angle of �20�; the receiver
flight path is coplanar with the line-of-sight to scene centre;
thus no out-of-plane resolution is possible.

To demonstrate the improvement realised by using both
a curved and tilted receiver flight path, we generated
two three-dimensional reconstructions of a point scatterer
with position r0 ¼ ð0:23; 0:50; 0:67Þ using (5) and (11).
Figure 10 shows a 3-D MF image reconstructed from data

collected by a receiver flying the linear flight path of Fig. 4,
and Fig. 11 shows a 3-D MF image reconstructed from data
collected by a receiver flying the curved path with a tilt
angle of 50� shown in Fig. 7. The ambiguities seen in Fig. 10
indicate a lack of resolution in the vertical crossrange
direction; on the other hand, the 3-D localisation of the
scattering centre is clearly seen in Fig. 11. The point
scattering response in Fig. 11 is asymmetric due to the
nonuniform frequency space sampling caused by the curved
and tilted-receiver trajectory.

Li et al. [10, 11] and Knaell [12] present, for the
monostatic case, an alternative method for exploiting the
3-D information encoded by nonlinear data collection
geometries. If the data supporting Fig. 11 were used to
form a 2-D image at z ¼ 0m (corresponding to the
projection shown on the x–y plane in Fig. 11), one would
observe a point response smeared in crossrange by an
uncompensated quadratic phase error, corresponding to the
parabolic receiver flight path. The magnitude of this phase
error is determined by the height of the scattering centre
out of the ground plane. One may use autofocus algorithms
[1, 2, 16] to estimate the magnitude of this phase error
function, which then allows one to compute an estimate for
the scatterer height. However, the presence of azimuth phase
errors, due to uncompensated motion measurement errors, in
the collected phase histories will confuse this method of
height estimation, and overlapping lay-over of scatterers
from different heights may also prevent 3-D localisation.

6 Conclusions

This paper has shown that the 3-D resolution of a bistatic
SAR scene reconstruction is dependent on the dimensions of
the data collection manifold. These dimensions may be
manipulated through receiver flight path design to achieve
finer resolution nonparametric 3-D reconstructions and

Fig. 10 Three-dimensional point scatterer, r0 ¼ ð0:23; 0:50;
0:67Þ; reconstruction formed from phase history data collected
by a receiver traversing a linear flight path

�3 dB surface contour and projected contours in 5 dB increments

Fig. 11 Three-dimensional point scatterer, r0 ¼ ð0:23; 0:50;
0:67Þ; reconstruction formed from phase history data collected
by a receiver traversing a parabolic and tilted flight path

�3 dB surface contour and projected contours in 5 dB increments

Fig. 9 Effect of receiver flight path tilt on performance of a
parametric model scene reconstruction
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more accurate parametric estimates of 3-D information. We
have demonstrated the validity of receiver flight path design
through an example, and have shown that 3-D localisation
of a point target was achieved in a 3-D MF reconstruction.
Our analysis does not take into account practical consider-
ation of motion measurement errors, or practical issues
associated with executing nonlinear trajectories and motion
compensation. However, the derived metrics give approxi-
mate lower bounds for 3-D resolution accuracy and give
insight into the effects of flight trajectories on scene
reconstruction performance. Both nonparametric and para-
metric resolution are effective tools for flight path design,
thus allowing greatly improved 3-D resolution of the
resulting reconstructed scene.
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8 Appendix: Derivation of the Cramér–Rao lower
bounds on the variance of 3-D scatterer position
estimates

A well documented means for computing optimal achie-
vable performance of unbiased estimators is the Cramér–
Rao lower bound, as detailed in [21]. The CRLB for a
parametric model gives the minimum variance that an
unbiased estimator of that model can achieve in the presence
of additive noise under a given distribution. The method for
computing a CRLB is as follows. First, one must construct

Fisher’s information (FI) matrix for the given parametric
model and noise distribution. An FI matrix is a square with
the number of rows equal to the number of parameters in the
model. The elements of this matrix are defined as

Fpq ¼ E
@ log pðYjuÞ

@yp


 �T @ log pðYjuÞ
@yq


 �� �
ð29Þ

where Ef�g represents the expected value, yp is the pth
model parameter and logðpðYjuÞÞ is the log-likelihood
function of the observed random signal Y given the
parameter vector u: For example, if we were to construct
a real-valued model of N samples with real additive white
Gaussian noise, the likelihood function and log-likelihood
functions would be

PðY juÞ ¼ 1

ð2ps2ÞN=2
exp

�ðY � SðuÞÞHðY � SðuÞÞ
2s2


 �

ð30Þ

logPðY juÞ ¼ �N

2
logð2ps2Þ � 1

2s2
ðY � SðuÞÞHðY � SðuÞÞ

ð31Þ

where s2 is the variance of the noise. Here, SðuÞ is the
estimated noiseless signal, defined by the parameter vector
u: Once the FI matrix has been constructed, the CRLB is
found as the inverse of the FI matrix. The diagonal entries of
the CRLB are the minimum achievable variances for any
unbiased estimator of these parameters under the given
noise conditions. By using the CRLB, one can predict the
efficacy of a parametric model under noisy conditions, and
in our case at a given resolution.

The CRLB for the model of (24) is obtained by
computing and inverting the corresponding Fisher infor-
mation matrix for a single point scattering centre with
amplitude A expð jcÞ and location (x, y, z). In this case, the
parameter set u is fA;c; x; y; zg; and we will represent the
mean complex signal of length N as a real-valued vector of
length 2N

sðuÞ ¼ ½sI;1ðuÞ; . . . ; sI;NðuÞ; sQ;1ðuÞ; . . . ; sQ;NðuÞ�T ð32Þ

where sI;iðuÞ and sQ;iðuÞ represent the noiseless real and
imaginary parts of the signal indexed by frequency sample.
The likelihood function for this signal is

pðyjuÞ ¼ 1

ðps2ÞN
exp �ðy � sðuÞÞTðy � sðuÞÞ

s2


 �
ð33Þ

and the log-likelihood function is

log pðyjuÞ ¼ �N logðps2Þ � 1

s2
ðy � sðuÞÞTðy � sðuÞÞ

ð34Þ

where y is a noisy realisation of the signal with means sðuÞ
and variance of s2=2 on each frequency sample.

Taking the derivatives of our log-likelihood function with
respect to yp yields

@ log pðyjuÞ
@yp

¼ 2

s2
ðy � sðuÞÞT @sðuÞ

@yp


 �
ð35Þ

which can be computed for each element of u: Next, we
compute each entry of the Fisher matrix
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Fpq ¼ E
@ log pðyjuÞ

@yp


 �T @ log pðyjuÞ
@yq


 �� �

¼ 4

s4

@sðuÞ
@yp


 �T

Efðy � sðuÞÞðy � sðuÞÞTg @sðuÞ
@yq


 �

¼ 2

s2

@sðuÞ
@yp


 �T @sðuÞ
@yq


 �

ð36Þ

which is equivalent to

Fpq ¼ 2

s2

@ŝsðuÞ
@yp


 �H @ŝsðuÞ
@yq


 �
ð37Þ

where ŝsðuÞ is the complex valued vector ½sI;1ðuÞ þ
jsQ;1ðuÞ . . . sI;NðuÞ þ jsQ;NðuÞ�T : The derivatives for the

model of (24) are

@ŝsðuÞ
@A

¼ exp½ jc� � exp j
4p
c

�
xfxð f ;tÞþ yfyð f ;tÞþ zfzð f ;tÞ

�� �

ð38Þ

@ŝsðuÞ
@c

¼Ajexp½jc��exp j
4p
c

�
xfxðf ;tÞþyfyðf ;tÞþzfzðf ;tÞ

�� �

ð39Þ

@ŝsðuÞ
@x

¼ Aj
4pfxð f ; tÞ

c
exp½ jc�

� exp j
4p
c

�
xfxð f ; tÞ þ yfyð f ; tÞ þ zfzð f ; tÞ

�� �

ð40Þ

@ŝsðuÞ
@y

¼ Aj
4pfyð f ; tÞ

c
exp½ jc�

� exp j
4p
c

�
xfxð f ; tÞ þ yfyð f ; tÞ þ zfzð f ; tÞ

�� �

ð41Þ

@ŝsðuÞ
@z

¼ Aj
4pfzð f ; tÞ

c
exp½ jc�

� exp j
4p
c

�
xfxð f ; tÞ þ yfyð f ; tÞ þ zfzð f ; tÞ

�� �

ð42Þ
which are complex-valued vectors indexed by frequency
and slow time samples. Finally, the CRLB of our
parameter set is defined to be inverse of the Fisher
matrix, F�1; the lower bound on the variance of each
parameter is given by the corresponding diagonal
element of F�1:
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