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A Combined Order Selection and Parameter
Estimation Algorithm for Undamped Exponentials

Ching-Hui J. Ying, Ashutosh Sabharwal, and Randolph L. Moses, Senior Member, IEEE

Abstract—We propose an approximate maximum likelihood pa-
rameter estimation algorithm, combined with a model order esti-
mator, for superimposed undamped exponentials in noise. The al-
gorithm combines the robustness of Fourier-based estimators and
the high-resolution capabilities of parametric methods. We use a
combination of a Wald statistic and a MAP test for order selec-
tion and initialize an iterative maximum likelihood descent algo-
rithm recursively based on estimates at higher candidate model or-
ders. Experiments using simulated data and synthetic radar data
demonstrate improved performance over MDL, MAP, and AIC in
cases of practical interest.

Index Terms—Combined detection and estimation, resolution
bounds, undamped exponentials.

I. INTRODUCTION

T HIS PAPER presents an algorithm for the simultaneous
estimation of parameters and detection of model order for

a noisy exponential sequence. It represents an attempt to find a
parameter estimation algorithm that is capable of high resolu-
tion (resolving exponential components separated by less than
the Fourier resolution limit) that provides accurate modeling of
measured signals with practical model orders (10–50), that is ap-
plicable for practical data lengths and signal-to-noise ratios, that
does not require much tuning by the user, and that fails grace-
fully. We attempt to combine the robustness of nonparameteric
estimators with the increased resolution of parametric estima-
tors and combine order selection with parameter estimation.

Fourier-based estimation methods faithfully model the
highest energy components in the signal. They are robust in
the sense that high energy components are always modeled.
The resolution limit of the periodogram hinders its ability
to resolve closely spaced terms, and parameter estimation
bias sometimes results from this resolution limit. Modified
periodogram techniques, including CLEAN and its variants
[1], [2] and notch-periodogram methods [3], [4] are somewhat
helpful in reducing bias but still may fail to reliably resolve
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closely spaced modes and exhibit significant bias unless the
modes are well separated.

Subspace-based methods, including MUSIC, ESPRIT, Min-
Norm, and matrix pencil methods, provide increased resolution
over Fourier-based methods; however, they can miss dominant
peaks in the signal. For example, a subspace method can fail
to model high-amplitude signal components or can fail to re-
solve modes that are close but still separated above the Fourier
resolution limit. This behavior stems from the nonlinear effect
of separating a signal subspace from a noise subspace; unfortu-
nately, it is difficult to predict how the subspace separation will
affect modeled energy in signals and, therefore, difficult to de-
sign around subspace separation failures.

Iterative methods, including ML-based methods [5]–[7], can
give good results if the iterative descent procedures are well
initialized. Unfortunately, good initialization is difficult because
the likelihood function being maximized is highly multimodal
[6]. Initialization by either a Fourier-based or a subspace-based
method often results in convergence to a local minimum of the
loss function, resulting in a suboptimal modeling accuracy. The
only reliable way to ensure convergence to a global optimum is
to use an expensive grid search for initialization; the result is an
algorithm that is often computationally intractable in practice.

Turning to order detection, there are a number of techniques
available, including AIC [8], MDL [9], MAP techniques [10],
[11], and others [12], [13]. Many of these methods can be shown
to have nice asymptotic properties (e.g., consistent estimation of
model order as either data length or SNR increases). However,
these techniques may be slow to converge to their asymptotic
performance and may perform poorly for cases of small data
length or finite SNR that occur in practice. In addition, most
methods require obtaining parameter estimates for every model
order from one to some maximum order and do not use any
model structure to reduce computation burden.

Combined detection/estimation methods have also been con-
sidered; see, e.g., [3], [4], [11], [14], and [15]. The methods
in [3] and [4] are based on periodogram analysis along with
spectral notching and provide computationally fast but statis-
tical suboptimal solutions. Methods in [11], [14], and [15] are
statistically optimal or close to optimal but require searching a
large number (usually all possible) model orders. The goal in
this paper is to provide a statistically (near) optimal method that
has a moderate computational cost. Computation is saved by
i) estimating parameters on only a subset of possible model or-
ders and ii) initializing iterative descent procedures intelligently
based on estimates obtained from previous searches.

In this paper, we present a hybrid nonparameteric–parametric
method for combined order selection and maximum likelihood
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parameter estimation. The algorithm initializes using a nonpa-
rameteric estimate (such as a periodogram estimate). We choose
the periodogram because it is computationally efficient, as well
as nearly statistically efficient if the exponential modes are well
separated. When the exponential modes are not well separated,
the periodogram fails to resolve them but still provides informa-
tion useful for initialization of an iterative descent parametric es-
timator. We split initial periodogram peaks to initialize a high-
resolution parametric estimator and recursively decrease a re-
sultant high model order to obtain a final model order estimate
and corresponding parameter estimates. Decisions on reducing
model order are based on a Wald statistic coupled with a max-
imum a posteriori(MAP) order selection rule. Robustness and
graceful failure of the estimation procedure are achieved by pe-
riodogram-based initialization; we start with the periodogram
as a baseline performance and improve on it but avoid hard fail-
ures (such as failing to estimate a strong modal component) as-
sociated with parametric techniques. The increased resolution
of parametric modeling provide a method to improve on the pe-
riodogram estimates when there is sufficient SNR to do so. In
addition, the algorithm exploits the nested structure of the candi-
date models to obtain a joint detection-estimation method where
estimates from one model order affect the subsequent estimation
as the model order is updated.

The paper is organized as follows. In Section II, we present
the proposed order selecting maximum likelihood (OSML) al-
gorithm, and we discuss some of the practical issues related to
algorithm implementation. Section III presents some practical
numerical examples that illustrate the effectiveness of the algo-
rithm. Finally, Section IV provides some conclusions and re-
lated observations.

II. COMBINED DETECTION/ESTIMATION ALGORITHM

The noise perturbed undamped exponential model is given by

(1)

The model order and the model parameters
are unknown and need to be estimated from the observations

. The noise is assumed to be independent of ,
i.i.d., and Gaussian with mean zero and variance. We also
assume that an upper boundon the model order is available.

The proposed algorithm estimatesand and
can be divided into the following three steps.

1) Fourier-Based Initialization: The initialization step se-
lects dominant peaks using a Fourier-based method (such
as the periodogram) and splits them into a several equal
energy modes as a first step in achieving higher resolu-
tion. The amount of splitting is determined by the esti-
mated CRB for the frequency parameter.

2) ML Refinement: A gradient descent of the likelihood func-
tion is performed, using a fixed model order and the ini-
tialization as described in Step 1 above.

3) Mode Combining: The ML estimate is used to estimate
the CRB, which in turn is used to combine extra modes.
The combining algorithm performs a hypothesis test

using the Wald statistic [16]. The ML refinement and
mode combining steps continue until the order selection
criterion indicates that no more modes are to be com-
bined. Finally, the algorithm uses MAP [11] to reject low
energy modes.

A. Step I: Fourier-Based Initialization

The basic idea of the Fourier-based initialization is as fol-
lows. Dominant peaks from the periodogram of the are
chosen to obtain an initial estimate of model order, model pa-
rameters, and noise variance. Based on the estimated SNR for
each mode, a best-case CRB is computed to obtain the reso-
lution limits of multiple closely spaced modes that might give
rise to this periodogram peak. Each periodogram peak is split
into several modes, where the number and the placement of the
modes is determined by the estimated CRB.

Dominant peaks are found by selecting peaks in a peri-
odogram spectral estimate that are above, which is an
estimate of . A consistent estimate of is given as [17]

(2)

where are the eigenvalues of matrix
, with

...
...

...
...

(3)

and is an upper bound of the model order. The advantage of
using this technique is that no information about the true signal
(which we want to estimate) is needed; the only information
needed is an upper bound of the model order. Fast subspace de-
composition [18] can be used to considerably ease the compu-
tational burden of the eigendecomposition. The estimate of
is used to threshold the periodogram. Values in the periodogram
above are retained as dominant peaks (we use in our
simulations).

Each detected peak is split into a number of “super-resolved”
frequency estimates (i.e., separated by less than the Fourier reso-
lution limit) using an estimate of the best case CRB to determine
the frequency separation. For each mode, the SNR is estimated
as

SNR mode (4)

Having selected the dominant peaks of the periodogram, each
of the peak is split into modes, as described below.

We assume the peak results from two equal amplitude
modes (with each amplitude ) that are closely spaced in
frequency and ask what is the minimum frequency separation
for the two modes to be resolvable using the CRB as the bound
on standard deviation of frequency estimates. Consider two
poles on the unit circle and , where

is the frequency separation. To define a detection resolution
limit for closely spaced modes, we note that the resolvability
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of two equal energy modes depends on the modes only through
their separation . We propose a resolution limit 1

(5)

where

CRB

is the CRB matrix of the angles of and , respectively. The
function is interpreted as the minimum value of fre-
quency separation for which two equal energy amplitude modes
can be resolved. Expressions for the CRB can be found in [19].

The resolution limit also admits a geometric inter-
pretation. The Fisher information matrix is a Riemannian metric
on the statistical manifold obtained by varying the parameters

[20]. In other words, it is a local measure of dis-
tance on the manifold of possible true models. The quantity

is proportional to the distance (induced by
the Riemannian metric) of from at high SNR. We
believe that this measure of distance is the natural quantity to
define the frequency resolution bound; this idea is further elab-
orated in [21]. Detection thresholds for closely spaced modes
have been defined and computed in [22]–[24]; the previous work
has focused only on the diagonal entries of CRB. For closely
spaced modes , the off-diagonal entries are of
the same order (irrespective of the data length) as the diagonal
entries and, hence, cannot be ignored; the proposed resolution
bound (5) uses the complete CRB. For well-separated modes,
only diagonal entries of CRB are dominant and, hence, the pro-
posed limit reduces to the previously proposed thresholds.

Note that in (5) also gives a detection lower bound
for all combinations of signals (e.g., two unequal energy modes,
more than two modes, etc.); for two unequal energy modes, the
smaller energy mode will have a larger CRB than the CRB of
the higher energy mode, and consequently, the resolution limit is
larger than the one for the equal energy mode case (if choosing
the energy in the equal energy case to match the energy of the
higher energy mode). In addition, the two-mode resolution limit
is a lower bound for all multiple mode cases; this is so because
if three or more modes are closely spaced, the CRB’s of these
modes are higher than the CRB’s for the two-mode case (if
choosing the shortest distance of the multiple mode case as the
distance of the two-mode case) [25] and, consequently, give a
higher resolution limit.

The resolution limit is found by using (5). We set
for some user-selected choice ofand determine the set of

values that solve (5). For high SNR, defines the
distance between two modes with whichstandard deviation
CRB confidence intervals of the frequency estimates of the two
modes become disjoint; in particular

Pr SNR

where is the error function. In
this paper, we use , which gives a 95% CRB confidence
interval. The effect of on over/under-modeling errors is dis-
cussed in Section II-D.

1The subscript� is used to emphasize the dependence of resolution limit on
the initial phase difference.

Fig. 1. Best-case two-mode resolution bound as a function of SNR.

The resolution limit depends on the initial phase dif-
ference between the two modes. To ensure that the initial model
order is overestimated, we choosesuch that the resulting de-
tection threshold is minimized, i.e., .
The best case phase difference occurs at ,
i.e., the phase difference is zero at the center of the data record;
this resolution limit is the smallest frequency resolution that
can be supported by the data record. A plot of
versus SNR is shown in Fig. 1. The normalization of by

gives the number of resolvable modes within a Fourier
resolution bin (Fbin, i.e., rad). The independence on data
length of this curve (with appropriately normalized axes), and
the linear trend can be derived analytically following an exten-
sion to [24] (the off-diagonal entries of the 22 CRB matrix
are neglected in [24]). Given, the maximum number of resolv-
able modes within a Fourier bin is inversely proportional to the
resolution limit and is given by

(6)

where denotes the smallest integer that is larger than.
Initializing from an overparameterized model serves two pur-

poses. First, it ensures that consistent estimates can be obtained
(in the sense described in [21]). Second, this acts as a guard
against an undermodeled initialization. Since the proposed pro-
cedure reduces a high model by recursively combining close
modes, an undermodeled initialization leads to biased initial
and, hence, biased final estimates.

Finally, the new peaks are obtained as follows. A peak in the
th Fbin is split into modes placed at

if is an even integer

if is an odd integer.

(7)

We set the phases of the split peaks to that of the original peak.
Each of the original peaks with magnitude is split into
peaks with magnitudes .
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B. Step II: ML Refinement

The mode estimates obtained from the initialization in Step
I are refined using a gradient descent method. Under the given
assumptions, the ML problem is the same as minimizing the
following simplified negative log-likelihood function

(8)

Consequently, many existing iterative ML algorithms [5],
[26]–[28] can be used to perform the required ML refinement
procedure. A summary of several useful ML algorithms is
provided in [29].

C. Step III: Mode Combining

By using a lower bound to compute the resolution limit, the
number of modes in the initialization is generally overestimated.
We could use a standard order selection procedure (such as
MDL [9] or MAP [11]) at this point, using the initial number of
modes as an upper bound on model order, but that entails testing
all model orders. Instead, we recursively decrease model order
with a sequential hypothesis test, and as we reduce model order,
the parameter estimates from the higher order model provide a
good initial estimate to the lower order log-likelihood descent
computation.

The model order is reduced by a recursive binary hypothesis
test. The hypothesis test is performed using the estimated CRB
(at the ML estimates after Step II) followed by a test based on
MAP [11] criterion. In combining two modes, the following bi-
nary hypothesis test is performed:

Model order

Model order (9)

In terms of the parameters, the above test can be written as

for some OR

for some

Otherwise. (10)

That is, either a single mode is modeled by two or more frequen-
cies near that mode, or small amplitude mode(s) are present.

The above formulation requires simultaneous testing on both
the frequency and the amplitude parameter. Because of the
Fourier-based initialization outlined above, the modes tend to
lie close to each other in groups. Hence, the hypothesis test in
(10) is approximated by

for some

Otherwise (11)

followed by

for some

(12)

We first consider test (11). We seek to use the ML estimates
of parameters for model orderto estimate the parameters for
the model order . The motivation of recursive estimation
is as follows. First, a recursive method that utilizes estimates
from the higher model order will tend to inherit the robustness of

periodogram. Second, since the model form under consideration
leads to nested model classes corresponding to different model
orders, a recursive procedure appears to be most natural.

To obtain an initialization for model order , we combine
two modes into one mode from the peak estimates for model
order . For combining, we propose to use the Wald test, which
requires estimates from orderonly. The Wald test for (11) is

combine

(13)

where is recomputed from (5) using the ML estimates from
Step II. In this paper, we choose ; a brief discussion on
choice of is given in Section II-D. Finally, the test (12) is
performed using the MAP rule. The two steps are summarized
below.

1) Test whether two estimated modes correspond to a single
true mode. The combining is implemented as follows.

a) Calculate the CRB at the ML estimates. This is
done by inserting the ML parameter estimates and
the noise power estimate [using (2)] into the
CRB expression for the undamped exponential
model [19]. Assuming that the current model
order is , sort the frequency parameter vector

. Pick the modes with smallest
frequency separation, and test for potential com-
bining using the Wald statistic. If not combined,
pick the pair of modes with the next smallest
separation. If Wald's test suggests combining of
two modes, go to Step 1b; else go to Step 2.

b) Discard the lower energy mode from the pair of
modes that fails the Wald test. Combine only one
mode at a time, and repeat the ML refinement after
each combining step.

2) Test if any modes have small magnitudes. In this case,
we can use the MAP information criterion to eliminate
low energy modes. Given a set of estimates and the cor-
responding MAP, we first discard a mode, which is the
smallest energy mode. We then refine the estimates using
the ML procedure and compute the corresponding MAP
cost function. We compare the latter computed MAP cost
MAP to the former cost MAP . If the MAP

is smaller, we then use the second set of estimates as
the new estimates. We repeat the procedure until the best
model structure that has the smallest MAP cost is found.
The MAP information criterion for our case is found to
be

MAP (14)

where , and are defined as above. The proposed algo-
rithm is summarized in Table I.

The basic reason for separating the two tests is as follows.
The Fourier-based initialization captures the dominant peaks in
the data, which we then split into several closely spaced peaks to
achieve high resolution. After the ML refinement, if two modes
move closer, they will tend to have similar energies. The CRB
being a lower bound on the estimation performance acts as a
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TABLE I
SUMMARY OF THE OSML ALGORITHM

certificate of faith in the resolved modes. If the estimated modes
are closer than the CRB resolution limits, we choose to combine
modes in accordance with the CRB.

Having tested on frequencies, low-energy modes are removed
next. We have used a MAP test, but in fact, for the amplitude pa-
rameter (which is a linear parameter in additive Gaussian noise),
other standard tests (MDL, Wald) give nearly identical detec-
tion results. In fact, for linear parameters in additive Gaussian
noise, the Wald statistic can be obtained by scaling the general-
ized likelihood ratio statistic, leading to a test similar to MAP
and MDL.

D. Choosing and

The choice of scalar parametersand denotes the tradeoff
between the resolvability of close modes and correct detection
of the model order. A small can be understood as a lesser
faith in a Fourier-based method's resolvability capabilities and
proceeds in a more conservative fashion by oversplitting. For
example, implies splitting every mode into an infinite
number of modes. On the other hand, a large value oftends to
combine only very close modes, again proceeding cautiously.
For , we obtain (a slightly modified version of) MAP,
which recursively computes ML estimates. Thus, a small value
of the ratio potentially leads to more overmodeling than
undermodeling errors.

In our extensive simulations, we found that the algorithm's
performance is very robust to the choice offor . We
believe that the robustness comes from using Fourier-based ini-
tialization coupled with mode splitting. We support our claim
with the following observation made during our extensive simu-
lations. Since each periodogram peak is split into several closely
spaced modes, the model order following frequency splitting
usually upper bounds the true model order. Thus, each of the true

modes is potentially modeled by more than one closely spaced
mode. If any pair of the closely spaced modes is combined based
on the frequency separation, the initialization guarantees (with
high probability) that at least one of the modes is still close to
the true mode. Since every combining is followed by an ML re-
finement, the new mode estimates tend to be closer to the true
modes. As increases, the frequency combining leads to higher
model order estimates; the bulk of model reduction is then per-
formed by the MAP test. We propose and [2, 16]
( was used for simulations) as a possible set of parame-
ters. Larger values of lead to high reliance on the MAP test,
which in our simulations led to a loss in detection performance.
A rigorous treatment on choice of the parameters remains a topic
of future research.

E. Practical Issues

For long data length and/or high SNR cases, the CRB resolu-
tion limit usually will be small, and hence, the number of peaks
resulting from the splitting algorithm will be large, and even un-
realistic, for some cases. Although the procedure is needed for
accurate detection of modes (since for large-sample and/or high
SNR signals the signal frequencies can be very closely spaced),
the price to pay is the high computational cost resulting from
extremely large initial model orders. If it can be reasonably as-
sumed in a given application that no frequencies are closer than

rad, then the CRB resolution in (5) can be redefined as
.

III. SIMULATION STUDIES

In this section, we present three examples to demonstrate
the performance of the proposed algorithm, which we refer
to as the order-selecting maximum likelihood (OSML) algo-
rithm. The first example illustrates the order-selecting ability
and the high resolution of the OSML algorithm. For illustra-
tive purpose, we detail all the steps of the algorithm using a
single noise realization. In the second example, we choose a
general ten mode radar-like signal. We generate 100 Monte
Carlo simulations for different SNR’s to collect performance
statistics. Performance is evaluated in terms of order detection
accuracy (via correct detection probability) and parameter esti-
mation accuracy (via estimation variance). For order selection
performance, we compare the OSML Monte Carlo results with
the AIC, MDL, and MAP approaches. For estimation accuracy,
we compare the OSML Monte Carlo results with the CRB re-
sults. To understand how the OSML algorithm performs on
radar signals, in the third example, we use a synthetic radar
backscatter signal and compare the OSML algorithm to the
matrix pencil approach [30].

A. Example One: Closely Spaced Modes

In the first example, we choose a data sequence of length
and composed of four exponentials with parameters

and .
The additive Gaussian noise is set so that the SNR per mode is

dB. This example considers two closely
spaced frequencies that cannot be resolved by a Fourier-based
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Fig. 2. Estimation results for Example One. The numbers in parentheses are the amplitudes, frequencies, and phases of the corresponding modes.

processing. This particular choice of parameters results in real-
valued data; however, the estimation algorithm assumes com-
plex-valued data.

Fig. 2 shows the entire estimation process for Example Two.
The periodogram has only three peaks and does not resolve the
closely spaced modes. From the CRB expressions, the max-
imum number of resolvable signals per Fbin is 2; therefore, for
this case, there are six initial modes. The algorithm converges to
the correct model order after three ML iteration steps, as shown
in the figure. We see that the algorithm is able to determine the
correct model order and resolve the closely spaced exponen-
tials, even though the initial periodogram peaks did not resolve
the modes.

B. Example Two: A General Ten Mode Case

We choose a ten-mode signal to demonstrate the statistical
properties of the OSML algorithm. The spectrum of the true
signal is shown in Fig. 3(a). In Fig. 3(b), we show the locations
of the signal modes. All ten modes have equal energy, and the
data length is . We run 100 Monte Carlo simulations for
each SNR per mode value. We consider a moderate SNR range,
where the SNR per mode ranges from5 dB to 15 dB. We note
that some of the modes are closely spaced (seen from Fig. 3(a)),
and the periodogram cannot resolve all 10 modes and, hence,
cannot be used to accurately estimate the model order.

In Fig. 4, we plot the probability of correct order selection
versus SNR obtained with four order detection algorithms,
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Fig. 3. (a) Spectrum and (b) mode locations of the radar-like signal in Example Two.

Fig. 4. Correct order selection probabilities of different order selection
algorithms for Example Two.

OSML, AIC [31], MDL [9], and MAP [11], [32]. The ML
estimates for different orders used in each algorithm are the
same and are obtained from the ML initialized with the OSML
algorithm. The OSML algorithm stops when the order selection
mechanism terminates; however, we calculate the ML estimates
for all orders smaller than the upper bound for use by the other
three order detection algorithms. The ML estimates are used in
each of the criteria (AIC, MDL, and MAP), and the criteria are
defined as

(15)

(16)

(17)

We see from the figure that the OSML algorithm performs sub-
stantially better than the other methods for this SNR range.

Fig. 5. Comparison of angle variances of Modes #1 and #3 for Example Two.

The AIC, MDL, and MAP methods all tend to overestimate
the model order (e.g., at SNR/Mode 10 dB of the figure, all
mis-selections of the three algorithms are overestimation). For
low model order signals (such as model order of 2), the perfor-
mance of the other order selection algorithms are comparable to
the OSML algorithm.

In Fig. 5, we compare the frequency estimation performance
of the OSML algorithm with the corresponding CRB; we only
show the performance for two of the ten modes (others are sim-
ilar). We see that the OSML algorithm asymptotically achieves
the CRB. The estimates appear to be slightly biased as the
sample variances lie below the CRB. The bias can be partially
explained by the finite grid of the Fourier-based initialization
and the finite precision stopping rule of the ML optimization.

We also compared other parameter estimation algorithms, in-
cluding the matrix pencil approach [30] and the IQML algo-
rithm [5] for this particular set of data. The estimation vari-
ances are much worse because the modes are misestimated ei-
ther due to high sensitivity of the subspace for matrix pencil
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Fig. 6. Comparison of the OSML (a) and matrix pencil (b) methods for range profile modeling. XPatch generated range profile of an aircraft at X-band with
SNR = 13:89 dB.

or poor initial estimates for IQML. The figure illustrates the
robustness of the Fourier-based technique for use in practical
applications and encourages the development of hybrid nonpa-
rameteric-parametric modeling techniques.

We note from Fig. 5 that the SNR threshold points for both
modes are close to 0 dB; from Fig. 4, the SNR threshold point
for good order detection is close to 2 dB. From the simulation
results, it is evident that even though the model order is mis-
estimated, the mode parameters, at least for some modes, are
still accurately estimated using the OSML algorithm, which is
a characteristic not found in the other parametric algorithms
considered. In [22] and [23], it was shown that the detection
threshold is lower than the estimation threshold for closely
spaced modes. Our results show that even below the detection
threshold, a subset of mode parameters can still be reliably
estimated. In previous analysis [22], [23], a failure is declared
if the model order is estimated incorrectly. Since, even with a
detection error, reliable (unbiased) estimation of a part of the
parameter set is still possible, the criteria for declaration of a
failure may need to be modified.

C. Example Three: Simulated Radar Signal

The previous examples consider simulations using data that
exactly match the assumed model. In Fig. 6, we show the es-
timation results for both the OSML algorithm and the matrix
pencil algorithm applied to scattering center range estimates of
X-band radar scattering of an aircraft synthesized using XPatch
[33]. XPatch is used to find the frequency response of the air-
craft from 9.5–10.5 GHz in 2.451 MHz steps. Although the
XPatch data is not a sum of exponentials, it has been proposed
to use exponential models to characterize high-frequency scat-
tering data; the peaks in the transform domain (time or range in
this case) correspond to scattering centers on the aircraft. The
XPatch scattering measurements are corrupted by additive white
Gaussian noise with SNR of 13.89 dB. For each algorithm, we
show the original Kaiser-windowed periodogram range profile
(solid lines) for comparison as ground truth and vertical lines to
represent the locations of the estimated scattering centers. The
reconstructed periodogram range profiles (broken lines) using
the estimated scattering parameters at the original data band-

width with periodogram resolution are also shown. The model
order was autoselected to be 48 by the OSML method; for ma-
trix pencil, both the AIC and MDL [34] predicted a model order
of 33.

It is clear from the figure that the matrix pencil method fails
to locate several of the higher energy scattering mechanisms,
whereas the OSML method faithfully estimates all of the scat-
tering centers that are within 25 dB of the peak. The matrix
pencil algorithm, if used as an initial estimate to a ML descent
procedure, results in convergence to a suboptimal local min-
imum because of the high initial bias. Finally, we note that the
3.93% residual error in the OSML estimate agrees very closely
with the predicted 3.92% error that would result from perfect
modeling of the target in white noise with SNR of 13.89 dB. The
matrix pencil method with model order 48 also exhibits mises-
timation of dominant peaks, and the relative modeling error is
8.7%.

IV. CONCLUSION

In this paper, we presented a combined order selection
and approximate maximum likelihood parameter estimation
method for undamped exponential signals. The proposed
approach addresses the key issue of reliable initialization for
gradient descent methods to compute the ML estimates. The
Fourier-based initialization results in an algorithm that models
most of the signal energy, and the parametric estimation com-
ponent provides superresolution when the SNR’s of closely
spaced modes are sufficiently high to support it. The algorithm
depends on a few user-selectable parameters (i.e., resolution
bounds, threshold in hypothesis testing), but algorithm perfor-
mance seems to be fairly robust to selection of these parameters
based on simulations performed. We demonstrate that order
selection decisions using the Wald statistic [16] is effective for
order estimation at noise levels and data lengths of practical
interest.
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