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Abstract—A Bayesian approach is presented for model-based
classification of images with application to synthetic-aperture
radar. Posterior probabilities are computed for candidate hy-
potheses using physical features estimated from sensor data along
with features predicted from these hypotheses. The likelihood
scoring allows propagation of uncertainty arising in both the
sensor data and object models. The Bayesian classification, in-
cluding the determination of a correspondence between unordered
random features, is shown to be tractable, yielding a classification
algorithm, a method for estimating error rates, and a tool for
evaluating performance sensitivity. The radar image features used
for classification are point locations with an associated vector of
physical attributes; the attributed features are adopted from a
parametric model of high-frequency radar scattering. With the
emergence of wideband sensor technology, these physical features
expand interpretation of radar imagery to access the frequency-
and aspect-dependent scattering information carried in the image
phase.

Index Terms—Model-based classification, parametric modeling,
point correspondence, radar image analysis.

I. INTRODUCTION

SYNTHETIC-aperture radar (SAR) provides all-weather,
day-or-night remote sensing for mapping, search-and-

rescue, mine detection, and target recognition [1]. SAR data
processing entails forming an image from measured radar
backscatter returns, followed by processing to detect and rec-
ognize targets from the formed image. Current SAR processing
practice decouples the image formation from the decision task
for which the imagery is ultimately intended.

In this paper, a Bayesian-model-based imaging and decision
approach is presented for classification of radar images. The
approach provides a structured, implementable, scalable means
for managing complexity of the hypothesis set and bypassing
the complexity of joint distributions on image pixels. Model-
based classification, or pattern matching, combines uncertainty
in both the object class models and the sensor data to com-
pute posterior probabilities of hypotheses. The Bayesian for-
malism allows clear and explicit disclosure of all assumptions.
The pattern matching permits tractable performance estimation
and provides robustness against environments previously not
measured, and hence not available for construction of image
templates.
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A. Problem Complexity

Classification of radar images, like many image inference
tasks, is characterized by a complex hypothesis space. The hy-
pothesis set consists of classes, or objects; typical cases are

. The complexity arises in that each object may be
observed in a variety of poses, configurations, articulations, and
environments, thereby resulting in an intractable density func-
tion for the radar image conditioned solely on the object class.
To manage the complexity, object classes are each expressed as
a mixture density of subclasses. Each subclass is defined by a
deterministic description of object pose, configuration, articu-
lation, occlusion, sensor orientation, etc. Additional variability
within subclasses is modeled stochastically to account for ob-
ject differences due, for example, to manufacturing variations
or wear. The number of enumerated subclasses explodes expo-
nentially; a typical application might dictate states for each
hypothesis class [2]. Moreover, an application may dictate that
many more than decision classes be formed by defining sets
of individual subclasses, ; e.g., the configuration of an ob-
ject may be an important distinguishing characteristic.

Likewise, the classification of radar images is characterized
by a high-dimensional observation space defying a direct
random model. The observation, a collection of pixels, is
a vector in . A typical case is a -by- array of
complex-valued pixels, yielding . A joint density on
the pixel values, when conditioned on a hypothesis ,
is non-Gaussian and may be multimodal [7]. For example, a
simple Gaussian uncertainty on the location of a scattering
mechanism leads to non-Gaussian image pixel uncertainties.
Further, pixel values exhibit strong correlation due to the
coherent combination of scattered energy from an object’s
constituent parts. Multiple reflections or large conducting
surfaces can result in large distances between correlated pixels,
and hence seemingly arbitrary correlation matrices.

B. Model-Based Classification

To proceed when confronting a large hypothesis space and
complex image density functions, we adopt a model-based clas-
sification approach. First, a physically based feature set provides
a simple, constructive alternative to joint densities on pixels for
expressing uncertainty in the target and the sensor. The extrac-
tion of features is performed by statistical estimation using the
physics-based parametric model of sensor data and specifica-
tion of the image formation procedure. Second, a coarse-to-fine
staged classification strategy is used to efficiently search the hy-
pothesis space. Third, the sensor data model is combined with
object models to predict features conditioned on a hypothesis.
The on-line prediction of features eliminates the need for a pro-
hibitively large catalog of image templates.
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Fig. 1. A model-based approach to classification.

The model-based approach is depicted in Fig. 1. A state of
nature is characterized by the hypothesis of an object class
which is further specified by one of finitely many subclasses

. The SAR measurement resulting from a sensor and an
image-formation algorithm provides an image. Along the left
branch in the figure, a Feature Extraction stage serves to com-
press the image and assign uncertainties to features. For SAR
imaging, a sensor data model derived from high-frequency ap-
proximation to scattering physics provides a parametric family
of densities for estimating features. Parameters are estimated
from imagery and used as low-dimensional surrogates for suffi-
cient statistics; each feature is a location together with a vector
of attributes. The feature uncertainty is given as a density func-
tion and acknowledges the sensitivity of parameter es-
timates to noisy sensor data given the image data.

Along the right branch in the figure, complexity of the hy-
pothesis space is addressed in a coarse-to-fine approach. An
Index stage provides a list of candidate subclass hypotheses

based on a coarse partitioning of the hypothesis space.
Evaluation of the candidate hypotheses then proceeds using a
model for the observations. A Feature Prediction stage com-
putes a predicted feature set by combining the sensor data model
from the Feature Extraction stage and a computer-aided design
(CAD) representation of a hypothesis . The feature set has
an associated uncertainty, acknowledging error in the modeling
and variation among objects in the subclass. The uncertainty is
expressed as a density . Importantly, the use of phys-
ically motivated features facilitates compatibility of extracted
and predicted feature sets.

Finally, the predicted and extracted feature sets are combined
in a Match stage to compute a posterior probability of a can-
didate hypothesis . The top hypotheses, and their like-
lihoods, are reported as the output of the classification system.
Computation of the likelihood scores requires a correspondence
between the unordered lists of extracted and predicted features
and an integration over feature uncertainty. Further, the likeli-

hood must incorporate the possibilities of missing or spurious
features in the predicted or extracted feature lists. The matching
task can be viewed as a probablistic graph match of fully con-
nected, attributed graphs with deletions and insertions of nodes.

C. Contributions and Organization

This paper presents a Bayesian formalism for model-based
classification. We demonstrate that the resulting hypothesis
testing algorithm, including the feature correspondence, is
tractable, even for problem sizes encountered in SAR target
recognition. In addition, the paper adopts a physics-based
model for extracting features from SAR images; the features
use the phase in complex-valued SAR images to infer the
frequency- and aspect-dependent scattering behavior of ob-
jects. Recent advances in technology yield sensor bandwidths
exceeding 20% of the center frequency; for such systems, the
proposed feature sets provide much greater information than
does processing motivated by a narrowband point-scattering
model.

Detailed construction of the Index and Feature Prediction
stages is not considered here; these stages are discussed in [3]
and [7]. An adaptive refinement of the candidate hypothesis
list from the Index stage is considered in [6]. Moreover, a Fea-
ture Prediction stage that faithfully simulates frequency- and as-
pect-dependent scattering behavior is currently under develop-
ment [7].

The paper is organized as follows. In Section II we present a
parametric model for radar sensor data, as required in the Fea-
ture Extraction and Feature Prediction stages. Maximum-like-
lihood estimation of parameters from images computed using
sensor data is discussed; also, parameter uncertainty, the defi-
nition of image resolution, and the Fisher information in image
phase are addressed. Section III presents a Bayesian computa-
tion of a hypothesis likelihood given sets of extracted and pre-
dicted features. In particular, the problem of determining a fea-
ture correspondence is addressed.

In Section IV, synthetic classification results are computed
using class means estimated from a measured set of-band
radar images for ten objects. The simulation results illustrate
four points: 1) the Bayes approach to model-based classifica-
tion, including feature correspondence, is tractable; 2) classifi-
cation using the Bayes classifier permits estimation of the op-
timal error rate, given the assumed priors and feature uncertain-
ties; 3) classification using the Bayes classifier allows designers
to explore the performance effects of sensor parameters, such as
bandwidth; and iv) classification using the Bayes classifier pro-
vides a simulation tool to investigate sensitivity of the estimated
error rate to the assumed priors and feature uncertainties.

II. A PHYSICAL MODEL FOR SENSOR DATA AND

FEATURE EXTRACTION

In this section we address the problem of feature extraction.
We adopt a parametric model describing the sensor data, de-
velop a feature estimation algorithm, and discuss feature uncer-
tainty both for extraction and feature prediction. The model we
employ is based on high-frequency approximation of electro-
magnetic scattering [9], [11] and represents the object of interest
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as a set of scattering centers. The scattering centers are described
by attributes that characterize the scattering center geometry and
orientation. The attributed scattering centers are used as features
for both the prediction and extraction stages in Fig. 1. The scat-
tering model provides a method of constructing and succinctly
representing hypotheses from CAD representations of class ob-
jects. Additionally, the model allows feature extraction to be cast
as a parameter estimation problem.

For a Bayesian classifier, uncertainty must be characterized
for both predicted and extracted feature sets. Because the pro-
posed features relate directly to physical components in a CAD
representation, uncertainty in predicted features can be esti-
mated from uncertainty in the CAD model. This is an important
advantage of using a physics-based model; other parametric
models could be used to represent the measured data, but unless
the model parameters relate to scattering physics, it is very
difficult to model the prediction uncertainty in Fig.
1. In addition, a parameter-estimation formulation of feature
extraction provides means for describing feature uncertainty

and for bounding it with the Cramér–Rao bound.
The model-based interpretation of images permits an infor-

mation-theoretic view of SAR imaging. We consider two im-
plications of this viewpoint. First, we define SAR image reso-
lution in terms of uncertainty in estimated parameters. Second,
we consider performance degradation when incomplete data are
available. Incomplete data availability results in higher feature
uncertainty as measured by relative information; as an example,
we consider the increase in uncertainty that results from the
common practice of discarding the phase of the SAR image.

A. A Parametric Model for Object Scattering

Most feature extraction models used with SAR rely on
processing of the magnitude image. For example, features
used in the MSTAR program are peaks (local maxima of the
SAR magnitude image) and ridges obtained from directional
derivatives of the SAR magnitude image [3]. When the com-
plex-valued SAR image is used, the point-scattering model is
most commonly employed; in this model, the backscattered am-
plitude is assumed to be independent of frequency and aspect.
The point-scattering assumption leads to a two-dimensional
harmonic scattering model, and parameter estimation becomes
a two-dimensional harmonic retrieval problem [4], [5]. One
drawback of peak and point scattering models is that a single
scattering object, such as a dihedral, is modeled as several
peaks or point scatterers; in this case, the correlated uncertainty
in the estimated parameters is difficult to model. Similarly, the
relationship of ridge features to scattering geometry is not well
understood, and feature uncertainty is hard to predict.

In this paper we adopt the physical radar scattering model
from Gerryet al. [9], which assumes a data collection scenario
consistent with SAR imaging. A reference point is defined, and
the radar trajectory is required to be coplanar with the refer-
ence point. This plane, the imaging plane, is labeled using an

Cartesian coordinate system with origin at the reference
point. The radar position is then described by an angledefined
counterclockwise from the direction. Far-zone backscatter is
assumed, and therefore planewave incidence is obtained on il-
luminated objects.

From the geometric theory of diffraction (GTD) [12], [13], if
the wavelength of the incident excitation is small relative to the
object extent, then the backscattered field from an object con-
sists of contributions from electrically isolated scattering cen-
ters. The backscattered field of an individual scattering center is
described as a function of frequencyand aspect angle, and
the total scattered field from a target is then modeled as the sum
of these individual scatterers [9]

(1)

In (1), is the center frequency of the radar bandwidth, and
is the speed of propagation. Each ofscattering centers is

characterized by seven attributes: denotes the scattering
center location projected to the -plane, is a relative
amplitude, is the scattering center length, its orientation
angle, characterizes frequency dependence of the scattering
center, and models the mild aspect dependence of scattering
center cross-section (for example, the projected cross-sectional
area of a trihedral changes slightly with aspect angle). The scat-
tering model is described by the parameter set ,
where each vector is the col-
lection of the seven parameters, or attributes, defining each scat-
tering center.

The frequency and aspect dependence of the scattering cen-
ters is an important distinction of this model and permits de-
scription of a rich variety of scattering primitives. The frequency
dependence relates directly to the curvature of the scattering
object and is parameterized by , which takes on integer or
half-integer values. For example, describes flat surface
scattering, describes scattering from singly curved
surfaces, and indicates scattering from doubly curved
surfaces or edges. Values ofless than zero describe diffrac-
tion mechanisms, such as edges and tips. In addition, the sinc
aspect dependence in (1) reveals the effective lengthof the
scattering primitive. Many scattering geometries, such as dihe-
drals, corner reflectors, and cylinders, are distinguishable by
their parameters [9], as shown in Fig. 2. Point scattering
is a special case of the model in (1) for .

The model in (1) is based on GTD and physical optics ap-
proximations for scattering behavior and, while parsimonious,
is able to describe a large class of scatterers. Scattering objects
separated by approximately two or more wavelengths are dis-
tinguishable [10]. Physical behaviors not well modeled by (1)
for small include creeping waves and cavity scattering [9].

B. Parameter Estimation

Next, we describe an approximate maximum-likelihood tech-
nique for extracting the model parameters in (1) from measured
sensor data. The measured data is modeled as

(2)
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Fig. 2. Canonical scattering geometries that are distinguishable from(�;L)
pairs in the scattering model.

where is a noise term that represents the modeling error
(background clutter, sensor noise, model mismatch, incomplete
motion compensation, antenna calibration errors, etc.) and can
be modeled as a zero-mean, Gaussian noise process with known
covariance.

The measured data is often transformed into the image do-
main as an array of complex-valued pixels. The transforma-
tion comprises equalization (to compensate for nonideal sensor
characteristics), windowing, zero padding, and discrete Fourier
transformation. The transformation can be represented by the
linear operator ; thus

(3)

for a finite array of sample points . We see that is a
zero-mean Gaussian noise process with known covariance. The
feature-extraction problem is thus one of estimating the param-
eter vector from the measurement .

R. A. Fisher’s pioneering work laid a foundation for
parametric modeling as a method of data compression, and
established maximum-likelihood procedures for estimation
of the unknown parameters [8]. Since are Gaussian
measurements, the parameter vectorwhich maximizes the
likelihood function is found as

(4)

(5)

where and are vectors obtained by stacking the
columns of and respectively;

, and denotes Moore–Penrose pseudoinverse.
Furthermore, this estimator is robust to model mismatch [15].
Equation (4) is a nonlinear least squares minimization problem.

We make use of the fact that scattering center responses are
localized in the image domain to develop a computationally sim-
pler approximate maximum-likelihood estimator for[14]. The
minimization in (4) is decomposed into smaller estimation prob-
lems. We partition the image into disjoint regions of high
energy and a remainder region . Defining as the projec-
tion onto region , we have

(6)

where is a vector containing the parameters for scattering cen-
ters in region and is a constant independent of. Since

the number of pixels in is much less than the total number
of image pixels in and the form a partition of , the in-
dividual minimization problems in (6) are decoupled and have
many fewer unknowns than the minimization problem in (5).
The weighted least squares estimator is tractable and provides
nearly efficient parameter estimates for data satisfying the scat-
tering model in (1) with colored Gaussian noise on image pixels
[14].

An additional advantage of the approximate maximum-like-
lihood (ML) algorithm is its robustness to the assumed noise
model. The assumption of correlated Gaussian noise across the
entire image is not very accurate for scenes where clutter is
present in the form of trees, power lines, etc. However, this as-
sumption is much better over small image regions that primarily
contain target-scattering centers. Image segmentation also fa-
cilitates model order selection, which is implemented using the
minimum description length principle.

As an illustration of the approximate ML estimation, Fig. 3
shows the results of feature extraction on a measured SAR
image from the MSTAR Public Targets dataset [26]. For

, the algorithm models 96.5% of the energy in the
image chip shown. In addition, the T-72 tank barrel segment is
modeled as a single scattering center whose length is modeled
within 10 cm of the actual 1.37-m length. In comparison,
peak-based scattering center extraction methods model this
segment as three peaks spaced along the barrel. Execution
time for extraction of 30 scattering features using unoptimized
Matlab code on a 450-MHz Pentium processor is approximately
140 s using (5) and approximately 50 s if a suboptimal but
computationally efficient estimator is employed.

C. Parameter Uncertainty

Use of estimated model parameters for Bayesian hypothesis
testing requires that an uncertainty be associated with each es-
timate. The inverse of Fisher information is used to predict the
error covariance of the approximate maximum-likelihood esti-
mation algorithm in (6).

The Cramér–Rao lower bound is derived in [9] and provides
an algorithm-independent lower bound on the error variance for
unbiased estimates of the model parameters. The derivation as-
sumes the data model in (3). For any choice of model param-
eters, the covariance bound is computed by inversion of the
Fisher information matrix [16]

(7)

where is density on the sensor dataconditioned on the
parameter .

D. Image Resolution

As noted in [17], “a universally acceptable definition of res-
olution as a performance measure is elusive.” In SAR, image
resolution is typically reported as the width of a point-spread
function. This definition is a Rayleigh resolution and is deter-
mined by sensor bandwidth, range of viewing angles, and de-
gree of sidelobe suppression in image formation. In contrast,
for model-based interpretation of SAR imagery we define reso-
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Fig. 3. Measured SAR Image of T-72 Tank (top) and reconstruction from estimated parameters (bottom). Images are in decibel magnitude with a total range of
40 dB.

lution in terms of a bound on the uncertainty in estimated param-
eters. Prior knowledge of the scattering behavior, as encoded in
(1), results in an uncertainty-based resolution that is often much
finer than the Rayleigh resolution. For example, consider ap-
plication of feature uncertainty to the classical notion of sepa-
rating closely spaced point sources, i.e., in (1).
For a given signal-to-noise ratio (SNR) of a single-point scat-
terer (SNR per mode), let the resolution be defined as the min-
imum distance between two equal amplitude scattering centers
resulting in nonoverlapping 95% confidence regions for the es-
timated locations [9], [18].

Adopting this definition, resolution versus SNR per mode is
shown in Fig. 4 for a SAR with Rayleigh resolution of 30 cm.
The resolution depends on the orientation of the two point scat-
terers. The dashed line shows resolution for point scatterers sep-
arated an equal distance in both down range and cross range (i.e.,
aligned 45 to the aperture). The solid line and the dash–dot
line show resolution for two point scatterers aligned parallel
and orthogonal to the aperture, respectively. For an SNR per
mode of 5 dB and 500-MHz bandwidth, the limit of resolution
achievable by model-based scattering analysis is approximately
one-half the Rayleigh resolution; model-based resolution is lim-
ited by sensor bandwidth and SNR, which includes mismatch
from the model in (3).

In the figure, we report signal-to-noise (SNR) values using
the ratio of signal energy to noise energy computed for the fre-
quency-aspect domain samples. Alternatively, SNR may be in-
terpreted in the image space as a difference between peak signal
level and clutter floor. However, this image space definition of
SNR varies depending on the specific values of the parameter
vector describing the scattering center.

E. Magnitude-Only Fourier Data

The parameter uncertainty definition of resolution can be di-
rectly applied to image reconstruction from incomplete data;
for example, in SAR image formation a common practice is to
discard image phase. In this case, the estimation of be-
comes reconstruction from magnitude-only Fourier data. The
Fisher information can be computed for the sampled
magnitude of the image data, using (1) and knowledge of both
the sensor transfer function and the image formation operator.
The relative information [19] is the ratio of Fisher matrices

and quantifies the loss of information incurred by
discarding the image phase. Likewise, the increase in variance
in any parameter estimate can be predicted, for efficient estima-
tors, using the Cramér–Rao bounds.

For example, for 10 GHz, 3-GHz bandwidth, and
10-dB SNR, the Cramér–Rao bound on standard deviation in
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Fig. 4. Resolution versus SNR for three different orientations of two point scatterers;! =(2�) =10 GHz, and bandwidth is 500 MHz.

estimation error for is using a magnitude image. In
contrast, estimation of from the complex-valued image results
in . Thus use of complex-valued imagery allows infer-
ence of the frequency-dependent scattering behavior, whereas
use of magnitude-only imagery does not.

III. H YPOTHESISTESTING

A. Problem Statement

In this section we derive the Bayes match function used for
classification from feature vectors. At the input to the classifier
stage, we have a given region of interest (a SAR image chip),
along with a set of candidate target hy-
potheses and their prior probabilities . Each hypothesis
contains both target class and subclass information; the set
may contain all possible hypotheses but typically contains a re-
duced set as generated from an earlier Index stage as depicted in
Fig. 1. From the image chip we extract a feature vector, and
from each candidate hypothesis we generate a predicted
feature vector , where

(8)

and where and are the number of predicted and extracted
features, respectively. Each feature and is an ordered
vector of feature attributes; for example, these attributes can be

parameters from the model in (1). However,
the features themselves are unordered. In addition, there is un-
certainty in both the predicted and extracted features.

There are two hypothesis testing goals that may be of interest.
First, we may wish to classify the extracted feature vectoras a
measurement of one of the class hypotheses. Second, we may
wish to classify as one of the class–subclass hypotheses in

the set . For both cases, we adopt a maximuma posteriori
probability (MAP) rule; thus we must find the posterior likeli-
hoods

(9)

If our goal is to classify as one of the Index hypotheses
(which include both class and subclass information), we choose
the hypothesis that corresponds to the maximum. If our goal
is to classify as one of the class hypotheses, we form

(10)

and choose the classcorresponding to the maximum .
The above formulation gives an interpretation of the Index

block in Fig. 1 as modifying the prior probabilities on the
class and subclass hypotheses. The optimal MAP classifier
maximizes or sums over all possible classes, and not just
those provided by the Index stage. The Index stage computes a
statistic from the image , and essentially updates
probabilities of hypotheses by finding posterior probabili-
ties . A subset of hypotheses with sufficiently high
posterior probabilities are retained for further processing. The
final hypothesis test involves computing ; thus the
feature-based match processing seeks to extract information in

not contained in to obtain a final classification
decision. We see that the Index stage does not impact opti-
mality in (9) provided the correct hypothesis is one of the
hypotheses passed. On the other hand, from (10) we see that
the optimal MAP rule involves summation over all subclasses
in class , not just those passed by the Index stage. Thus (10) is
optimal only under the stronger condition that the likelihoods

of all subclasses not passed by the Index stage are
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equal to zero. In either case, the computational reduction of
maximizing or summing on a reduced set of subclasses often
justifies the deviation from optimality of the resulting classifier.

To compute the posterior likelihood in (9), we apply Bayes
rule for any to obtain1

(11)

The conditioning on is used because the number of features
in is itself a random variable, but it suffices to consider only
vectors of length in the right-hand side of (11). Since the
denominator of (11) does not depend on hypothesis, the MAP
decision is found by maximizing
over . The priors and are assumed to be
known, or are provided by the Index stage.

The determination of includes both prediction
and extraction uncertainties, which are related in the following
way. Assume we have an object in the field with feature vector

. We measure that object with a sensor, and obtain a feature
vector . The measured feature vector differs fromdue to
noise, sensor limitations, etc. We write this difference notion-
ally as where is some extracton error described
by an uncertainty probability density function (pdf) . In
addition, if we suppose a hypothesis, we can predict a feature
vector that differs from because of electromagnetic mod-
eling errors, quantization errors of the assumed object subclass
states (e.g., pose angle quantization errors), and differences be-
tween the actual object in the field and the nominal object that
is modeled. We express this difference as where

is a prediction error which we describe with an uncertainty
. Note that is completely determined from . To

find the conditional uncertainty of given hypothesis , we
have

(12)

where models the predict uncertainty, and
models extract uncertainty. The computation

of is complicated by the fact that the features
in the and vectors are unordered, so a correspondence
between the elements of and , or equivalently between
and , is needed.

B. Feature Correspondence

Computing the likelihood requires that we
form a correspondence mapbetween extracted and predicted
features. The correspondence map is a nuisance parameter that
arises because an extracted feature vector is not ordered with
respect to the predicted feature vector. The correspondence
also accounts for extracted features that are not in the predicted
vector (false alarms) as well as predicted features that are not
extracted (missed features).

For general pattern matching applications, a predicted feature
may correspond to none, one, or several extracted features

1For notational simplicity, we drop the subscripts on the hypotheses in the
sequel, and consider a generalH 2 H.

Fig. 5. An example one-to-one correspondence mapping form = 4 andn =
5. Extracted featuresY andY are false alarms, and predicted featureX is
missed.

. Further, an extracted feature may correspond to one or more
predicted features, or be a false alarm. We denote bythe set
of all such correspondence maps. For specific applications, a
smaller set of admissible correspondence maps need
only be considered. For example, in the SAR classification ap-
plication presented in this paper, is the set of all one-to-one
maps, where a one-to-one map corresponds to at most one pre-
dicted feature with each extracted feature and conversely. An ex-
ample one-to-one correspondence map is shown in Fig. 5. Fol-
lowing [20], we let denote a correspondence between
the and . For notational conciseness, we write to
denote that does not correspond to any , and therefore is
a false-alarm feature.

We consider two correspondence mappings, random and de-
terministic. These two correspondence mappings lead to two
different expressions of the posterior likelihoods.

Probabilistic Correspondence:If we assume a probabilistic
correspondence model, then we have the Bayes likelihood

(13)

where, similarly to (12),

(14)

The conditioning on , the number of extracted features,
is needed above becauseis a correspondence between
predicted features andextracted features; without the condi-
tioning on , cannot be computed independently
of .

The main difficulties in implementing (13) are: 1) knowl-
edge of the priors and 2) the high computational
cost of summing over all possible correspondences. The cor-
respondence prior probabilities can, in principle, be determined
from knowledge of the predict and extract uncertainties for each
hypothesis, but the derivation is quite difficult for many ap-
plications. More importantly, the summation contains a (very)
large number of components; for example, there are more than

possible one-to-one maps from a set ofpre-
dicted to extracted features.

One can simplify computation of the large sum in (13) with
assumptions of equal priors onand independence of features
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[20], [21]. If the priors are not equal or the features are not in-
dependent, then the resulting classifier will be suboptimal. It is
difficult to predict the performance loss due to mismatch be-
tween the assumed and actual priors.

Deterministic Unknown Correspondence:If we assume the
correspondence is deterministic but unknown, then it becomes
a nuisance parameter in the classification. In this case, no uni-
formly most powerful test exists. We thus resort to the Gener-
alized Likelihood Ratio Test (GLRT) classifier, in which we es-
timate , then use the estimatedto estimate the likelihoods

(15)

where is computed using (14). The GLRT ap-
proach in (15) avoids the summation in (13), but requires a
search for the best correspondence. Graph matching algorithms
[22] can be used to simplify this search.

Discussion: The GLRT estimate of the conditional likeli-
hood is a good estimate of the Bayes likelihood if the “best” cor-
respondence term (15) dominates the sum in (13). This happens
in the SAR classification problem, for example, when the fea-
ture uncertainties are small compared to their feature distances;
for example, the match likelihood when corresponding two fea-
tures with widely differing locations is negligibly small
compared to the likelihood found from associating all pairs of
features with similar locations. The presence of additional
scattering attributes helps increase the feature distances even for
scattering features that have similar locations; for example, two
physically close scattering centers with differentand pa-
rameters have lower likelihood of an incorrect match pairing
than they would if match scores were based only on scatterer
location and amplitude.

For the SAR classification application, we adopt both a one-
to-one map and a GLRT classifier. The one-to-one map makes
physical sense: an extracted scattering center corresponds to
at most one predicted scattering center, and conversely. The
GLRT classifier assumes a deterministic but unknown corre-
spondence map, and avoids summation over a large set of pos-
sible correspondence maps. The probabilistic map assumption
for this model is considered in [21]. In addition, [20] considers
other classifiers derived for SAR features using only location
attributes.

C. Conditional Feature Likelihood

To implement either (13) or (15), one must have available a
model for . In this section we develop a model
based on [20] that applies to SAR scattering center features.

We assume the are conditionally independent given,
and that are conditionally independent given, , and .
The independence of the is reasonable because the predic-
tion errors of separate scattering centers are due to variations in
components on the target that make up that scattering center,
and these variations can be assumed to be unconnected. The
independence of the is supported by the near block diag-
onality of the CRB matrix for well-separated scattering cen-

ters [9]. In addition, the independence assumptions simplify the
Bayes matcher significantly. Thus we have

(16)

For a one-to-one correspondence, theth extracted feature
corresponds either to a particular predicted feature (say, theth
one), or to a false alarm. We denote these two cases as
or , respectively. Thus for a given correspondence, there
may be some predict–extract feature correspondences, some
missed predicted features (which correspond to no extracted
feature), and some false-alarm extracted features which have
no corresponding predict feature; see Fig. 5. For a given corre-
spondence, let denote the number of false-alarm features.

We model the conditional feature likelihood as

false alarms

(17)

where is the detection probability of theth predicted fea-
ture under hypothesis . The first term on the right-hand side
models the likelihood of false-alarm features, and is the
pdf of feature if it corresponds to a false alarm. The second
line is the likelihood of extracted features that correspond to pre-
dicted features, and the third line represents the miss probabil-
ities for predicted features that have no corresponding extract
feature.

D. Implementation of the Correspondence Search

The GLRT hypothesis selection rule in (15) involves finding
the correspondencethat maximizes in (17) for
each candidate hypothesis . In general, the search is
computationally intensive, but for some cases can be imple-
mented efficiently. Specifically, in the case that

false alarms (18)

for some constantsand , the search can be efficiently imple-
mented in operations using the Hungarian algo-
rithm [22].

We briefly summarize the implementation of the Hungarian
algorithm for this problem.2 From (17) and (18) we have

(19)

2The authors thank William Irving for noting the application of the Hungarian
algorithm to this search problem.
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Fig. 6. The cost matrix for the one-to-one matcher in (17). Here,c =

� log[P (H)f(Y j� = i; H)], F = � log[�f (Y )], and M =
� log[1�P (H)].

We insert the elements of the above equation for all possible
and into an array, as shown in Fig. 6.
Then the minimum of (19) over all one-to-one maps reduces to
the problem of selecting exactly one element from each row and
column of the array such that the sum of the selected entries is
minimized. The resulting solution also gives the optimal corre-
spondence. Specifically, if is selected, then predicted feature

corresponds to extracted feature; if is selected, then
is a false-alarm feature; if is selected, then is not present
(missed) in the extracted features.

The search is equivalent to finding a permutation of the cost
matrix that minimizes its trace. Such a permutation is found effi-
ciently using the Hungarian algorithm [22]. A related algorithm
[23] can also find the permutations that give the smallest
trace values, which is useful if the “best”correspondences are
of interest.

As an alternative, geometric hashing [24], [25] can be used to
efficiently search a set of candidate hypotheses for the highest
likelihood match. Hashing methods precompute information
about patterns of features in a hash table that later can be effi-
ciently searched to vote for hypotheses that are close matches.
On the other hand, hashing requires the formation of a large
table, containing entries for every hypothesis ; this table
can be prohibitively large for high-dimensional classification
applications.

IV. BAYES CLASSIFICATION EXAMPLE

In this section we present an example of feature-based clas-
sification using SAR scattering center attributes. We use syn-
thetic feature vector means based on measured SAR imagery
and an assumed feature perturbation model. We select target
classes, feature sets, feature attribute uncertainties, and priors
to be representative of a realistic-band SAR target-recog-
nition problem. The synthetic data results serve to emphasize,
by example, that the Bayes classifier is tractable for problem
sizes encountered in SAR target recognition given the assump-
tion of conditionally independent features in Section III-C. The
proposed technique permits estimation of the optimal error rate
given a set of assumed priors and feature uncertainties. In addi-
tion, we demonstrate by example that the Bayes classifier can
be used to explore the performance effects of sensor parame-
ters. Finally, the Bayes classifier can be used as a simulation tool

to investigate sensitivity of the estimated error rate to errors in
assumed priors and feature attribute uncertainty. Accurate pre-
diction of absolute classification performance would require an
electromagnetic prediction module as in Fig. 1 and extraction
uncertainties empirically verified from ground truth; neither is
presently available.

We generate class means using a combination of synthetic
generation and feature extraction from SAR imagery. We syn-
thesize 2747 class mean features for ten composite target classes
in the MSTAR Public Targets dataset [26]. The data set contains

-band image chips with pixels and 1 ft 1 ft reso-
lution SAR data chips of 10 targets at 17depression angle. For
each target, approximately 270 images are available covering
the full 360 aspect angles, for a total of 2747 images. Down-
range and cross-range locations and amplitudes of scattering
centers are synthesized from local maxima on the image chips.
The targets are the 2S1, BMP-2, BRDM-2, BTR-70, BTR-60,
D-7, T-62, T-72, ZIL-131, and ZSU-23-4. Examples of the SAR
image chips are shown in Fig. 7. From each image we extract lo-
cations and amplitudes of scattering centers from local maxima
in the SAR image. The and parameters are not provided by
current prediction modules, so are generated synthetically. The

attribute for each feature is generated as .
The Gaussian approximation to a discrete variable is used to
avoid the combinatorial number of likelihood evaluations for all
possible choices from prediction and extraction; experiments
verify that the Gaussian approximation gives very similar results
at lower computational cost [21]. The length parameter is quan-
tized to 1 bit ( or ), and the nominal values of the
length attribute are generated using a Bernoulli random variable
with . We quantize because existing electro-
magnetic prediction codes do not provide; further, prediction
uncertainty is unknown, so we choose to adopt only coarse un-
certainty assumptions in the simulation. Theand parame-
ters in (1) are not used in the experiments because no strong
evidence exists that these parameters can be predicted and ex-
tracted at 1-ft SAR resolution with sufficiently low uncertainty
to substantially improve classification performance; nonethe-
less, these two parameters are retained in (1) both for reduced
bias and for application to higher resolution SAR imagery. For
example, using 2-in resolution SAR imagery at-band, pose
angle can be estimated to an accuracy that is a small fraction of
the 20 phase history angle used in the image formation.

Prediction and extraction feature uncertainties are needed
in the Bayes classifier. We evaluate
in (17) as follows. Recall each is a feature vector

where the are the individual feature
attributes , and from the model in (1)
(or a subset of these). For simplicity, we assume the uncer-
tainties of the feature attributes are independent; experiments
using dependent attribute uncertainties are presented in [21].
For independent attributes

(20)

where denotes an index on the feature attributes. We further
model each attribute in an extracted feature that corre-
sponds to predicted feature with a conditional likelihood
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Fig. 7. Examples of the MSTAR SAR image chips used in the Bayes
classificaion example. Four T-72 (left) and BMP-2 (right) images are shown.

as follows. If corresponds to, , ,
or , the conditional likelihood is assumed to be Gaussian

(21)

We assume a similar predict uncertainty for each attribute

(22)

Thus from (14), (21), and (22) we have

(23)

which gives the needed terms in (20). Similarly, for a discrete
attribute (the quantized length) the likelihood is a weighted
sum

(24)

and is thus described by probability mass functions on the pre-
dicted features along with predict and extract confusion ma-
trices.

From (23) and (24) we see that only the sum of prediction and
extraction uncertainties is needed. Table I lists the uncertainty
values used in the simulations. We assume no prediction uncer-
tainty in or , and log-normal uncertainty in . The total
location uncertainty is assumed to have a standard deviation of
one Rayleigh resolution for both and . In addition, Table II
specifies the false-alarm pdf .

We emulate the Index stage as follows. For each of the 2747
target image chips, we find the five image chips in each of the ten
target classes that have the highest correlation. The target classes
and poses (pose is in this case azimuth angle) corresponding to
these 50 image chips form the initial hypothesis list generated
by the Index stage. For each class mean vector, we generate a
predict feature vector for each of the 50 hypotheses from the
Index stage by randomly perturbing the mean vector using the
predict uncertainty model above. We similarly generate an ex-
tracted feature vector from the mean vector. The extracted fea-
ture vector assumes each scattering center has a probability of
detection of , so not all scattering centers are present in
the extracted feature vector. We also add clutter scattering cen-
ters to the extract feature vector. We then compute the GLRT hy-
pothesis test using (11), (15), and (17), assuming equally likely
priors constanton the 50 Index hypotheses.
We use the Hungarian algorithm to search for the best corre-
spondence map, using in (18). We record the target
class corresponding to the one of the 50 hypotheses with the
highest likelihood score. We repeat this experiment ten times
for each class mean vector; this gives a total of 27 470 classifica-
tions from 27 470 50 matches. For each candidate hypothesis,
computation of the correspondence is , where is the
number of predicted features. Execution times for the 50 like-
lihood computations average 4.6 s using unoptimized Matlab
code on a 333-MHz Pentium processor.

Table III presents the results of the above experiment for a
SAR Rayleigh resolution of 1 ft, using the uncertainty values in
Table I. We summarize the overall performance as an average
probability of correct classification , which is 86.8% for this
case.

Fig. 8 presents probability of correct classification results
as a function of both the number of feature attributes and the
system bandwidth. First we compare the use of location features
with location features coupled with other attributes. The ampli-
tude attribute provides only modest improvement (1–2 dB) in
the probability of error, due to its relatively high uncertainty.
The addition of the frequency dependence and length attributes
provides more significant improvement in classification perfor-
mance, especially for the higher resolutions considered. The
amount of improvement depends critically on the assumed at-
tribute uncertainty and its correlation with other attributes.

Fig. 8 also presents results of an experiment in which we
predict classification performance as a radar system parameter,
namely, Rayleigh resolution, changes. The bandwidths and
integration angles correspond approximately to SAR image
Rayleigh resolutions of 2, 1, 1/2, and 1/4 ft. We assume de-
creasing uncertainty in the location, frequency dependence, and
length attributes as Rayleigh resolution becomes finer, as shown
in Table I. From Fig. 8 we see that classification performance
improves significantly as radar bandwidth and integration angle
increase. Specifically, the error probability decreases by
about 15 dB as the SAR Rayleigh resolution improves from 2 ft
to 1/4 ft. Here we see a clear benefit of increased bandwidth
because it results in decreased feature uncertainty.

Fig. 9 shows the effect on classification performance when
the assumed uncertainty model in the Bayes classifier is in error.
In this experiment we set the location uncertainty standard de-
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TABLE I
SUM OF PREDICTION AND EXTRACTION FEATURE ATTRIBUTE UNCERTAINTIES USED IN THE BAYES CLASSIFIER EXAMPLE

TABLE II
FALSE-ALARM pdf f (Y ) USED IN THE BAYES CLASSIFIER EXAMPLE

TABLE III
ONE-TO-ONE CLASSIFICATION RESULTS USING FIVE FEATURE ATTRIBUTES. THE ijTH ENTRY GIVES THE NUMBER OF TIMES THE OBJECTWAS

CLASSIFIED AS OBJECTj GIVEN THAT OBJECTi IS THE TRUE OBJECT. OVERALL P = 86.8%

viation to 0.5, 1, and 2 times the correct location uncertainty;
the other attributes use the correct uncertainty models. Here,

. We see the correct classification rate drops by
10% –20% as a result of the mismatch, and that a greater per-
formance loss occurs when the model-based classifier assumes
too low an uncertatinty.

V. CONCLUSION

We have presented a model-based framework for image pro-
cessing when the processing goal is object classification. The
Bayesian formalism allows clear and explicit disclosure of all
assumptions, in contrast toad hocclassification procedures.
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Fig. 8. Classification performance as a function of number of feature attributes and radar bandwidth. The top graph shows average probability of correct
classification(P ); the bottom graph shows the same data plotted as average probability of error(1� P ) in decibels.

Fig. 9. Classification performance using correct (center) and erroneous location uncertainties in the Bayes classifier. The left (right) bars assume 0.5 (2) times
the true location uncertainty. The top graph shows average probability of correct classification(P ); the bottom graph shows the same data plotted as average
probability of error(1 � P ) in decibels.
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Moreover, we demonstrated that the Bayes approach, including
the associated correspondence problem, is tractable and leads to
implementable algorithms.

We have presented the Bayes approach to model-based
classification in the application context of synthetic aperture
radar (SAR) imagery. By modeling electromagnetic scattering
behavior and estimating physically meaningful parameters
from complex-valued imagery, we computed features as
statistics for use in hypothesis testing. For radar systems with
a significant fractional bandwidth, the features provide richer
information than local peaks in magnitude imagery.

A complete empirical evaluation of the proposed classifier re-
quires an electromagnetic scattering code to provide predicted
features conditioned on a target hypothesis; at the time of this
publication, such a code is being developed by Veridian-ERIM
International, Inc., as a hybrid combination of the ray-tracing
and scattering primitive codes. Further, the efficacy of the pro-
posed likelihood estimation technique requires additional em-
pirical verification of the feature uncertainties adopted in Sec-
tion IV; to do so requires ground truth that is not currently avail-
able, but would be provided by the scattering prediction code
under development.

The implementable Bayes classifier allows estimation of op-
timal error rates, given assumed priors and feature uncertainties,
and the simulation of performance sensitivity to assumed priors,
to assumed feature uncertainties, and to sensor characteristics.
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