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Model-Based Classification of Radar Images

Hung-Chih Chiang, Randolph L. MoseSenior Member, IEEEand Lee C. PotteSenior Member, IEEE

Abstract—A Bayesian approach is presented for model-based A. Problem Complexity
classification of images with application to synthetic-aperture
radar. Posterior probabilities are computed for candidate hy- Classification of radar images, like many image inference
potheses using physical features estimated from sensor data alongtasks, is characterized by a complex hypothesis space. The hy-

with features predicted from these hypotheses. The likelihood ,qihesis set consists 8f classes, or objects; typical cases are
scoring allows propagation of uncertainty arising in both the

sensor data and object models. The Bayesian classification, in-8 <M< ;2' The_complexny arlseslln thgt each o_bject_may be
cluding the determination of a correspondence between unordered 0bserved in a variety of poses, configurations, articulations, and
random features, is shown to be tractable, yielding a classification environments, thereby resulting in an intractable density func-
algorithm, a method for estimating error rates, and a tool for tion for the radar image conditioned solely on the object class.
evaluating performance sensitivity. The radar image features used 14 anage the complexity, object classes are each expressed as
for classification are point locations with an associated vector of . . . .
physical attributes; the attributed features are adopted from a a mlxtu_rg d.enS|ty O,f ;ubclassgs. Each subcla;,s IS .defmed. by a
parametric model of high-frequency radar scattering. With the ~deterministic description of object pose, configuration, articu-
emergence of wideband sensor technology, these physical featuredation, occlusion, sensor orientation, etc. Additional variability
expand interpretation of radar imagery to access the frequency- within subclasses is modeled stochastically to account for ob-
aﬂgszspect-dependent scattering information carried in the image ject differences due, for example, to manufacturing variations
P ' or wear. The number of enumerated subclasses explodes expo-
nentially; a typical application might dictai®'? states for each
hypothesis class [2]. Moreover, an application may dictate that
many more thad/ decision classes be formed by defining sets
I. INTRODUCTION of individual subclassed{;;; e.g., the configuration of an ob-
YNTHETIC-aperture radar (SAR) provides aII—weathelj,eCt.maY be an import_qntdistinguishing charac_teristic. .
ay-or-night remote sensing for mapping, search—and—L'keW'Se’ t_he cIa;&ﬂcann of re_ldar images is c.haracter.lzed
rescue, mine detection, and target recognition [1]. SAR daﬁg a_high-dimensional obseryatlon space .defymg a dwept
processing entails forming an image from measured ra gpdom mOd(?\!,' The olbservatlon., a collection of pixels, is
backscatter returns, followed by processing to detect and r&gvector in R’ A typ'cf”ll case 15 %1528-b_y-_128 array of
ognize targets from the formed image. Current SAR processiﬁ mplex_-valued pixels, y|eId|n@J_ — 2. A joint density on
practice decouples the image formation from the decision ta N pixel vglues, when condltloned on a hypothesls;,
for which the imagery is ultimately intended. IS non-Gaussan and may be multimodal [.7]' For example_, a
In this paper, a Bayesian-model-based imaging and decis%ﬁ]ple Qaussmn uncertainty on the' Iocatloq of a scattering
approach is presented for classification of radar images. Cha”'sm leads to non-quss,lan image p|_xel uncertainties.
approach provides a structured, implementable, scalable meawgher' pixel yalu_es exhibit sirong correlation due to_ th?
for managing complexity of the hypothesis set and bypassiﬁ§ er_ent combination (_)f scatteret_j energy from an Obje.CtS
the complexity of joint distributions on image pixels. Modelconstituent parts. Mult|ple reﬂec'uons or large conducn_ng
based classification, or pattern matching, combines uncertaifi faces can resglt In Iargle distances b'etween f:orrelated pixels,
in both the object class models and the sensor data to co d hence seemingly arbitrary correlation matrices.
pute posterior probabilities of hypotheses. The Bayesian for-
malism allows clear and explicit disclosure of all assumptionB. Model-Based Classification
The pattern matching permits tractable performance estimation
and provides robustness against environments previously nof© Proceed when confronting a large hypothesis space and
measured, and hence not available for construction of imagmpPleximage density functions, we adopt a model-based clas-
templates. sification approach. First, a physically based feature set provides
a simple, constructive alternative to joint densities on pixels for

_ _ _ , _ expressing uncertainty in the target and the sensor. The extrac-
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Nature, H features in the predicted or extracted feature lists. The matching
- task can be viewed as a probablistic graph match of fully con-

SAR sensor and nected, attributed graphs with deletions and insertions of nodes.

image formation

| C. Contributions and Organization

State of l hood must incorporate the possibilities of missing or spurious
ij

Image, U + This paper presents a Bayesian formalism for model-based
classification. We demonstrate that the resulting hypothesis
' testing algorithm, including the feature correspondence, is
Foature H Gl tractab!e_, even for problem sizes encountered in SAR target
Extraction i U1 recognition. In addition, the paper adopts a physics-based
Feature model for extracting features from SAR images; the features
Prediction use the phase in complex-valued SAR images to infer the
frequency- and aspect-dependent scattering behavior of ob-
(Y 1U) (X1 H..) jects. Recent advances in technology yield sensor bandwidths
»  Match - Y exceeding 20% of the center frequency; for such systems, the
proposed feature sets provide much greater information than
+A(Hij) does processing motivated by a narrowband point-scattering
model.
Fig. 1. A model-based approach to classification. Detailed construction of the Index and Feature Prediction
stages is not considered here; these stages are discussed in [3]
and [7]. An adaptive refinement of the candidate hypothesis
. ) ) ) [Ist from the Index stage is considered in [6]. Moreover, a Fea-
nature is characterized by the hypothesis of an object diass ture Prediction stage that faithfully simulates frequency- and as-

which is further specified by one Of_ finitely many Subdasseﬁect—dependent scattering behavior is currently under develop-
H;;. The SAR measurement resulting from a sensor and nt [7].

image-formation algorithm provides an imageAlong the left

Index

The model-based approach is depicted in Fig. 1. A state

b hin the fi E E . The paper is organized as follows. In Section Il we present a
ranch in the figure, a Feature Extraction stage serves to Qs metric model for radar sensor data, as required in the Fea-

press the image and assign uncertainties to features. For Extraction and Feature Prediction stages. Maximum-like-

imaging, a sensor data model derived from high-frequency gf,, estimation of parameters from images computed using
proximation to scattering physics provides a parametric fami sor data is discussed: also, parameter uncertainty, the defi-
of densities for estimating features. Parameters are estim a)n of image resolution, and ihe Fisher information ir; image
from imagery and used as low-dimensional surrogates for sulfls ;<6 are addressed. Section Ill presents a Bayesian computa-
cient statistics; each feature is a location together with a vecipr o« - hypothesis likelihood given sets of extracted and pre-
of attributes. The feature uncertainty is given as a density fu%bted features. In particular, the problem of determining a fea-
tion f(Y | U) and acknowledges the sensitivity of parameter 8ire correspondence is add;essed.
timatesY” to noisy sensor data given the image déta In Section 1V, synthetic classification results are computed
Along the right branch in the figure, complexity of the hyysing class means estimated from a measured sat-bénd
pothesis space is addressed in a coarse-to-fine approach.. 4k images for ten objects. The simulation results illustrate
Index stage provides a list of candidate subclass hypotli$es foyy points: 1) the Bayes approach to model-based classifica-
iy € L based on a coarse partitioning of the hypothesis spaggy, including feature correspondence, is tractable; 2) classifi-
Evaluation of the candidate hypotheses then proceeds usingafion using the Bayes classifier permits estimation of the op-
model for the observations. A Feature Prediction stage COfjinq| error rate, given the assumed priors and feature uncertain-
putes a predicted feature set by combining the sensor data mqgg!: 3) classification using the Bayes classifier allows designers
from the Feature Extraction stage and a computer-aided desjgRypiore the performance effects of sensor parameters, such as
(CAD) representation of a hypothed; . The feature seX has  angwidth; and iv) classification using the Bayes classifier pro-
an associated uncertainty, acknowledging error in the modeligges a simulation tool to investigate sensitivity of the estimated

and variation among objects in the subclass. The uncertaintysor rate to the assumed priors and feature uncertainties.
expressed as a densjfyX | H;). Importantly, the use of phys-

ically motivated features facilitates compatibility of extracted
and predicted feature sets.

Finally, the predicted and extracted feature sets are combined
in a Match stage to compute a posterior probability of a can-In this section we address the problem of feature extraction.
didate hypothesid\(H;;). The top hypotheses, and their like\We adopt a parametric model describing the sensor data, de-
lihoods, are reported as the output of the classification systevelop a feature estimation algorithm, and discuss feature uncer-
Computation of the likelihood scores requires a correspondenagnty both for extraction and feature prediction. The model we
between the unordered lists of extracted and predicted featueesploy is based on high-frequency approximation of electro-
and an integration over feature uncertainty. Further, the liketnagnetic scattering [9], [11] and represents the object of interest

Il. A PHYSICAL MODEL FOR SENSOR DATA AND
FEATURE EXTRACTION
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as a set of scattering centers. The scattering centers are describ&édom the geometric theory of diffraction (GTD) [12], [13], if
by attributes that characterize the scattering center geometry #melwavelength of the incident excitation is small relative to the
orientation. The attributed scattering centers are used as featuigiect extent, then the backscattered field from an object con-
for both the prediction and extraction stages in Fig. 1. The scatsts of contributions from electrically isolated scattering cen-
tering model provides a method of constructing and succinctigrs. The backscattered field of an individual scattering center is
representing hypotheses from CAD representations of class dbscribed as a function of frequeneyand aspect angle, and
jects. Additionally, the model allows feature extraction to be caste total scattered field from a target is then modeled as the sum
as a parameter estimation problem. of these individual scatterers [9]

For a Bayesian classifier, uncertainty must be characterized
for both predicted and extracted feature sets. Because the pro- N on
posed features relate directly to physical components in a CAD s(u, ¢: ) = Z Ay <ji) sinc(ng sin(¢ — @w)
representation, uncertainty in predicted features can be esti- k=1 We ¢

mated from uncertainty in the CAD model. This is an important - exp(—w sin @)
advantage of using a physics-based model; other parametric W _
models could be used to represent the measured data, but unless exp <J C/—2(37k Cos ¢ + Yy sin ¢)) . 1)

the model parameters relate to scattering physics, it is very
difficult to model the prediction uncertaintf( X | H;;) in Fig. In (1), w. is the center frequency of the radar bandwidth, and
1. In addition, a parameter-estimation formulation of featureis the speed of propagation. EachMfscattering centers is
extraction provides means for describing feature uncertairdiiaracterized by seven attributés;, ;) denotes the scattering
f(Y'|U) and for bounding it with the Cramér—Rao bound.  center location projected to the:,y)-plane, 4, is a relative

The model-based interpretation of images permits an infaimplitude,L;, is the scattering center lengty, its orientation
mation-theoretic view of SAR imaging. We consider two imangle,«; characterizes frequency dependence of the scattering
plications of this viewpoint. First, we define SAR image resaenter, andy;, models the mild aspect dependence of scattering
lution in terms of uncertainty in estimated parameters. Secor@nter cross-section (for example, the projected cross-sectional
we consider performance degradation when incomplete data gf€a of a trihedral changes slightly with aspect angle). The scat-
available. Incomplete data availability results in higher featutering model is described by the paramete#set[6;, ..., 6],
uncertainty as measured by relative information; as an examglfhere each vectat;, = [, Yies A, ke, Lie, b1, 1] iS the col-
we consider the increase in uncertainty that results from th&tion of the seven parameters, or attributes, defining each scat-
common practice of discarding the phase of the SAR image.tering center.

The frequency and aspect dependence of the scattering cen-
ters is an important distinction of this model and permits de-

Most feature extraction models used with SAR rely oacription of arich variety of scattering primitives. The frequency
processing of the magnitude image. For example, featudespendence relates directly to the curvature of the scattering
used in the MSTAR program are peaks (local maxima of thabject and is parameterized ly,, which takes on integer or
SAR magnitude image) and ridges obtained from directionblf-integer values. For example,. = 1 describes flat surface
derivatives of the SAR magnitude image [3]. When the conseattering;, = 1/2 describes scattering from singly curved
plex-valued SAR image is used, the point-scattering modelsarfaces, and; = 0 indicates scattering from doubly curved
most commonly employed; in this model, the backscattered aswfaces or edges. Values @fless than zero describe diffrac-
plitude is assumed to be independent of frequency and asp&oh mechanisms, such as edges and tips. In addition, the sinc
The point-scattering assumption leads to a two-dimensiorapect dependence in (1) reveals the effective lehgtbf the
harmonic scattering model, and parameter estimation becorseattering primitive. Many scattering geometries, such as dihe-
a two-dimensional harmonic retrieval problem [4], [5]. Onerals, corner reflectors, and cylinders, are distinguishable by
drawback of peak and point scattering models is that a singleir («, L) parameters [9], as shown in Fig. 2. Point scattering
scattering object, such as a dihedral, is modeled as sevésa special case of the model in (1) fof = Ly = v = 0.
peaks or point scatterers; in this case, the correlated uncertaintfhe model in (1) is based on GTD and physical optics ap-
in the estimated parameters is difficult to model. Similarly, theroximations for scattering behavior and, while parsimonious,
relationship of ridge features to scattering geometry is not wédlable to describe a large class of scatterers. Scattering objects
understood, and feature uncertainty is hard to predict. separated by approximately two or more wavelengths are dis-

In this paper we adopt the physical radar scattering modeiguishable [10]. Physical behaviors not well modeled by (1)
from Gerryet al. [9], which assumes a data collection scenarifor small V include creeping waves and cavity scattering [9].
consistent with SAR imaging. A reference point is defined, and
the radar trajectory is required to be coplanar with the refeg- pParameter Estimation
ence point. T.h's plang, the imaging planez 'S labeled using arNext, we describe an approximate maximume-likelihood tech-
x — y Cartesian coordinate system with origin at the reference . )

. e . ) nigue for extracting the model parameters in (1) from measured
point. The radar position is then described by an anglefined :

: o . sensor data. The measured data is modeled as

counterclockwise from the direction. Far-zone backscatter is
assumed, and therefore planewave incidence is obtained on il-
luminated objects. r(w, ) = s(w, $;60) + n(w, $) 2

A. A Parametric Model for Object Scattering
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o=1 o=0 the number of pixels iz; is much less than the total number
of image pixels in7 and theé? form a partition ofé, the in-
=0 @"’ dividual minimization problems in (6) are decoupled and have
Trihedre Strore many fewer unknowns than the minimization problem in (5).
yihedral Sphere ; ! . i
7 The weighted least squares estimator is tractable and provides
= L - . . . )
150 é A= | nec_';\rly efﬁuent parameter estimates f(_)r data_ satlsfylng the_scat
) o _ , tering model in (1) with colored Gaussian noise on image pixels
Dihedeal Cylinder Fdge l [ 1 4]

An additional advantage of the approximate maximum-like-
lihood (ML) algorithm is its robustness to the assumed noise
model. The assumption of correlated Gaussian noise across the

wheren(w, ¢) is a noise term that represents the modeling errgptire Image 1S not very accurate for scenes where clut_ter IS
(background clutter, sensor noise, model mismatch, incompl@&Sent in the form of trees, power lines, etc. However, this as-
motion compensation, antenna calibration errors, etc.) and GNPtion is much better over small image regions that primarily
be modeled as a zero-mean, Gaussian noise process with knG@Jifain target-scattering centers. Image segmentation also fa-
covariance. cilitates model order selection, which is implemented using the

The measured data is often transformed into the image dgrnimum descr|pt|0n length pnnc!ple. L _
main as an array of complex-valued pixels. The transform _As an illustration of the approxmat.e ML estimation, Fig. 3
tion comprises equalization (to compensate for nonideal senS0PWS :(he reshults of feature t;al_xtractlon on da measured SAR
characteristics), windowing, zero padding, and discrete FourlB}29¢ from the MSTAR Public Targets dataset [26]. For

transformation. The transformation can be represented by {Ne: 30, the algorithm m.OdeIS 96.5% of the energy in the_
linear operator’; thus image chip shown. In addition, the T-72 tank barrel segment is

modeled as a single scattering center whose length is modeled
7(x,y) = L[s(w, $;0) +n(w, ¢)] within 10 cm of the actual 1.37-m length. In comparison,
= 5(z,y:0) + iz, y) ©) peak-based scattering center extraction methods model th|s
segment as three peaks spaced along the barrel. Execution
for a finite array of sample pointg;, v). We see that(z,y) isa time for extraction of 30 scattering features using unoptimized
zero-mean Gaussian noise process with known covariance. Meglab code on a 450-MHz Pentium processor is approximately
feature-extraction problem is thus one of estimating the parat®0 s using (5) and approximately 50 s if a suboptimal but
eter vecto® from the measuremenitz, y). computationally efficient estimator is employed.
R. A. Fisher's pioneering work laid a foundation for
parametric modeling as a method of data compression, &d Parameter Uncertainty

established maximum-likelihood p_rocedures for estimation Use of estimated model parameters for Bayesian hypothesis
of the unknown parameters [8]. Sinc€z,y) are Gaussian eging requires that an uncertainty be associated with each es-
measurements, the parameter ved@awhich maximizes the imate. The inverse of Fisher information is used to predict the
likelihood function is found as error covariance of the approximate maximum-likelihood esti-

Fig. 2. Canonical scattering geometries that are distinguishable (frqrh)
pairs in the scattering model.

fir. = arg min J(6) (4) mation algorithm in (6).
‘ 0 The Cramér—Rao lower bound is derived in [9] and provides
J(0) = [ — §(9)]Hi1‘[7~, — 3(6)] (5) an algorithm-independent lower bound on the error variance for

unbiased estimates of the model parameters. The derivation as-

where 7,7, and 5(f) are vectors obtained by stacking thesumes the data model in (3). For any choice of model param-
columns  of 7(x,y), $(z,y;8), and n(x,y), respectively; eters, the covariance bound is computed by inversion of the
¥ = cov(n), and(-)Jr denotes Moore—Penrose pseudoinverskisher information matrix [16]
Furthermore, this estimator is robust to model mismatch [15]. )
Equation (4) is a nonlinear least squares minimization problem. I(0) = —F {w}

We make use of the fact that scattering center responses are 96*
localized |n.the image .doma'r.] to Fievelop gcomputauonally SIITv]v_heref(s | 6) is density on the sensor dataonditioned on the
pler approximate maximume-likelihood estimator é&JtL4]. The

o . . o lQarameteﬁ.
minimization in (4) is decomposed into smaller estimation prob-
lems. We patrtition the image intd disjoint regionsiZ; of high

energy and a remainder regidty. Defining I1; as the projec-
tion onto regionk;, we have

(1)

D. Image Resolution

As noted in [17], “a universally acceptable definition of res-
olution as a performance measure is elusive.” In SAR, image
resolution is typically reported as the width of a point-spread
function. This definition is a Rayleigh resolution and is deter-
mined by sensor bandwidth, range of viewing angles, and de-
wheref’ is a vector containing the parameters for scattering cegree of sidelobe suppression in image formation. In contrast,
ters in regionk; andC is a constant independent &f Since for model-based interpretation of SAR imagery we define reso-

M
J(6) = 3 [7 - (NI - 360+ ¢ (6)

=0
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Fig. 3. Measured SAR Image of T-72 Tank (top) and reconstruction from estimated parameters (bottom). Images are in decibel magnitude witreafotal rang
40 dB.

lution in terms of a bound on the uncertainty in estimated param-In the figure, we report signal-to-noise (SNR) values using
eters. Prior knowledge of the scattering behavior, as encodedhe ratio of signal energy to noise energy computed for the fre-
(1), results in an uncertainty-based resolution that is often mughency-aspect domain samples. Alternatively, SNR may be in-
finer than the Rayleigh resolution. For example, consider agrpreted in the image space as a difference between peak signal
plication of feature uncertainty to the classical notion of sepkevel and clutter floor. However, this image space definition of
rating closely spaced point sources, ies= L = v=0in (1). SNR varies depending on the specific values of the parameter
For a given signal-to-noise ratio (SNR) of a single-point scatectord describing the scattering center.
terer (SNR per mode), let the resolution be defined as the min- ) )
imum distance between two equal amplitude scattering centBrsMagnitude-Only Fourier Data
resulting in nonoverlapping 95% confidence regions for the es-The parameter uncertainty definition of resolution can be di-
timated locations [9], [18]. rectly applied to image reconstruction from incomplete data;
Adopting this definition, resolution versus SNR per mode i®or example, in SAR image formation a common practice is to
shown in Fig. 4 for a SAR with Rayleigh resolution of 30 cmdiscard image phase. In this case, the estimatioffwf¢) be-
The resolution depends on the orientation of the two point scabmes reconstruction from magnitude-only Fourier data. The
terers. The dashed line shows resolution for point scatterers seggher information/,,,.;(#) can be computed for the sampled
arated an equal distance in both down range and cross range (iragnitude of the image data, using (1) and knowledge of both
aligned 45 to the aperture). The solid line and the dash—dthie sensor transfer function and the image formation operator.
line show resolution for two point scatterers aligned parall@he relative information [19] is the ratio of Fisher matrices
and orthogonal to the aperture, respectively. For an SNR pler..(#)/1(#) and quantifies the loss of information incurred by
mode of—5 dB and 500-MHz bandwidth, the limit of resolutiondiscarding the image phase. Likewise, the increase in variance
achievable by model-based scattering analysis is approximatelyny parameter estimate can be predicted, for efficient estima-
one-half the Rayleigh resolution; model-based resolution is lirters, using the Cramér—Rao bounds.
ited by sensor bandwidth and SNR, which includes mismatchFor example, fow../(27) = 10 GHz, 3-GHz bandwidth, and
from the model in (3). 10-dB SNR, the Cramér—Rao bound on standard deviation in
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Fig. 4. Resolution versus SNR for three different orientations of two point scattergt€7) =10 GHz, and bandwidth is 500 MHz.

estimation error fory is o = 1.0 using a magnitude image. Inthe setH. For both cases, we adopt a maximanposteriori
contrast, estimation ef from the complex-valued image resultgprobability (MAP) rule; thus we must find the posterior likeli-
in o = 0.02. Thus use of complex-valued imagery allows inferhoods

ence of the frequency-dependent scattering behavior, whereas

use of magnitude-only imagery does not. Aij = P(Hij |Y), Hij € H. ©)
If our goal is to classifyY” as one of thek Index hypotheses
lll. HYPOTHESISTESTING (which include both class and subclass information), we choose
A. Problem Statement the hypothesis that corresponds to the maxindymIf our goal

In this section we derive the Bayes match function used fBSrto classifyY” as one of thel/ class hypotheses, we form

classification from feature vectors. At the input to the classifier A = Z Aij, 1<i< M (10)
stage, we have a given region of interest (a SAR image chip), ;
along with a set{ = {H,;,ij € L} of K candidate target hy- .
potheses and their prior probabiliti¥ H;,). Each hypothesis and choose the classorresponding to the maximuny.
contains both target class and subclass information; thé/set The above formulation gives an interpretation of the Index
may contain all possible hypotheses but typically contains a f#ock in Fig. 1 as modifying the prior probabilities on the
duced set as generated from an earlier Index stage as depictéddfs and subclass hypotheses. The optimal MAP classifier
Fig. 1. From the image chip we extract a feature vekfpand Mmaximizes or sums over all possibig;; classes, and not just
from each candidate hypothedise H we generate a predictedthose provided by the Index stage. The Index stage computes a
feature vectorX, where statisticZ = ¢(l/) from the imagd./, and essentially updates
probabilities of hypotheseH;; by finding posterior probabili-
X =X, X, ..., Xn]* Y =[V1,Ys,..., Y, )" (8) tiesP(H;;|Z). A subset of hypotheses with sufficiently high
posterior probabilities are retained for further processing. The
and wheren andn are the number of predicted and extractefinal hypothesis test involves computitf( H;; | U); thus the
features, respectively. Each featule and Y} is an ordered feature-based match processing seeks to extract information in
vector of feature attributes; for example, these attributes canljenot contained inZ = ¢(I/) to obtain a final classification
(x,y, A, a, L, ¢,v) parameters from the model in (1). Howeverdecision. We see that the Index stage does not impact opti-
the features themselves are unordered. In addition, there is mality in (9) provided the correct hypothesis is one of #ie
certainty in both the predicted and extracted features. hypotheses passed. On the other hand, from (10) we see that
There are two hypothesis testing goals that may be of interabie optimal MAP rule involves summation over all subclasses
First, we may wish to classify the extracted feature vektas a in class:, not just those passed by the Index stage. Thus (10) is
measurement of one of thié class hypotheses. Second, we magptimal only under the stronger condition that the likelihoods
wish to classify}” as one of thé( class—subclass hypotheses itP(H;; | Z) of all subclasses not passed by the Index stage are
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equal to zero. In either case, the computational reduction ¢ ° ® V] =1
maximizing or summing on a reduced set of subclasses ofte .
justifies the deviation from optimality of the resulting classifier. y, Y2 =4
To compute the posterior likelihood in (9), we apply Bayes
rule for anyH € H to obtairt X3 @ o 13 r'3=0
S [H,n)P(H |n)
PH|Y)=PH|Y,n) = =
SY|H,n)P(n|H)P(H)
= (11) ® Y '5=0
TV Tn)P(n) v
The conditioning om is used because the number of feature: p,egicted Extracted
in Y is itself a random variable, but it suffices to consider only Features Features

vectorsY of lengthn in the right-hand side of (11). Since the
denominator of (11) does not depend on hypoth&sithe MAP  Fig. 5. An example one—to—/one correspondence mapping:fer 4 andn =
decision is found by maximizing‘(Y | H, n)P(H)P(n | H) iq.ifsézﬁcted feature¥’; andY; are false alarms, and predicted featife is
overH € H. The priorsP(H ) andP(n | H) are assumed to be
known, or are provided by the Index stage.

The determination off (Y | H,») includes both prediction

and extraction uncertainties, which are related in the followi
way. Assume we have an object in the field with feature vect

Y;. Further, an extracted feature may correspond to one or more
redicted features, or be a false alarm. We denot§ bye set
all such correspondence maps. For specific applications, a

8haller seG4 C G of admissible correspondence maps need

X Weyme_:risure that ol:ge}ct with a sensc:jr_,ﬁand fogéiijn a featB?ﬂy be considered. For example, in the SAR classification ap-
vectory'. The measured feature vector dliers Ir Ue 10 jication presented in this papér, is the set of all one-to-one

noise, sensor limitations, etc. We write this difference notioin

I A h ) q i naps, where a one-to-one map corresponds to at most one pre-
allyas)” = X+ N. whereN. is some extracton error describeqyioio g feature with each extracted feature and conversely. An ex-

by an uncertainty probability density function (pgf)y” | X). In ample one-to-one correspondence map is shown in Fig. 5. Fol-

addition, if we suppose a hypothesfs we can predicta feature | ing 20}, we letl’; — i denote a correspondence between
vector X that differs fromX because of electromagnetic mod- X. andY.. For n(;tational conciseness, we wiite = 0 to
. J- 1 -

eling errors, quantization errors of the assumed object Sum'ﬁ%ﬁote that’; does not correspond to ar¥;, and therefore is
states (e.g., pose angle quantization errors), and di1‘ference:sap*a(ilse_(,;llamj1 feature
tween the actual object in the field and the nominal object thatWe consider two cc.)rrespondence mappings, random and de-

';mOdeledawe EXpress tE!shdlffergnce)%§ ‘)_(th Np where_ terministic. These two correspondence mappings lead to two
» Is a prediction error which we describe with an uncertaintyiga ont expressions of the posterior likelihoatls.

f(X | H). Note thatX is cor_npletely _determined frc_)rH. To Probabilistic Correspondencelf we assume a probabilistic
find the conditional uncertainty of” given hypothesis, we ¢4 regpondence model, then we have the Bayes likelihood

have
JY|Hn)= > f(Y|T,Hn)PI|Hn)  (13)

f(Y|H,n):/f(Y|X,H,n)f(X|H,n) dX (12 .

whereAf(X | H,n) models the predict uncertainty, anthere’ similarly to (12),
f(Y'| X, H,n) models extract uncertainty. The computatio _ 5 5 5

of f(Y'| X, H,n) is complicated by the fact that the featuregf(y [0 Hon) = [ JY|X T Hn) f(XT, Hon)dX. (14)
in the Y and X vectors are unordered, so a corresponden
between the elements &f and X, or equivalently betweel
and X, is needed.

Fhe conditioning onn, the number of extracted features,
is needed above becaubeis a correspondence between
predicted features and extracted features; without the condi-
tioning onn, P(I'| H,n) cannot be computed independently
. of Y.

Computing the likelihoodf (Y| X, H,n) requires that we  The main difficulties in implementing (13) are: 1) knowl-
form a correspondence mépbetween extracted and predicte(gdge of the priors?(I'| H,n) and 2) the high computational
features. The correspondence map is a nuisance parameterdhat of summing over all possible correspondences. The cor-
arises because an extracted feature vector is not ordered "P@Ebondence prior probabilities can, in principle, be determined
respect to the predicted feature vector. The correspondefgfn knowledge of the predict and extract uncertainties for each
also accounts for extracted features that are not in the pVEdiCF%othesis, but the derivation is quite difficult for many ap-
vector (false_alarms) as well as predicted features that are PREations. More importantly, the summation contains a (very)
extracted (missed features). large number of components; for example, there are more than

For general pattern matching applications, a predicted featuyyg, (m!,n!) possible one-to-one maps from a setrofpre-
X; may correspond to none, one, or several extracted featufSed ton extracted features.

IFor notational simplicity, we drop the subscripts on the hypotheses in the ON€ can simplify ComPUtation of _the large sum in (13) with
sequel, and consider a genefale H. assumptions of equal priors @hand independence of features

B. Feature Correspondence
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[20], [21]. If the priors are not equal or the features are not itiers [9]. In addition, the independence assumptions simplify the

dependent, then the resulting classifier will be suboptimal. It Bayes matcher significantly. Thus we have

difficult to predict the performance loss due to mismatch be- N

tween the assumed and actual priors. . FY |, Hon) = H F(Y; T, H,yn). (16)
Deterministic Unknown Correspondencé:we assume the ot

correspondence is deterministic but unknown, then it becomes

a nuisance parameter in the classification. In this case, no un@r a one-to-one correspondence, tfth extracted feature

formly most powerful test exists. We thus resort to the Genegorresponds either to a particular predicted feature (saytthe

alized Likelihood Ratio Test (GLRT) classifier, in which we esone), or to a false alarm. We denote these two casés as i

timateI’, then use the estimatdtito estimate the likelihoods orI'; = 0, respectively. Thus for a given correspondence, there

f(Y X, H,n) may be some predict—extract feature correspondences, some
missed predicted features (which correspond to no extracted

F(Y|H,n) ~ max f(Y |I, H,n) (15) feature), and some false-alarm extracted features which have

ICGa no corresponding predict feature; see Fig. 5. For a given corre-

spondence, let r denote the number of false-alarm features.
where f(Y |, H,n) is computed using (14). The GLRT ap- We model the conditional feature likelihood as
proach in (15) avoids the summation in (13), but requires a
search for the best correspondence. Graph matching algorithms/ (Y | I', H,n) = P(np false alarmg H Sra(Yy)

[22] can be used to simplify this search. {5:T;=0}
Discussion: The GLRT estimate of the conditional likeli- . H P(H)f(Y;|T; =i, H,n)

hood is a good estimate of the Bayes likelihood if the “best” cor- {4:T;=i>0}

respondence term (15) dominates the sum in (13). This happens

in the SAR classification problem, for example, when the fea- ) H (1 - Pi(H)) a7)

ture uncertainties are small compared to their feature distances; (L5495}

for example, the match likelihood when corresponding two fe?vhereB(H) is the detection probability of thih predicted fea-
tures with widely differing(z, y) locations is negligibly small y,re ynder hypothesi&. The first term on the right-hand side
compared to the likelihood found from associating all pairs ¢f,ogels the likelihood of false-alarm features, gpg(Y;) is the
features with similatz, y) locations. The presence of additional,yy of featurey; if it corresponds to a false alarm. The second
scattering attributes helps increase the feature distances evel}f@is he likelihood of extracted features that correspond to pre-
scattering features that have similar locations; for example, tWQ.teq features, and the third line represents the miss probabil-

physically close scattering centers with differenand L pa- jies for predicted features that have no corresponding extract
rameters have lower likelihood of an incorrect match pairing,¢re.

than they would if match scores were based only on scatterer
location and amplitude. D. Implementation of the Correspondence Search

For the SAR classification application, we adopt both a one—_l_h GLRT h hesi lecti le in (15) invol findi
to-one map and a GLRT classifier. The one-to-one map makes € ypothesis selection rule in (15) involves finding

physical sense: an extracted scattering center correspond ?Ocorrespondendéthat maximizes/(Y' | I', #,n) in (17) for'
at most one predicted scattering center, and conversely. h can_ohdate hypoth_eslﬁ € M. In general, the search IS
GLRT classifier assumes a deterministic but unknown Corrg(_)mputatlo_n_ally '”te”S'Y‘?* but _for some cases can be imple-
spondence map, and avoids summation over a large set of dgg_nted efficiently. Specifically, in the case that
sible correspondence maps. The probabilistic map assumption _ anp
for this model is considered in [21]. In addition, [20] considers Ping false alarms = cf (18)
other classifiers derived for SAR features using only locatiddr some constanisand/3, the search can be efficiently imple-
attributes. mented inO((m + n)?) operations using the Hungarian algo-
rithm [22].

We briefly summarize the implementation of the Hungarian
algorithm for this problem.From (17) and (18) we have
To implement either (13) or (15), one must have available a

C. Conditional Feature Likelihood

model forf(Y" | X I, H, n). In this section we develop a model —log f(Y'| X,I', H,n)
based on [20] that applies to SAR scattering center features. = —logec— Z log[ fra (Y;)]
We assume th&; are conditionally independent givef, {j:T,=0}
and thatY; are conditionally independent givei, X, andr. _ o o
The independence of thg; is reasonable because the predic- [/'TZ_:N)} log[P;(H) f(Y; |T'; =i, H,n)]
tion errors of separate scattering centers are due to variations in T
components on the target that make up that scattering center, - > log[l - P(H)]. (19)
and these variations can be assumed to be unconnected. The {#:L #4957}

independence of th¥; is.supported by the near blOC!( diag- 2The authors thank William Irving for noting the application of the Hungarian
onality of the CRB matrix for well-separated scattering ceragorithm to this search problem.
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L Y, .. Y misses to investigate sensitivity of the estimated error rate to errors in
i assumed priors and feature attribute uncertainty. Accurate pre-
X1 ci1 e | My 00 diction of absolute classification performance would require an

electromagnetic prediction module as in Fig. 1 and extraction
uncertainties empirically verified from ground truth; neither is
Xm m1 "t Cmn | X My presently available.

false F 0 a .- 0 We generate class means using a combination of synthetic
generation and feature extraction from SAR imagery. We syn-

alarms thesize 2747 class mean features for ten composite target classes
00 F, | 0 - 0 in the MSTAR Public Targets dataset [26]. The data set contains
X-band image chips with28 x 128 pixels and 1 ftx 1 ft reso-
Fig. 6. The cost matrix for the one-to-one matcher in (17). Here, = lution SAR data chips of 10 targets at’ldepression angle. For
—log[P(H)f(Y;|T'; = 4, H)|, F; = —log[3fra(Y;)], and M, = each target, approximately 270 images are available covering

— log[1 =Py (H)]. the full 360° aspect angles, for a total of 2747 images. Down-

range and cross-range locations and amplitudes of scattering
We insert the elements of the above equation for all possibléenters are synthesized from local maxima on the image chips.
andj into an(m + n) x (m + n) array, as shown in Fig. 6. The targets are the 2S1, BMP-2, BRDM-2, BTR-70, BTR-60,
Then the minimum of (19) over all one-to-one maps reduces®7, T-62, T-72, ZIL-131, and ZSU-23-4. Examples of the SAR
the problem of selecting exactly one element from each row atfi@age chips are shown in Fig. 7. From each image we extract lo-
column of the array such that the sum of the selected entrie€@ions and amplitudes of scattering centers from local maxima
minimized. The resulting solution also gives the optimal corré the SAR image. Ther andL parameters are not provided by
spondence. Specifically, i, is selected, then predicted featurgurrent prediction modules, so are generated synthetically. The
X; corresponds to extracted featdfg if F} is selected, thely; ~« attribute for each feature is generatechas- A’(0.5,0.25).
is a false-alarm feature; ¥/; is selected, therX; is not present The Gaussian approximation to a discrete variable is used to
(missed) in the extracted featurEs avoid the combinatorial number of likelihood evaluations for all

The search is equivalent to finding a permutation of the cad@ssiblex choices from prediction and extraction; experiments
matrix that minimizes its trace. Such a permutation is found efff€rify that the Gaussian approximation gives very similar results
ciently using the Hungarian algorithm [22]. A related algorithnat lower computational cost [21]. The length parameter is quan-
[23] can also find the: permutations that give thie smallest tized to 1 bit ¢ = 0 or L > 0), and the nominal values of the
trace values, which is useful if the “beg{t’torrespondences are|ength attribute are generated using a Bernoulli random variable
of interest. with P(L > 0) = 0.3. We quantizel because existing electro-

As an alternative, geometric hashing [24], [25] can be usedfi@agnetic prediction codes do not provitigfurther, prediction
efficiently search a set of candidate hypotheses for the high&ggertainty is unknown, so we choose to adopt only coarse un-
likelihood match. Hashing methods precompute informatigiertainty assumptions in the simulation. Thend¢$ parame-
about patterns of features in a hash table that later can be dffs in (1) are not used in the experiments because no strong
ciently searched to vote for hypotheses that are close matctdédence exists that these parameters can be predicted and ex-
On the other hand, hashing requires the formation of a |arg@Cted at 1-ft SAR resolution with sufficiently low Uncertainty
table, containing entries for every hypothedfs;; this table t0 substantially improve classification performance; nonethe-

can be prohibitively large for high-dimensional classificatiofess, these two parameters are retained in (1) both for reduced
applications. bias and for application to higher resolution SAR imagery. For

example, using 2-in resolution SAR imagerytband, pose
angle can be estimated to an accuracy that is a small fraction of
the 20 phase history angle used in the image formation.

In this section we present an example of feature-based clasPrediction and extraction feature uncertainties are needed

IV. BAYES CLASSIFICATION EXAMPLE

sification using SAR scattering center attributes. We use syif-the Bayes classifier. We evalual(Y; |I'; = i, H,n)
thetic feature vector means based on measured SAR imagéry(17) as follows. Recall eacty; is a feature vector
and an assumed feature perturbation model. We select tafdet. - - - Yjs]. where theYj; are the individual feature

classes, feature sets, feature attribute uncertainties, and pragtdbutesz;, y;, A;, o, L;, ¢;, and~y; from the model in (1)

to be representative of a realistit-band SAR target-recog- (Or @ subset of these). For simplicity, we assume the uncer-
nition problem. The synthetic data results serve to emphasi@inties of the feature attributes are independent; experiments
by example, that the Bayes classifier is tractable for proble#sing dependent attribute uncertainties are presented in [21].
sizes encountered in SAR target recognition given the assurfr independent attributes

tion of conditionally independent features in Section IlI-C. The ) )

proposed technique permits estimation of the optimal error rate J;|L =1, H,n) = H Jj| Ly =14, H,n) (20)
given a set of assumed priors and feature uncertainties. In addi- K

tion, we demonstrate by example that the Bayes classifier caherek denotes an index on the feature attributes. We further
be used to explore the performance effects of sensor param@del each attributé in an extracted featur®; that corre-
ters. Finally, the Bayes classifier can be used as a simulation tepbnds to predicted featur®; with a conditional likelihood
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We emulate the Index stage as follows. For each of the 2747
targetimage chips, we find the five image chipsin each of the ten
target classes that have the highest correlation. The target classes
and poses (pose is in this case azimuth angle) corresponding to
these 50 image chips form the initial hypothesis list generated
by the Index stage. For each class mean vector, we generate a
predict feature vector for each of the 50 hypotheses from the
Index stage by randomly perturbing the mean vector using the
predict uncertainty model above. We similarly generate an ex-
tracted feature vector from the mean vector. The extracted fea-
ture vector assumes each scattering center has a probability of
detection ofP; = 0.5, so not all scattering centers are presentin
the extracted feature vector. We also add clutter scattering cen-
ters to the extract feature vector. We then compute the GLRT hy-
pothesis test using (11), (15), and (17), assuming equally likely
priors(P(H)P(H | n) = constanton the 50 Index hypotheses.
We use the Hungarian algorithm to search for the best corre-
spondence map, using = X in (18). We record the target
class corresponding to the one of the 50 hypotheses with the
highest likelihood score. We repeat this experiment ten times
for each class mean vector; this gives a total of 27 470 classifica-
tions from 27 470x 50 matches. For each candidate hypothesis,
computation of the correspondenceltém?), wherem is the
number of predicted features. Execution times for the 50 like-
lihood computations average 4.6 s using unoptimized Matlab
code on a 333-MHz Pentium processor.

Table Il presents the results of the above experiment for a
SAR Rayleigh resolution of 1 ft, using the uncertainty values in
_ s of the MS AR | " - Table I. We summarize the overall performance as an average
Cccaon oo 33 () v S o) g e srorobbilty of correct lassifiatioR, which s 86.69% orthis

Fig. 8 presents probability of correct classification results
as a function of both the number of feature attributes and the
system bandwidth. First we compare the use of location features
f(Y | X, Hyn) ~ N (sz, gfk) . (21) with location features coupled with other attributes. The ampli-

tude attribute provides only modest improvement (1-2 dB) in
the probability of error, due to its relatively high uncertainty.

T (Y| X, H,n) as follows. Ifk corresponds te, y, log | A|,
or «, the conditional likelihood is assumed to be Gaussian

We assume a similar predict uncertainty for each attribute

f(Xik | X, Hyn) ~ N (Xik, agk) . (22) The addition of the frequency dependence and length attributes

Thus from (14), (21), and (22) we have provides more significant improvement in classification perfor-
mance, especially for the higher resolutions considered. The
k| X, Hyn) ~ N (Xikv 0—27k + Ug,k) (23)  amount of improvement depends critically on the assumed at-

which gives the needed terms in (20). Similarly, for a discretébute uncertainty and its correlation with other attributes.
attribute (the quantized length) the likelihood is a weighted  Fig. 8 also presents results of an experiment in which we
sum predict classification performance as a radar system parameter,
, 5 5 v namely, Rayleigh resolution, changes. The bandwidths and
P(ij|)x7;k,H,n)zZP(ij|A7¢k,H, )P (Xin| Xk, H, ) integrgtion ?a/ng?es correspond app?oximately to SAR image
Kit Rayleigh resolutions of 2, 1, 1/2, and 1/4 ft. We assume de-
(24) creasing uncertainty in the location, frequency dependence, and
and is thus described by probability mass functions on the ptength attributes as Rayleigh resolution becomes finer, as shown
dicted features along with predict and extract confusion min- Table I. From Fig. 8 we see that classification performance
trices. improves significantly as radar bandwidth and integration angle
From (23) and (24) we see that only the sum of prediction amttrease. Specifically, the error probability- . decreases by
extraction uncertainties is needed. Table | lists the uncertairglyout 15 dB as the SAR Rayleigh resolution improves from 2 ft
values used in the simulations. We assume no prediction under1/4 ft. Here we see a clear benefit of increased bandwidth
tainty in « or L, and log-normal uncertainty ifd|. The total because it results in decreased feature uncertainty.
location uncertainty is assumed to have a standard deviation ofig. 9 shows the effect on classification performance when
one Rayleigh resolution for both andy. In addition, Table Il the assumed uncertainty model in the Bayes classifier is in error.
specifies the false-alarm pdfa (Y;). In this experiment we set the location uncertainty standard de-
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SUM OF PREDICTION AND EXTRACTION FEATURE ATTR;Il;AUEII;[lEJNICERTAINTIES USED IN THE BAYES CLASSIFIER EXAMPLE

Feature Attribute SAR Rayleigh Resolution
2 ft 1 ft 1/2 fi 1/4 ft

locations , y
N(0,07) o=2ft o=1ft a?=1/21t o=1/4ft
amplitude
log o (JAl) ~ N(0,02%) d?=05 d?2=05 a?=05 a2 =05
frequency dependence
o~ N(0,02) Oa =1 0o =1/2 oo =1/4 oo =1/8
length

P(L=0|L=0) P(L=0|L>0) 0.7 03 0.8 0.2 0.9 01 0.95 0.05
P(L>0L=0) P(L>0|L>0) 0.3 07 0.2 08 0.1 0.9 0.05 0.95

TABLE I
FALSE-ALARM pdf fra(Y;) USED IN THE BAYES CLASSIFIER EXAMPLE

Feature Attribute | Feature pdf used

number Poisson with rate A = 3 per image chip

P(nF false alarms ) = e~ A" /(np!)

locations z, y uniformly distributed over the image
amplitude log,o(]A]) ~ N (x,0.25)
# = logo(median amplitude of predicted scattering centers)
curvature a~N(0.5,1)
length L is Bernoulli with P(L > 0) = 0.3
TABLE 1l

ONE-TO-ONE CLASSIFICATION RESULTS USING FIVE FEATURE ATTRIBUTES. THE 7 TH ENTRY GIVES THE NUMBER OF TIMES THE OBJECT WAS
CLASSIFIED AS OBJECTj GIVEN THAT OBJECT¢ IS THE TRUE OBJECT. OVERALL P, = 86.8%

Optimal One-to-One Map, five feature attributes, Py = 0.5

2S1 | BMP | BRDM | BTR { BTR | D-7 | T-62 | T-72 | ZIL | ZSU | Total
2 2 70 | 60 131 | 234

281 2574 42 33| 48| 43| 38| 72| 52| 56| 32| 2990
BMP-2 42 | 2023 55| 37| 20| 29| 30| 31| 2| 25| 2330
BRDM-2 | 60 4 2554 | 71 39| 39| 50| 40| 29| 57| 2980
BTR-70 29 32 46| 2046 | 33| 20| 34| 34| 37| 19| 2330
BTR-60 45 28 38| 36 2280| 23| 26| 27] 32| 25| 2560
D-7 49 35 39 13| 25(2639| 68| 37( 36| 49| 2990
T-62 51 44 581 31 36| 37|2584| 53 46| 50| 2990
T-72 36 43 38 36| 32| 20| 44|1981| 47| 43| 2320
ZIL-131 55 53 34| 45| 44| 30| 44| 38|2614] 33| 2990
Z8U-23-4 | 37 61 52 39| 33| 63| 60| 57| 452543 2990
viation to 0.5, 1, and 2 times the correct location uncertainty; V. CONCLUSION

the other attributes use the correct uncertainty models. Here,

P,(H) = 0.9. We see the correct classification rate drops by We have presented a model-based framework for image pro-
10% —20% as a result of the mismatch, and that a greater pagssing when the processing goal is object classification. The
formance loss occurs when the model-based classifier assumagesian formalism allows clear and explicit disclosure of all
too low an uncertatinty. assumptions, in contrast #&d hoc classification procedures.
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Moreover, we demonstrated that the Bayes approach, includings]
the associated correspondence problem, is tractable and leads to
implementable algorithms. 6

We have presented the Bayes approach to model-based
classification in the application context of synthetic aperture
radar (SAR) imagery. By modeling electromagnetic scattering[7;
behavior and estimating physically meaningful parameters
from complex-valued imagery, we computed features as
statistics for use in hypothesis testing. For radar systems withg
a significant fractional bandwidth, the features provide richer
information than local peaks in magnitude imagery.

A complete empirical evaluation of the proposed classifier re-
quires an electromagnetic scattering code to provide predicteo]
features conditioned on a target hypothesis; at the time of this
publication, such a code is being developed by Veridian-ERIMyy)
International, Inc., as a hybrid combination of the ray-tracing
and scattering primitive codes. Further, the efficacy of the prolt
posed likelihood estimation technique requires additional emp 3
pirical verification of the feature uncertainties adopted in Sec-
tion 1V; to do so requires ground truth that is not currently avail-
able, but would be provided by the scattering prediction codé A
under development.

The implementable Bayes classifier allows estimation of op
timal error rates, given assumed priors and feature uncertaintiggg)
and the simulation of performance sensitivity to assumed priors,
to assumed feature uncertainties, and to sensor characteristidd”]

9]

[15]
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