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Abstract

We present a Bayesian approach for model-based classi"cation from unordered, attributed feature sets. A set of
features is estimated from measured data and is matched with a set predicted for each candidate hypothesis using
a feature model. Both extracted and predicted feature sets have uncertainty, and some features may not be present in one
set or the other. Computation of the match likelihoods requires a correspondence between estimated and predicted
features, and two Bayesian correspondence methods are discussed. The proposed procedure is used to predict classi"ca-
tion performance as a function of sensor parameters for a 10-vehicle target recognition problem using X-band synthetic
aperture radar imagery. � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

A statistical decision approach is presented for model-
based M-ary classi"cation using feature sets. The ap-
proach provides a structured, implementable method for
managing complexity of the hypothesis set and measure-
ment uncertainty. Model-based pattern matching com-
bines uncertainty in both the object class models and
the sensor data to compute posterior probabilities of
hypotheses. Further, the approach permits tractable
performance estimation.

1.1. Managing complexity

Classi"cation tasks often must confront the combined
complexity of a high-dimensional observation space and a
large set of multi-modal candidate hypotheses.
Pattern recognition from measured imagery is charac-

terized by a high-dimensional observation space. A typi-
cal image may comprise a 256�256 array of pixels,
yielding an observation vector in R�, where N"2��. For
both computational simplicity and performance robust-
ness, feature extraction is used to reduce the data to
lower dimension. Signi"cantly, physically motivated
features can allow a tractable alternative to a 2���2��
covariance matrix for description of measurement uncer-
tainty. The features serve as statistics for the classi"cation
problem.
In addition, many pattern recognition problems are

characterized by a complex hypothesis space. The hy-
pothesis set consists of M classes, or objects. The com-
plexity arises in that each object may be observed in
a variety of poses, con"gurations and environments,
thereby resulting in an intractable density function for
the measurement conditioned on the object. The number
of enumerated subclasses explodes exponentially; a
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Fig. 1. A staged approach to manage high-dimensional obser-
vations and complex hypothesis sets encountered in classi"ca-
tion of radar images.

typical application for 10)M)50 object classes might
dictate 10�� subclasses [1]. Moreover, an application
may require subclass decisions.
For such classi"cation problems, a Bayes optimal deci-

sion rule is generally intractable. For example, consider
the simple case in which each subclass is Gaussian with
a common covariance matrix. Then, the Bayes optimal
rule is to classify the image to the nearest subclass mean.
The minimal su$cient statistic is the projection of
measurement vector onto the smallest a$ne set contain-
ing the subclass means. Such a statistic would require
measurement, storage and computation using 10�� tem-
plates.
To address hypothesis complexity, a staged, coarse-

to-"ne classi"cation strategy is used to e$ciently search
the hypothesis space. In addition, a sensor data model
is combined with object models to predict features condi-
tioned on a hypothesis. The on-line prediction of features
eliminates the need for measurement and storage of a
prohibitively large catalog of image templates.

1.2. Model-based matching

In the "rst part of the paper we derive a Bayesian
classifer that uses feature sets and model-based feature
prediction to manage problem complexity. The classi"ca-
tion approach is summarized in Fig. 1. A state of nature
is characterized by the hypothesis of an object class or
subclass, H

�
, from which a measurement ; is drawn.

A feature extraction stage serves to reduce the dimen-
sionali-ty of the measured data; parameters are estimated
from imagery and used as low-dimensional surrogates for
su$cient statistics. The uncertainty in these parameters
is given as a density function, f (>�;), and re#ects the
sensitivity of parameter estimates, >, to noisy sensor
data, given the measured data, ;.
The complexity of the hypothesis space is addressed

in a coarse-to-"ne approach. An index stage provides a
list of candidate hypotheses, H

�
, k"1,2,K, based on

a coarse partitioning of the hypothesis space. The candi-
date hypotheses may be class hypotheses or subclass
hypotheses, depending on the application. Evaluation of
the candidate hypotheses then proceeds using a model
for the observations. A feature prediction stage computes
a predicted feature set by combining the sensor data
model from the feature extraction stage and a computer-
aided design (CAD) representation of a hypothesis H

�
.

The predicted feature set, X�, has an associated uncer-
tainty f (X�H

�
) acknowledging error in the modeling and

variation among objects in the subclass.
Finally, the predicted and extracted feature sets are

combined in a "ne classi"cation, or Bayes Match, stage
to compute the posterior probability of a candidate
hypothesis, �(H

�
). The top hypotheses, and their likeli-

hoods, are reported as the output of the classi"cation
system. Computation of the likelihood scores requires

a correspondence between extracted and predicted fea-
tures and an integration over feature uncertainty. The
task can be viewed as a probabilistic graph match of fully
connected, attributed graphs with deletions and inser-
tions of nodes.
Inexact feature matching, and the related inexact

graph matching problem, have been the subject of much
work in the pattern recognition community [2}7]. Early
inexact matching approaches (e.g., Ref. [2]) use a rela-
tional distance metric that includes the ability to insert
nodes into graphs to determine structural isomorphisms
in the presence of structural error. Boyer and Kak [3]
develop a structural matching technique that includes
a conditional information measure to penalize attribute
deviations in the match. Recent work on Bayesian struc-
tural matching considers subgraph matches and edit dis-
tances [6,7]. These structural match problems typically
have a large number of nodes that are not fully connected
by edges, and the research emphasis has been on com-
putationally e$cient search solutions that exploit the
edge structure. Here, we consider a problem in which
there is no structural relationship between the nodes; this
corresponds to a graph matching problem in which the
nodes are fully connected. We consider fully connected
graphs and seek Bayes optimal matches that incorporate
prior probabilities of node deletions and extraneous
nodes; a related geometric hashing approach is con-
sidered in Ref. [5].

1.3. Example application

The second part of the paper focuses on application of
the proposed model-based Bayesian classi"cation ap-
proach to recognition of vehicles using synthetic aperture
radar (SAR) images. We adopt an electromagnetic scat-
tering model for use in both the feature extraction and
feature prediction stages. The feature uncertainty can be
predicted from knowledge of sensor noise and uncertain-
ty in the model-based prediction process. We emulate
a coarse classi"cation stage using cross correlation
between measured and catalog images and develop a
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�For notational simplicity, we drop the subscript on hypothe-
sis H

�
in the sequel, and consider a general H3H Correspond-

ingly, we drop the k on X� and m
�
in Eq. (2).

feature-based classi"er using the scattering model fea-
tures. The extracted feature set is perturbed by random
deletions of predicted features or insertions of additional
features not present in the predicted set.
We present synthetic classi"cation performance pre-

dictions using class means estimated from measured X-
band SAR imagery of 10 vehicles. In particular, we assess
the value of speci"c feature attributes in the model. We
also consider sensitivity of classi"cation performance
to the assumed feature uncertainties and priors. The
results illustrate that the Bayes approach to model-based
classi"cation is tractable and that the optimal Bayes
error rate is estimable given priors and feature uncertain-
ties. The example also illustrates how one can use the
Bayes classi"er as a simulation tool to explore perfor-
mance as a function of sensor parameters (bandwidth,
signal-to-noise ratio, number of extracted features, etc.)
or to explore sensitivity of classi"cation performance to
assumed priors and feature uncertainties.
The paper is organized as follows. In Section 2 we out-

line the classi"cation problem and discuss the Bayesian
likelihood framework. Evaluation of the feature match
likelihoods requires feature correspondence and feature
likelihood scoring from uncertainty models; Section 3
discusses these issues. In Section 4 we propose two match
scoring functions based on probabilistic and determinis-
tic correspondence assumptions; we relate the two match
scores and present two fast, approximate computational
techniques for obtaining the deterministic correspond-
ence. Section 5 outlines the SAR application; we present
the feature and clutter models and parameter uncertain-
ty. In Section 6 we present classi"cation performance
results obtained by applying the Bayes classi"er to a
10-class vehicle recognition problem. Section 7 presents
conclusions.

2. Classi5cation problem statement

The Bayes matching problem we consider is given as
follows. At the input to the classi"er stage, we are given
a vector of n features

>"[>
�
,>

�
,2,>

�
]�, (1)

extracted from a measurement, ;. Each feature >
�
is an

l�1 vector of ordered attributes. The attributes may
characterize location, amplitude, pose, or other proper-
ties of the features. We are also given a set H"

�H
�
, k3[1,K]� of K candidate hypotheses, along with

their prior probabilities P(H
�
). The set H typically is

provided by the preceding index stage, as depicted in
Fig. 1.
We assume available a feature prediction function

which maps a hypothesis H
�
to a set of m

�
predicted

features

X�"[X�
�
,X�

�
,2,X�

��
]�. (2)

Finally, we assume a known probability model for
the uncertainty of the attributes for any predicted or
extracted feature, as well as models for appearance of a
given feature in > and for the feature attributes if >

�
is

a false-alarm feature (i.e., >
�
does not correspond to

a predicted feature). Uncertainty models are presented in
Section 3B.
We seek to compute the posterior likelihood of the

observed features, >, under each of the K hypotheses in
the set H.

�
�
"P(H

�
�>), H

�
3H. (3)

The most likely hypotheses and their corresponding
likelihoods are reported at the output of the classi"er. If
the desired output is a "nal classi"cation, we adopt the
maximum a posteriori probability (MAP) decision rule
and choose the class corresponding to the highest poste-
rior likelihood score.
To compute the posterior likelihood in Eq. (3), we

apply Bayes rule for any H3H to obtain�

P(H�>)"P(H�>, n)"
f (>�H, n)P(H�n)

f (>�n)

"

f (>�H, n)P(n�H)P(H)

f (>�n)P(n)
. (4)

The conditioning on n is required because the number of
features in> is itself a random variable. Since the denom-
inator of Eq. (4) does not depend on hypothesis H,
the MAP decision is found by maximizing
f (>�H, n)P(H)P(n�H) over H3H. The priors P(H) and
P(n�H) are assumed to be known or are provided by the
index stage.
To compute f (>�H, n) we incorporate uncertainty in

both the predicted and extracted feature sets. The uncer-
tainty is modeled as shown in Fig. 2. Assume the object
being measured has a true feature vector XK . We measure
that object with a sensor and obtain a feature vector >.
The measured feature vector di!ers from XK due to noise,
sensor limitations, etc. We write this di!erence notionally
as >"XK #N

�
where N

�
is a feature extraction error

described by a probability density function f (>�XK ). In
addition, if we suppose a hypothesis H, we can predict
a feature vector X that di!ers from XK because of
modeling errors. We express this di!erence as
XK "X#N

�
where N

�
is a prediction error with prob-

ability density function f (XK �X)"f (XK �H). Note that X is
completely determined from the hypothesis H.
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Fig. 2. Deviation of a `truea feature on an object being mea-
sured due to both measurement uncertainty N

�
and model

uncertainty N
�
.

Therefore, to determine the conditional uncertainty of
> given hypothesis H, we have

f (>�H, n)"� f (>�XK ,H, n) f (XK �H, n) dXK , (5)

where f (XK �H, n) models the feature prediction uncertain-
ty, and f (>�XK ,H, n) models feature extraction uncertain-
ty. The computation of f (>�XK ,H, n) requires a corre-
spondence between the elements of > and XK , or equiva-
lently between > and X. The correspondence must also
account for unmatched features in both X and >.

3. Feature correspondence

Computation of the likelihood f (>�XK ,H, n) requires
a correspondence map � between extracted and pre-
dicted features. The correspondence map is a nuisance
parameter that arises because an extracted feature vector
is not ordered with respect to the predicted feature vec-
tor. The correspondence also accounts for extracted fea-
tures that are not in the predicted vector (false alarms) as
well as predicted features that are not extracted (missed
features).
We denote by G the set of all admissible correspond-

ence maps. For some applications, only one-to-one maps
are admissible; examples include Refs. [3,6]. In a one-to-
one map, each predicted feature can correspond to at
most one extracted feature, and conversely. For other
applications, G might include many-to-many mappings
[8].

3.1. Random versus deterministic correspondences

We consider two correspondence mappings, probabil-
istic and deterministic. These two correspondence map-

pings lead to two di!erent expressions for the posterior
likelihoods �

�
.

For a probabilistic correspondence model the Bayes
likelihood is

f (>�H, n)" �
��G

f (>��,H, n)P(��H,n), (6)

where, similarly to Eq. (5),

f (>��,H, n)"� f (>�XK ,�,H, n) f (XK ��,H, n) dXK . (7)

The conditioning on n, the number of extracted features,
is required in Eqs. (6)}(7) because � is a correspondence
between m predicted features and n extracted features;
without the conditioning on n, P(��H, n) cannot be com-
puted independently of >.
In contrast, if the correspondence � is assumed to be

deterministic but unknown, then � is a nuisance para-
meter in the classi"cation problem, and we seek uniform-
ly most powerful (UMP) or UMP-invariant decision rules
[9]. In this case, no uniformly most powerful classi"er
exists [10]. Therefore, we adopt the generalized likelihood
ratio test (GLRT) classi"er,

f (>�H, n)+max
��G

f (>��,H, n), (8)

where f (>��,H, n) is computed using Eq. (7). The GLRT
approach in Eq. (8) avoids the summation in Eq. (6), but
requires a search for the best correspondence �.

3.2. Conditional feature likelihood

To implement either Eq. (6) or (8), we require a prob-
ability model for f (>�XK ,�,H, n). To develop such
a model, we assume that the uncertainties of the X

�
are

conditionally independent given H, and that the uncer-
tainties of the >

�
are conditionally independent given

H, X, and n. Note that the features need not be indepen-
dent; only the feature uncertainties are assumed condi-
tionally independent. Independence is assumed because
separate features are often physically unrelated. Further,
even if the physical features contain some common
attribute, the physical processes that result in feature
uncertainty may be unrelated. The validity of the inde-
pendence assumption is, of course, application depen-
dent; a justi"cation for a radar target recognition
example is presented in Section 5. The independence
assumption signi"cantly simpli"es computation of the
likelihood to yield

f (>��,H, n)"
�
�
���

f (>
�
��,H, n). (9)

In Eq. (9), each term in the product is a feature likelihood
conditioned on a correspondence � and hypothesis H.
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Fig. 3. The many-to-many correspondence map between pre-
dicted and extracted features. Every correspondence occurs with
some probability.

Each extracted feature >
�
either corresponds to a pre-

dicted feature or is a false alarm. If >
�
is a false alarm, we

assign �
�
"0, and we model the feature attribute as

a random vector with probability density function

f (>
�
��

�
"0,H, n)"f

	

(>

�
). (10)

If >
�
corresponds to a predicted feature X

�
, we write

�
�
"i (for i'0) and compute the feature match score

from Eq. (7). In particular, from Eq. (7) it follows that for
i'0,

f (>
�
��

�
"i,H, n)"� f (>

�
�XK

�
,H, n) f (XK

�
�X

�
,H) dXK

�
. (11)

For the special case of Gaussian uncertainties, Eq. (11)
admits a closed-form solution. Let the extracted feature
attributes have Gaussian uncertainty with zero mean and
covariance �

�

f (>
�
�XK

�
,H, n)&N(XK

�
,�

�
) (12)

and let the predicted feature have uncertainty

f (XK
�
�X

�
,H, n)&N(X

�
,�

�
). (13)

Then from Eqs. (11)}(13) we have

f (>
�
��

�
"i,H, n)"f (>

�
�X

�
,H, n)&N(X

�
,�

�
#�

�
).
(14)

Thus, the conditional log-likelihood is proportional
to the quadratic distance d(X

�
,>

�
)"(>

�
!X

�
)�(�

�
#

�
�
)��(>

�
!X

�
). Similarly, for features whose attributes

are discrete-valued, the likelihood is the sum

P(>
�
�X

�
,H, n)"�

�K �

P(>
�
�XK

�
,H, n)P(XK

�
�X

�
,H, n). (15)

Extensions to non-Gaussian features or mixed con-
tinuous and discrete feature attributes is a straightfor-
ward extension of Eqs. (7) and (15); see Ref. [10]. For
these cases the integral in Eq. (7) is evaluated either
analytically or numerically, giving a function g(X

�
,>

�
)

to be evaluated. The computational complexity increase
over the Gaussian case is minor unless the function g is
signi"cantly more computationally expensive to evaluate
than is the quadratic distance d(X

�
,>

�
) in the Gaussian

case.

4. Correspondence match scores

We next address the computation of a likelihood
match score between two sets of features from Eq. (6) or
(8). We propose four match scores in this section. The

"rst is a many-to-many score in which every predicted
feature may correspond to every extracted feature; thus,
the admissible setG of possible correspondences is the set
of all possible links as shown in Fig. 3. While either
a probabilistic or deterministic correspondence model
can be used, we choose a probabilistic model, because an
assumption on the correspondence priors leads to a par-
ticularly simple form for the match score. The second
match score admits only one-to-one correspondences
between the feature sets. For this case we adopt a deter-
ministic unknown correspondence assumption and
maximize Eq. (8) over �. Finally, we develop two com-
putationally e$cient but suboptimal likelihood scores
for the one-to-one correspondence.

4.1. Many-to-many likelihood score

Two main di$culties are faced when implementing a
probabilistic correspondence in Eq. (6): (i) knowledge of
the priors P(��H, n), and (ii) the high computational cost
of summing over all possible correspondences. The
correspondence prior probabilities can, in principle, be
determined from knowledge of the predict and extract
uncertainties for each hypothesis, but the derivation
appears intractable for most applications.
The sum over all correspondences in Eq. (6) can be

simpli"ed if the correspondence priors P(�
�
"i) are inde-

pendent of j. Following Refs. [8,10], let � be the average
number of false alarm features present in >, and let
P
�
(H), 1)i)m denote the probability of detecting the

ith predicted feature under hypothesis H. It follows that
[8]

B"

�
�#��

���
P
�
(H)

(16)
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Table 1
The likelihood matrix for the many-to-manymatcher in Eq. (19)

>
�

2 >
�

X
�

D
�
(H) f (>

�
�X

�
) 2 D

�
(H) f (>

�
�X

�
)

	 	 � 	
X

�
D

�
(H) f (>

�
�X

�
) 2 D

�
(H) f (>

�
�X

�
)

False Bf
	


(>
�
) 0

alarms �
0 Bf

	

(>

�
)

Fig. 4. An example one-to-one correspondence mapping for
m"4 and n"5. Extracted features >

�
and >

	
are false alarms,

and predicted feature X
�
is missed.

�We thank Dr. William Irving for noting the application of
the Hungarian algorithm to this search problem.

Table 2
The cost matrix for the one-to-one matcher in Eq. (20). Here,
c
��

"!log[P
�
(H) f (>

�
��

�
"i,H)], F

�
"!log[
f

	

(>

�
)], and

M
�
"!log[1!P

�
(H)]

>
�

2 >
�

Misses

X
�

c
��

2 c
��

M
�

R

	 	 � 	 �
X

�
c
��

2 c
��

R M
�

false F
�

R 0 2 0
alarms � 	 � 	

R F
�

0 2 0

is the probability that an extracted feature is a false alarm
and

D
�
(H)"(1!B)

P
�
(H)

��
���

P
�
(H)

(17)

is the probability that an extracted feature comes from
the ith predicted feature. With these assumptions, the
probabilistic many-to-many likelihood score is

f (>�X)"f (>�H)"
�

�
���

f (>
�
�X,H) (18)

"

�
�
���
�Bf

	

(>

�
)#

�
�
���

D
�
(H) f (>

�
�X

�
,H)� (19)

where f (>
�
�X

�
,H) is the likelihood that extracted feature

>
�
corresponds to predicted feature X

�
under hypothesis H.

The many-to-many likelihood score in Eq. (19) can be
conveniently computed using the cost function array in
Table 1. The elements of the array are computed using
Eqs. (14), (16), and (17). The likelihood score f (>�X) is
then computed by summing each column of the array,
then taking the product of the resulting column sums.

4.2. One-to-one likelihood score

For many applications, each extracted feature can cor-
respond to at most one predicted feature and conversely.
An example one-to-one correspondence map is shown in
Fig. 4. For this case, a given correspondence map � de-
"nes the feature correspondences, determines a set of
n
	
extracted features that correspond to no predicted

features (false alarms), and identi"es predicted features
that correspond to no extracted features (missed fea-
tures). The likelihood score is then given by

f (>��,H, n)"�P(n	
false alarms) �

������
�

f
	


(>
�
)�

�� �
��������
�

P
�
(H)�

�� f (>
�
��

�
"i,H, n) �

��������+��
(1!P

�
(H))�,

(20)

where P
�
(H) is the detection probability of the ith pre-

dicted feature under hypothesis H. The "rst braced term
in Eq. (20) models the likelihood of false alarm features,
the second term gives the likelihood of corresponding
predict-extracted feature pairs, and the third term penal-
izes the missed predict features.
The GLRT hypothesis selection rule in Eq. (8) "nds the

correspondence � that maximizes f (>��,H, n) in Eq. (20)
for each candidate hypothesis H3H. For the case that
P(n

	
false alarms) obeys an exponential rule

P(n
	
false alarms)"ce���	 (21)

for some constants c and 
, the search can be e$ciently
implemented using the Hungarian algorithm [11].� The
Hungarian algorithm "nds, in O(k�) computations, the
one-to-one correspondence between the elements of
the k�1 vectors [x

�
,2,x

�
]� and [y

�
,2, y

�
]� that min-

imizes the cost of the correspondence, where the cost of
corresponding x

�
with y

�
is given by the ijth entry of

the k�k matrix C. The correspondence is equivalent to

1544 H.-C. Chiang et al. / Pattern Recognition 34 (2001) 1539}1553



selecting exactly one element from each row and column
of the array such that the sum of the selected entries
is minimized.
The Hungarian algorithm can be modi"ed to "nd the

optimal correspondence between [X
�
,2,X

�
]� and

[>
�
,2,>

�
]� that includes both insertions and deletions

in the correspondence. To do this we employ the
(m#n)�(m#n) cost matrix C given in Table 2. From
Eqs. (20) and (21) we observe

!log f (>�X,�,H, n)

"! �
������
�

log[
f
	


(>
�
)]

! �
��������
�

log[P
�
(H) f (>

�
��

�
"i,H, n)]

! �
��������+��

log[1!P
�
(H)]#constant. (22)

The elements on the right-hand side of Eq. (22) appear in
the cost matrix in Table 2. Assume the correspondence
resulting from applying the Hungarian algorithm with
this cost matrix is �i, j"�

�
� where �

�
is a permutation of

the integers 1,2,(m#n). Consider i)m. If �
�
"j for

some j3[1,2, n], then X
�
corresponds to >

�
with cost

c
��

"!log[P
�
(H) f (>

�
��

�
"i,H, n)]. If �

�
'n, then no

>
�

corresponds to X
�
. In this case j"i#n and

c
���
�

"!log[1!P
�
(H)] is the miss probability cost for

X
�
. Note that j cannot be any other integer greater than

n, because the corresponding cost c
��

"R. Similarly, if
i'm and �

�
"j3[1,2, n], then i"j#m with cost

c
��
�
��

"!log[
f
	


(>
�
)]. Here, feature >

�
corresponds

to no X
�
, and is thus labeled as a false alarm. Finally,

correspondences �
�
"j for i'm and j'n incur zero

cost. The Hungarian algorithm thus "nds the corre-
spondence that minimizes the log-likelihood score (22) in
O((m#n)�) computations.

4.3. Relationship between one-to-one and many-to-many
likelihood scores

The one-to-one and many-to-many likelihood scores
are derived under di!erent assumptions about corre-
spondence maps, but give similar performance in some
cases. Because of its computational simplicity, the many-
to-many score may be preferred even for problems in
which it is known that only one-to-one correspondences
are admissible. In this section we relate the two scores.
The relationship between the one-to-one and many-to-

many likelihood scores can be seen by comparing Tables
1 and 2. The match score in Table 1 is found by summing
the columns and then multiplying the sums; if one term in
each column dominates, then the result is approximately
the same as the product of the largest element of each
column. In addition, the elements in Table 1 are similar to
the "rst n columns of Table 2 except for logarithms and
constants that precede the entries.

Let X and > be the predicted and extracted feature
vectors. Because the features are unordered, suppose
(without loss of generality) that>

�
corresponds to X

�
for,

j"1,2, t. Assume further that the feature uncertainty is
su$ciently small such that

f (>
�
�X

�
)<f (>

�
�X

�
), j3�1,2, t�, ∀iOj, (23)

f
	


(>
�
)< f (>

�
�X

�
), j3�t#1,2, n�, ∀i. (24)

These assumptions hold, for example, if the feature
covariances are small compared to the squared distances
��>

�
!X

�
���, iOj between the features. Under these as-

sumptions, the many-to-many likelihood in Eq. (19) can
be approximated as

f
���

(>��,H, n)+
�

�
���
�

(1!B)

��
���

P
�
(H)

P
�
(H) f (>

�
�X

�
)�

�
�

�
���
�

[Bf
	


(>
�
)]. (25)

Furthermore, if the correct correspondence map is se-
lected (which is the case with high probability if the
assumptions (23)}(24) hold), then the one-to-one likeli-
hood in Eq. (20) can be written as

f
���

(>��,H, n)"c
�
�

���
�

[1!P
�
(H)]

�
�

�
���

[P
�
(H) f (>

�
�X

�
)]

�
�

���
�

[
f
	


(>
�
)] (26)

where c and 
 are de"ned in Eq. (21).
From Eqs. (25) and (26) we see that if m, n and t are

approximately equal across likely hypotheses, then the
two match scores di!er only in the relative weights ap-
plied to correspondences and false alarms. If one wishes
to use the many-to-many score to approximate the one-
to-one score, then � and P

�
(H) in the many-to-many

match score can be chosen to give similar weights to the
one-to-one score using Eqs. (19) and (25). Such an ap-
proximation is motivated by the much lower computa-
tional cost of the many-to-many score, which avoids the
search over all one-to-one correspondences.

4.4. Suboptimal one-to-one likelihood scoring

We consider two suboptimal one-to-one correspond-
ence procedures that search over only a subset of corre-
spondence maps. Referring to the one-to-one cost matrix
in Table 2, the suboptimal strategies are illustrated in
Fig. 5.
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Fig. 5. Two suboptimal approaches for assigning correspond-
ences from the one-to-one cost matrix in Table 2.

In Fig. 5, Greedy1 searches the "rst n columns of the
cost matrix in Table 2. The smallest entry is C(i

�
, j
�
) is

found, and (i
�
, j
�
) is labeled as a correspondence. Then

the i
�
th row and j

�
th column are removed, and the

process continues until columns 1 to n are labeled. Any
predicted features that remain unmatched are labeled as
missed.
A second suboptimal search, called Greedy2, searches

the "rst column of the cost matrix for the smallest entry
C(i

�
,1), and labels (i

�
,1) as a correspondence. The i

�
th

row and "rst column of the matrix are removed, and the
process continues.
The Greedy1 method generally identi"es a corre-

spondence with a higher likelihood score than does
Greedy2, but is a computationally more expensive search
than is Greedy2. The classi"cation performance resulting
from these two suboptimal search strategies are com-
pared to the one-to-one and many-to-many match score
methods in Section 6.

5. Application to synthetic aperture radar classi5cation

Synthetic aperture radar (SAR) provides all-weather,
day-or-night remote sensing for mapping, search-and-
rescue, mine detection, and target recognition [12].
Many SAR classi"cation methods rely on image-based
metrics, such as cross-correlation of the measured SAR
image with empirically or synthetically derived image
templates [13]. Staged classi"cation is often used to
e$ciently search the hypothesis space. However, prob-
lem complexity has motivated recent interest in applying
model-based classi"cation to SAR imagery [8,14}16].
In this section we apply the proposed model-based

Bayesian feature matching approach to the problem of
object classi"cation for SAR imagery. We adopt a para-
metric scattering center model to describe the SAR im-
agery; the parameters of the model become feature sets
for feature-based matching. Each scattering center is
a feature characterized by a vector of attributes describ-
ing the location, amplitude, curvature, length, and pose.

The scattering centers are unordered, and matching of
scattering centers naturally "ts the feature set matching
problem described above.

5.1. Data collection and image formation

The radar data are collected over a range of frequen-
cies and aspect angles. Typically, the measured data
are uniformly sampled in both f3[ f

���
, f

���
] and

�3[�
���

,�
���

]. The SAR image formation process
involves "rst resampling the data E(f,�) to a uniform
grid on the Cartesian coordinate space ( f

�
, f
�
)"

( f cos�, f sin�). The rectilinear data E( f
�
, f
�
) are then

multiplied by a two-dimensional window function
=( f

�
, f
�
) and zero padded. Finally, a two-dimensional

inverse discrete Fourier transform gives a complex-
valued image E(x, y) sampled on the image plane. The
image is a spatial map of the microwave re#ectivity.

5.2. An attributed scattering center feature model

We adopt a parametric data model which is based on
approximate radar scattering physics [17,18]. From the
geometric theory of di!raction [19,20], if the wavelength
of the incident excitation is small relative to the object
extent, then the backscattered "eld from an object con-
sists of contributions from electrically isolated scattering
centers. The total scattered "eld from a target is modeled
as the sum of p individual scattering centers [17]

E( f,�)"
�
�
���

E
�
( f,�), (27)

where each scattering center is modeled as

E�
�
( f,�)"A

�
exp�j

4�f

c
(Rx

�
cos�#Ry

�
sin�)�

��j
f

f
�
�

��
sinc�

2�f

c
¸
�
sin(�!�M

�
)�. (28)

In Eq. (28), f
�
is the center frequency of the radar band-

width and c is the speed of propagation. Each of the p
scattering centers is characterized by six attributes:
(Rx

�
,Ry

�
) denote the scattering center location, A

�
is the

amplitude, ¸
�
is a length, �M

�
is a pose angle, and the

discrete parameter �
�
characterizes curvature of the scat-

tering center. The vector

�
�
"[Rx

�
,Ry

�
,A

�
, �

�
,¸

�
,�M

�
], k"1,2,p (29)

is the attribute vector for each feature, and is X
�
or >

�
in

the Bayes classi"cation notation of Section 2.
The model in Eqs. (27)}(28) is based on geometric

theory of di!raction and physical optics approximations
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Fig. 6. Examples of the MSTAR SAR image chips used in the performance studies. Seven T-72 (top) and BMP-2 (bottom) are shown.

for scattering behavior and allows compression of the
high-dimensional measured image into a low-dimen-
sional feature space. Primitive scattering geometries,
such as dihedrals, corner re#ectors and cylinders, are
distinguishable by their (�,¸) parameters [17].

5.3. Parameter estimation and parameter uncertainty

We assume the measured data D( f,�) are well modeled
by Eqs. (27)}(28) with an additive perturbation

D( f,�)"
�
�
���

E
�
( f,�)#N( f,�). (30)

Here, N( f,�) represents the modeling error (background
clutter, sensor noise, model mismatch, incomplete
motion compensation, antenna calibration errors, etc.)
and is modeled as a Gaussian noise process with known
covariance.
To estimate the parameter vector � from measured

SAR imagery, we exploit the property that the energy of
a given scattering center is localized in the image. We
segment high-energy regionsR

�
in the image and for each

region obtain approximate maximum-likelihood (AML)
estimates of the parameters of a low-order scattering
center model [21]. Because the noise is Gaussian and the
imaging process is linear, AML estimates are found by
solving a nonlinear minimization problem of the form

�K
��
��

"argmin
�

[d!s(�)]����[d!s(�)], (31)

where d is a vector of image pixels in the region R
�
, s(�) is

the scattering model vector for these image pixels, and
� is the covariance matrix of the noise vector for this
region. By estimating model parameters on regions, we
decouple the high-order parameter estimation problem
into a set of smaller estimation problems, providing a
large gain in computational speed with only a slight
degradation in estimation bias and variance. In addition,
we gain robustness of the Gaussian noise assumption by
requiring that assumption to hold locally around the
scattering centers; thus, the estimator is robust to large
clutter terms in the image that are not well modeled as
Gaussian noise.

Use of estimated model parameters for Bayesian hy-
pothesis testing requires that uncertainty be associated
with each estimate. Motivated by the near statistical
e$ciency of the estimated parameters, we use the
CrameH r}Rao lower bound (CRB) to predict the feature
uncertainty. The CrameH r}Rao lower bound is derived in
Ref. [7].

6. Performance evaluation

In this section we present synthetic classi"cation per-
formance predictions by applying the Bayes matcher to
a 10-class vehicle recognition problem using X-band syn-
thetic aperture radar imagery. We use synthetic feature
vector means based on measured SAR imagery, coupled
with an assumed feature perturbation model. We com-
pare performance when using "ve feature attributes (Rx,
Ry, �A�, �, and ¸) and when using subsets of these at-
tributes. The experiments illustrate that the Bayes classi-
"er is tractable for problem sizes encountered in SAR
target recognition, and that it permits estimation of the
Bayes error given a model for priors and feature uncer-
tainties. The experiments also illustrate how one can
explore classi"cation performance as a function sensor
parameters (e.g., bandwidth, signal-to-noise ratio, extrac-
ted feature sets), and how one can explore the sensitivity
of the performance to the assumed priors and feature
uncertainties.
To synthesize the class means, we extract location and

amplitude features for 10 targets in the MSTAR Public
Targets data set [22]. The data set contains 0.3 m resolu-
tion SAR images of 10 targets at 173 depression angle.
Each image is 128�128 complex-valued pixels. For each
target, approximately 270 images are available covering
the full 3603 aspect angles, for a total of 2747 images. The
targets are the 2S1, BMP-2, BRDM-2, BTR-70, BTR-60,
D-7, T-62, T-72, ZIL-131, and ZSU-23-4. Examples of
the SAR image chips are shown in Fig. 6.
From each image, downrange and crossrange loca-

tions and amplitudes of peaks are extracted from each
image chip by "nding local maxima in the SAR image.
We keep the 10 largest amplitude peaks. The remaining
parameters are not provided by publicly available
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Fig. 7. Example predicted and extracted location features for
a measured SAR image.

prediction modules, so are generated synthetically. The
nominal values of the type attribute are generated as
�&N(0.5, 0.25). The length parameter is quantized to
one bit for this study, and the nominal values of the
length attribute are generated using a Bernoulli random
variable with P(¸'0)"0.3. These form the 2747 class
mean vectors for the ten composite target classes. The
uncertainty models for the feature attribute means, and
the false alarm feature density function, are

� Predict feature uncertainties f (XK i �H)!Xi :
Rx, Ryn(0, 1 ft�); log

�

(�A�)&N(0, 0.25);

no uncertainty on � and ¸.
� Extract feature uncertainties f (YK

�
�H)!XK i :

Rx,Ry&N(0, 1 ft�);
log

�

(�A�)&N(0, 0.25);�&N(0, 1/4);

Probability of incorrectly estimating ¸"0 or ¸'0
is 0.2.

� False alarm features: fFA(Yj):
Number: P(n

	
false alarms)"e����	/(n

	
!) with rate �"3;

(Rx,Ry)&uniform over the image;
log

�

(�A�)&N(
, 0.25), with 
"log

�

(median ampli-

tude of predicted scattering centers);
�&N(0.5, 1); ¸: Bernoulli with P(¸'0)"0.3.

An example realization of predicted and extracted loca-
tion features is shown overlaid on the measured SAR
image in Fig. 7.
In the above uncertainty model we have assumed that

both the predicted and extracted features have condi-
tionally independent uncertainties. Uncertainties in fea-
ture predictions arise from uncertainty in the locations
and orientations of the facets in a CAD model of the
vehicle. Because predicted scattering centers result from

electromagnetic energy re#ecting from these facets, and
because di!erent scattering centers generally correspond
to di!erent sets of facets, the scattering prediction errors
can be assumed to be independent. If they are dependent,
no model is available to describe the dependencies. Inde-
pendence of extracted feature uncertainties is justi"ed
because the feature uncertainty covariance matrix is
Gaussian and nearly diagonal. Gaussianity is reasonable,
from the central limit theorem, due to the extensive
averaging inherent in data collection and image forma-
tion. For example, if an approximate maximum-likeli-
hoodmethod is used to estimate features, then the feature
uncertainty is given (approximately) by the CrameH r}Rao
bound, which is nearly diagonal if the separation between
scattering centers is greater than one resolution cell of the
SAR system [17].
We emulate the index stage in Fig. 1 as follows. For

each of the 2747 target image chips, we "nd the "ve image
chips in each of the 10 target classes that have the highest
correlation. The target classes and poses (pose is in this
case azimuth angle) corresponding to these 50 image
chips form the initial hypothesis list generated by the
index stage. For each class mean vector, we generate
a predict feature vector for each of the 50 hypotheses
from the index stage by randomly perturbing the mean
vector using the predict uncertainty model above. We
similarly generate an extracted feature vector from the
mean vector. The extracted feature vector assumes each
scattering center has a probability of detection of P

�
"

0.5 or 0.9, so not all scattering centers are present in the
extracted feature vector. The P

�
"0.9 choice is proposed

in Ref. [8] and has been used in a "elded system; the
P
�
"0.5 value is used to model scintillation of scattering

centers (i.e., rapid change in scattering amplitude as
a function of target pose). We also add clutter scattering
centers to the extract feature vector. We then compute
the match scores and posterior likelihoods assuming
equally likely priors (P(n�H)P(H)"constant) on the 50
index hypotheses. We record the target class correspond-
ing to the one of the 50 hypotheses with the highest
likelihood score. We repeat this experiment 10 times for
each class mean vector; this gives a total of 27,470 classi-
"cations from 27,470�50 matches.
We summarize the overall performance as an average

probability of correct classi"cation P
�
. Fig. 8 presents

the results of the above experiment when each scattering
center has a detection probability P

�
(H)"0.5. Fig. 9

presents results when the detection probability is 0.9.
Results are shown for the many-to-many, one-to-one,
and two suboptimal one-to-one likelihood scores. In
addition, classi"cation performance is shown when two,
three, four, or "ve of the available scattering center at-
tributes are used in the match score. Comparing Figs.
8 and 9, we see signi"cant improvement in classi"cation
performance when the scattering center detection prob-
ability increases; this is not surprising, because in the case
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Fig. 8. Classi"cation performance as a function of number of feature attributes and match score used. Feature detection probability is
P
�
(H)"0.5. For each case, the four bars are: one-to-one (left), Greedy1, Greedy2, and many-to-many (right) match score.

Fig. 9. Classi"cation performance as a function of number of feature attributes and match score used. For each case, the four bars are:
one-to-one (left), Greedy1, Greedy2, and many-to-many (right) match score. Feature detection probability is P

�
(H)"0.9.
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Fig. 10. Classi"cation performance using correct (center) and erroneous location uncertainties in the one-to-one match score. The left
(right) bars assume 0.5(2) times the true location uncertainty. The top "gure shows average probability of correct classi"cation (P

�
); the

bottom "gure shows the same data plotted as average probability of error (1!P
�
) in dB.

of Fig. 8 there are on average 10�0.5"5 correctly
detected scattering centers that can be corresponded in
computing a match score, whereas in Fig. 9 the average
number of correct scattering centers increases to 9. With-
in each "gure, we see a substantial improvement in per-
formance when the additional feature attributes are used.
On the other hand, classi"cation performance depends
only mildly on the match metric used; the one-to-one
metric gives the best performance and the many}many
metric generally gives the worst performance of the four
metrics, but the performance di!erence between the ex-
tremes is only a few percent.
Figs. 10 and 11 illustrate the sensitivity of classi"cation

performance to the assumed priors and uncertainty mod-
els. Fig. 10 shows classi"cation performance when the
assumed location uncertainty has standard deviation 0.5,
1, and 2 times the correct location uncertainty; the other
assumed priors and uncertainties agree with the true
ones. The scattering center detection probability is
P
�
(H)"0.9 and a one-to-one match metric is used in

these experiments. We see that the classi"cation perfor-
mance rates decrease by 1}3 dB due to mismatch in the
location uncertainty model, with higher-performance

degradation as the correct classi"cation rate becomes
closer to one. The results are shown for the one-to-one
likelihood score, but performances for the other likeli-
hood score methods show similar trends.
Fig. 11 examines the e!ect of mismatch on the detec-

tion probability and clutter rate of scattering centers. In
this experiment the true detection probability is
P
�
(H)"0.5 and on average �"5 false alarm scattering

centers, all constrained to lie within a vehicle mask. The
experiment simulates the e!ect of scattering center scin-
tillation (which is hypothesized to result in a scattering
center detection probability signi"cantly lower than 0.9)
and explores the sensitivity of classi"cation performance
to the assumed detection probability. We estimate classi-
"cation performance using the true detection and false
alarm rates, and also using P

�
(H)"0.9 and �"1. We

see the classi"cation performance degrades signi"cantly
compared to the case shown in Figs. 8 (in Fig. 8 there are
on average three false alarm scattering centers that lie
anywhere in the image, whereas in Fig. 11 there are "ve
false alarm scattering centers all in close proximity to the
vehicle scattering centers). On the other hand, the classi-
"cation performance appears to be robust to uncertainty
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Fig. 11. Classi"cation performance using correct (left) and erroneous (right) detection probabilities and false alarm rates in the
one-to-one match score.

Table 3
Average CPU time (ms) to compute correspondences and likeli-
hood scores for m"10 predict and n"10 extract features. Shown
are results using only two feature attributes (R

�
,R

�
), and using

all "ve feature attributes

One-to-
one

Greedy1 Greedy2 Many-to-
many

Using (R
�
,R

�
) 73.28 31.63 28.40 14.78

Using "ve
attributes

92.00 49.21 45.31 32.02

mismatch in this case, as the performance in the mis-
matched experiment is less than 0.6 dB lower than the
performance when the correct uncertainties are used in
the match score.
The CPU time needed to compute likelihood scores

are summarized in Table 3. Shown are the average
computation times for 1000 matches using the many-
to-many, one-to-one, and two suboptimal one-to-one
match scores, for the case m"n"10. The matchers are

implemented in unoptimizedMatlab code on a 333 MHz
Pentium processor. All four match scores are computed
in polynomial time; O(mn) computations are needed for
the many-to-many and suboptimal one-to-one match
scores, and O((m#n)�) computations for the one-to-one
match score. The computation of the entries in Tables
1 or 2 comprise a signi"cant fraction of the total compute
time for this example.
Although class means are based on empirical data, the

predicted classi"cation performance is highly dependent
on the uncertainty model used for the features; raising or
lowering uncertainties of a particular feature impact
signi"cantly the overall classi"cation performance. The
actual uncertainties of the scattering attributes (especially
the curvature and length attributes) have not been empir-
ically characterized at present.

7. Conclusions

A Bayesian formalism leads to tractable hypothesis
testing in model-based object recognition using unor-
dered feature sets. Generically, a feature is merely an
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ordered list; for example, a feature may be a point with
associated attributes. Further, attributes may be either
real-valued statistics or categorical variables. The prob-
abilistic Bayes approach allows principled management
of uncertainty in both measured data and class models.
Signi"cantly, the Bayes hypothesis testing reports nor-
malized belief values * likelihood scores * which may
be used for either maximum a posteriori probabilistic
decisions or soft decisions.
Complexity of the Bayes matching is polynomial in the

problem size. Let n and m denote the number of mea-
sured and predicted features, respectively. Computation
of a likelihood requires an O(mn) construction of a tab-
leaux (see Table 2) and an O((m#n)�) selection, using the
Hungarian algorithm, of the optimal one-to-one feature
correspondence. Heuristics provide an O(mn) construc-
tion of two suboptimal one-to-one correspondences.
Tractability of the likelihood calculations in the Bayes

approach requires only conditional independence as-
sumptions. First, feature uncertainties are assumed to be
conditionally independent given the hypothesis. Second,
the omissions of features in a measurement and the
appearance of spurious features are likewise assumed to
be conditionally independent events. These are mild as-
sumptions, much weaker than feature independence, and
are reasonable for many physically motivated feature
sets.
In addition to providing a decision engine for M-ary

hypothesis testing, the Bayes approach provides a
structured method for predicting classi"cation perfor-
mance as a function of feature uncertainties and sensor
physics.
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