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Source Localization With Isotropic Arrays
Ülkü Oktel and Randolph L. Moses, Senior Member, IEEE

Abstract—We consider the effect of unknown signal propaga-
tion velocity on direction-of-arrival (DOA) estimation performance
using an array of sensors. For general arrays, the DOA estimation
variance, as measured by the Cramér–Rao bound (CRB), degrades
when the propagation velocity is unknown. In this letter, we show
that for both two- and three-dimensional arrays, the CRB on the
DOA angle is independent of whether or not the propagation ve-
locity is known if and only if the sensor locations satisfy the isotropy
conditions given in earlier work. The results hold for both narrow-
band and wideband signals.

Index Terms—Array geometry, Cramér–Rao bound (CRB),
isotropic array, propagation velocity.

I. INTRODUCTION

MOST direction-of-arrival (DOA) estimation algorithms
are based on the relative arrival times of a source signal

at sensor elements, and thus DOA estimation performance of a
sensor array can be degraded when the speed of propagation
is unknown. This happens, for example, in seismic signal pro-
cessing where depends on unknown soil or rock conditions be-
tween the source and array elements, and in aeroacoustic mea-
surements, where the speed of sound depends on both tempera-
ture and wind speed.

The effect of unknown speed of propagation on the DOA esti-
mation performance of a sensor array is considered in [1], where
the problem of localizing an unknown source using wideband
measurements from an array of sensors is studied. The authors
assume that is unknown and derive the Cramér–Rao bound
(CRB) for the location of the source, which is the source DOA
in the far-field case. When is unknown, the CRB performance
of the array may be degraded, depending on the array geometry
used. The authors show that uniform circular array is one array
geometry where the source DOA CRB is not affected from
being unknown.

In this letter, we generalize the result in [1] in three ways.
First, we establish the entire class of array geometries for which
the source location CRB is independent of . In particular, we
show that the source location CRB is independent of if and
only if the array is isotropic. Isotropic arrays are arrays for which
the far-field source DOA CRB is independent of source arrival
angle (when is known); their properties are explored in [2].
Second, we give analytical expressions for the loss in DOA ac-
curacy due to unknown when the DOA is estimated using an
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anisotropic array; the loss is parameterized by a simple expres-
sion that depends on the eigenvalues of a (2 2) (for planar ar-
rays) or (3 3) (for volume arrays) covariance-like matrix that
characterizes the array geometry. Finally, we extend the results
in [1] from a planar array geometry to the three-dimensional
(3-D) case.

II. SYSTEM MODEL

We assume that: 1) the sensor array has identical sensors;
2) each sensor is located at location for ; and 3)

is centroid of these sensors. A single,
generally wideband, far-field source impinges on the array
from direction . For 3-D geometries, , and for
planar geometries, , where the azimuth angle is mea-
sured counterclockwise from the axis and the elevation angle

measured from the plane. The signal is assumed to be
zero mean and Gaussian. The noise at the sensors is assumed
to be independent, zero mean, Gaussian, and independent of the
source signal. The observation time is partitioned into in-
tervals of length , and a -point discrete Fourier transform is
applied to each interval. Then [3]

(1)

where are vectors, and is a
scalar. The elements of , and are the dis-
crete Fourier coefficients of the sensor outputs, the noise, and
the signal source at the discrete frequency , respectively. Also

(2)

where is the propagation delay associated
with the th sensor, is the speed of propagation and is the
unit vector pointing toward the signal source. For 3-D signals

(3)

and for planar signals

(4)

Assuming is long enough, the vectors are uncorre-
lated. A more compact expression for the observations given in
(1) is

... (5)
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The covariance matrix of the sample vector is given by

diag (6)

(7)

and where and are the signal and noise power spectral
values at frequency , respectively.

III. CRB FOR THE DOA ANGLE WHEN SPEED

OF PROPAGATION IS UNKNOWN

In this section, we give the CRB expression for the DOA
angle when the speed of propagation is also unknown, i.e., when
the parameter vector to be estimated is . We show
that the CRB expression is the same whether speed of propaga-
tion is known or unknown if and only if the array geometry is
isotropic. We consider both planar and 3-D arrays.

A. Planar Arrays

Assume that a planar array with elements located at
is used to estimate the DOA of a single

wideband coplanar signal .
Since are independent samples of a zero-mean

Gaussian process, the Fisher information matrix (FIM) on the
the parameter vector is given by (see also [1], [3],
and [4])

FIM (8)

tr (9)

where is given in (6). The entries of the FIM are given by

where and

(10)

(11)

The narrowband case is the special case that above. In
either the narrowband or wideband case, is a nonnegative
scalar whose form has no bearing on the results that follow;
rather, the results rely on the structure of as characterized by
the form of the matrix .

When the speed of propagation is known the CRB on the
DOA angle is given by (e.g., see [2])

CRB (12)

When the speed of propagation is unknown, the CRB on the
DOA is given by the upper left entry of FIM given in (8)
(see also [1])

CRB (13)

where is the penalty term due to the unknown speed of prop-
agation and given by

(14)

We use the notation CRB for the DOA CRB when is
known, and CRB for the DOA CRB when is unknown.

In the above CRB derivation, we assumed for simplicity that
the signal and noise spectral values (i.e., and ) are known.
However, the results that follow do not change if these spectra
are unknown, because the FIM is block-diagonal in these un-
known spectral values whether or not is known.

In [2], an isotropic planar array is defined to be one whose
single-source CRB is independent of the source arrival angle .
It is shown that a planar array is isotropic if and only if its array
covariance matrix [given in (11)] is in the form where

is a positive constant and is the (2 2) identity matrix. The
matrix is similar to a covariance or moment-of-inertia matrix
if the array elements are considered as unit masses at their ele-
ment locations. With the following theorem, we will show that
unknown speed of propagation does not affect the CRB perfor-
mance of the array if and only if the array is isotropic.

Theorem 1: For a planar array, the penalty term due to the
unknown speed of propagation is zero for all arrival angles

if and only if the array is isotropic.
Proof: Let and be the eigenvalues ,

and let and be the eigenvectors of the array covariance
matrix B in (11)

(15)

Since is unitary, and can be written as

(16)

(17)

for some angle (see Fig. 1 for a geometric interpretation).
Inserting (4), (11), (15), (16), and (17) into (14) yields

(18)

where . From (18), we see that is zero for all
if and only if , which is equivalent to with

.
In [1], it is shown that is zero for uniform circular arrays.

With Theorem 1, we extend this result to all isotropic arrays, and
we also show that isotropy is a necessary and sufficient condi-
tion.

When an array is not isotropic, the penalty term depends
on the source DOA. From (18), (i.e., there is no loss
of CRB accuracy when is unknown) when for
integer ; this happens when the signal DOA coincides with one
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Fig. 1. Ellipse representation of the array covariance matrix [B in (11)]
corresponding to a 2-D array.

of the eigenvectors of (see Fig. 1). We define ;
can be viewed as a measure of anisotropy for a planar array,

since and corresponds to an isotropic array.
We can write the ratio of the CRBs for unknown and known
in terms of

CRB
CRB

(19)

This ratio shows the relative loss in the CRB performance of
the array when speed of propagation is unknown as a function
of the anisotropy of the array. Notice that for a given , the ratio
in (19) is maximum for and integer . Fig. 2
shows the relation between the worst case CRB CRB
and for .

As can be seen from Fig. 2, the DOA accuracy loss is large
when , which is the case in nearly linear arrays (for
linear arrays, there is an ambiguity between DOA and , and
they cannot be jointly estimated without additional prior knowl-
edge; thus, CRB is infinite in this case). We can conclude that
nearly linear arrays may have very poor DOA estimation perfor-
mance in media where speed of propagation is subject to change
or cannot be determined exactly. On the other hand, moderately
anisotropic arrays exhibit a small loss in DOA performance. For
example, the CRB ratio in (19) is for , and this
is at a worst case DOA.

We remark that [1] and [5] also consider the scenario where
the impinging signal is a near-field source; they give the CRB
expression for the and locations of the source when the speed
of propagation is unknown. The result in Theorem 1 applies to
far-field sources only; there does not appear to be a class of ge-
ometries for which unknown imposes no loss of performance
for near-field source localization.

B. Three-Dimensional Arrays

In this section, we will generalize the results in the previous
section for 3-D arrays. Assume a 3-D array
is used to estimate the DOA of a 3-D signal arriving at angle

where is the azimuth and is the elevation
angles.

The FIM on the parameter vector is given by

FIM

Fig. 2. Relation between isotropy of the array and relative loss in the CRB due
to the unknown speed of propagation.

where

(20)

(21)

(22)

Here , and and are the
same as in (10) and (11).

When the speed of propagation is known, the CRB on the
DOA angle is

CRB (23)

When the speed of propagation is unknown, using the matrix
inversion lemma it can be shown that the CRB on the DOA angle

is given by

CRB (24)

where the (2 2) positive semidefinite matrix is the penalty
term due to the unknown speed of propagation and is given by

(25)

It is useful to introduce a scalar measure of DOA estimation
accuracy. The mean square angular error (MSAE) is such a mea-
sure, and it is defined as the mean-squared angle between the
true DOA unit vector and its estimate (see [6] for
derivation and details on MSAE). It can be shown [6] that the
MSAE is bounded by

MSAE MSAE CRB CRB

(26)

where CRB is the th element of CRB given in (23).
In [2], an isotropic 3-D array is defined to be one whose bound
on the MSAE is constant for all . It is shown in [2] that
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is a necessary and sufficient condition for isotropic perfor-
mance. As in the planar case, there is no penalty in the CRB due
to the unknown speed of propagation for 3-D arrays when the
array geometry is isotropic. The following theorem establishes
this result.

Theorem 2: For a 3-D array, the penalty term due to the un-
known speed of propagation is zero for all arrival angles if
and only if the array is isotropic.

Proof: Let , and be the eigenvalues
and , and be the eigenvectors of the array

covariance matrix of a 3-D array. We can align the , and
axes with the eigenvectors of by a coordinate-system rotation.
Thus, without loss of generality, we can choose the coordinate
system such that , and

, i.e., the axes coincide with the eigenvectors.
Then

From (27), it can be seen that is zero if and only if
, since is finite. With the chosen coordinate

system, the vector in (21) becomes

(27)

From (27), it can be seen that for all
if and only if , which

is equivalent to the condition with .

IV. CONCLUSION

For both 2-D and 3-D arrays, we showed that when the array
geometry is isotropic, direction-of-arrival performance in terms

of CRB is independent of whether or not the speed of propaga-
tion is known. Isotropic arrays not only provide uniform CRB
performance for all possible DOA angles but also are robust to
an unknown speed of propagation. We derived the performance
loss in DOA accuracy due to unknown , and we showed that
while linear arrays have the worst performance loss, moderately
anisotropic arrays have only a slight performance loss in DOA
accuracy.

The results presented assumed that the propagation velocity is
not a function of frequency. For propagation in dispersive media,
the propagation speed changes with frequency and must be es-
timated for each frequency bin (or group of bins). The results
above apply to this case as well: the Fisher information matrix,
and thus the CRB, is block-diagonal in the DOAs and propaga-
tion velocities if and only if the array is isotropic.

The results presented apply to far-field sources. There does
not appear to be a class of array geometries for which unknown

imposes no loss of location estimation performance for near-
field sources.
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