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A Combined Order Selection and Parameter
Estimation Algorithm for Undamped Exponentials

Ching-Hui J. Ying, Ashutosh Sabharwal, and Randolph L. MpSesior Member, IEEE

Abstract—We propose an approximate maximum likelihood pa- closely spaced modes and exhibit significant bias unless the
rameter estimation algorithm, combined with a model order esti- modes are well separated.

mator, for superimposed undamped exponentials in noise. The al- Subspace-based methods, including MUSIC, ESPRIT, Min-
gorithm combines the robustness of Fourier-based estimators and ! ! ’

the high-resolution capabilities of parametric methods. We use a Norm, anc_i matrix pencil methods, provide mcrease_d resolu_tlon
combination of a Wald statistic and a MAP test for order selec- OVer Fourier-based methods; however, they can miss dominant
tion and initialize an iterative maximum likelihood descent algo- peaks in the signal. For example, a subspace method can fail
rithm recursively based on estimates at higher candidate model or- to model high-amplitude signal components or can fail to re-

ders. Experiments using simulated data and syntheic radar data g4)e modes that are close but still separated above the Fourier
demonstrate improved performance over MDL, MAP, and AIC in

cases of practical interest resolution limit. This behavior stems from the nonlinear effect
. . N . of separating a signal subspace from a noise subspace; unfortu-
Index Terms—Combined detection and estimation, resolution e . i .
bounds, undamped exponentials nately, it is difficult to predict how the subspace separation will

affect modeled energy in signals and, therefore, difficult to de-
sign around subspace separation failures.
. INTRODUCTION Ilterative methods, including ML-based methods [5]-[7], can

HIS PAPER presents an algorithm for the simultaneo@Vve good results if the iterative descent procedures are well
T estimation of parameters and detection of model order fipytialized. Unfortunately, good initialization is difficult because
a noisy exponential sequence. It represents an attempt to firfg#@ likelihood function being maximized is highly multimodal
parameter estimation algorithm that is capable of high resoll- Initialization by either a Fourier-based or a subspace-based
tion (resolving exponential components separated by less tHBRthod often results in convergence to a local minimum of the
the Fourier resolution limit) that provides accurate modeling §#SS function, resulting in a suboptimal modeling accuracy. The
measured signals with practical model orders (10-50), that is &Y reliable way to ensure convergence to a global optimum is
plicable for practical data lengths and signal-to-noise ratios, tH@{ISe an expensive grid search for initialization; the resultis an
does not require much tuning by the user, and that fails gra@égorlthm that is often computatlonally intractable in practl.ce.
fully. We attempt to combine the robustness of nonparametericlurning to order detection, there are a number of techniques
estimators with the increased resolution of parametric estinfi@ilable, including AIC [8], MDL [9], MAP techniques [10],
tors and combine order selection with parameter estimation.[11], and others [12], [13]. Many of these methods can be shown
Fourier-based estimation methods faithfully model th® have nice asymptotic properties (e.g.,con3|stentest|mat|on of
highest energy components in the signal. They are robustpdel order_ as either data length or SNR mcrease;). Howevgr,
the sense that high energy components are always modelB§Se techniques may be slow to converge to their asymptotic
The resolution limit of the periodogram hinders its abilitPerformance and may perform poorly for cases of small data
to resolve closely spaced terms, and parameter estimatigfgth or finite SNR that occur in practice. In addition, most
bias sometimes results from this resolution limit. Modifiedn€thods require obtaining parameter estimates for every model
periodogram technigues, including CLEAN and its varianfder from one to some maximum order and do not use any
[1], [2] and notch-periodogram methods [3], [4] are somewh#todel structure to reduce computation burden.
helpful in reducing bias but still may fail to reliably resolve Combined detection/estimation methods have also been con-
sidered; see, e.g., [3], [4], [11], [14], and [15]. The methods

. ) i _in [3] and [4] are based on periodogram analysis along with
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parameter estimation. The algorithm initializes using a nonpa-  using the Wald statistic [16]. The ML refinement and
rameteric estimate (such as a periodogram estimate). We choose mode combining steps continue until the order selection
the periodogram because it is computationally efficient, as well  criterion indicates that no more modes are to be com-
as nearly statistically efficient if the exponential modes are well  bined. Finally, the algorithm uses MAP [11] to reject low
separated. When the exponential modes are not well separated, energy modes.
the periodogram fails to resolve them but still provides informa-
tion useful for initialization of an iterative descent parametric e§- Step I: Fourier-Based Initialization
timator. We split initial periodogram peaks to initialize a high- The basic idea of the Fourier-based initialization is as fol-
resolution parametric estimator and recursively decrease altgvs. Dominant peaks from the periodogram of fhet)} are
sultant high model order to obtain a final model order estimagdiosen to obtain an initial estimate of model order, model pa-
and corresponding parameter estimates. Decisions on redugii@eters, and noise variance. Based on the estimated SNR for
model order are based on a Wald statistic coupled with a masach mode, a best-case CRB is computed to obtain the reso-
imum a posteriori(MAP) order selection rule. Robustness anflition limits of multiple closely spaced modes that might give
graceful failure of the estimation procedure are achieved by ptse to this periodogram peak. Each periodogram peak is split
riodogram-based initialization; we start with the periodograinto several modes, where the number and the placement of the
as a baseline performance and improve on it but avoid hard failodes is determined by the estimated CRB.
ures (such as failing to estimate a strong modal component) asbominant peaks are found by selecting peaks in a peri-
sociated with parametric techniques. The increased resolutisdogram spectral estimate that are abéve which is an
of parametric modeling provide a method to improve on the pestimate of>?. A consistent estimate of? is given as [17]
riodogram estimates when there is sufficient SNR to do so. In 1 M
addition, the algorithm exploits the nested structure of the candi- 5 = Z Ak 2
date models to obtain a joint detection-estimation method where M~ qu k=g +1
estimates from one model order affect the subsequent estima(j\pmare{)\k}ﬁi1 are the eigenvalues of matrit /(N — M +
as the model order is updated. 1)Y*Y, with

The paper is organized as follows. In Section Il, we present

the proposed order selecting maximum likelihood (OSML) al- 1 Y2 Y UM

gorithm, and we discuss some of the practical issues related to 92 s Ya T UM

algorithm implementation. Section Il presents some practical ¥ = | % Ya Ys T UM

numerical examples that illustrate the effectiveness of the algo- : : : :

rithm. Finally, Section IV provides some conclusions and re- UNM  YUN—M41 YUN—Mi2 - YN

lated observations. M>q, N-—M>q, @3

andgq, is an upper bound of the model order. The advantage of

Il. COMBINED DETECTIONESTIMATION ALGORITHM using this technique is that no information about the true signal

ich we want to estimate) is needed; the only information

The noise perturbed undamped exponential model is iven@y] ;
P b P g néeded is an upper bound of the model order. Fast subspace de-

q . .
y(t) = s(t) +n(t) = el 1t o ( comp05|t|on [18] can bg used to cons@_erably ease.the compu-
® (®) +n(?) ; o tational burden of the eigendecomposition. The estimate? of
t=1,...,N (1) Iisusedtothresholdthe periodogram. Valuesin the periodogram
abovex4? are retained as dominant peaks (we &1se 3 in our
The model order; and the model parametefs:;, ¢;, w; }_, simul:ti%ns) P (

are unknown and need to be estimated from the observati
{y(t)}X,. The noisey(t) is assumed to be independent(f),
i.i.d., and Gaussian with mean zero and varianéeWe also
assume that an upper bougdon the model order is available.
The proposed algorithm estimateand{«;, ¢;, w; }{_; and
can be divided into the following three steps. »
1) Fourier-Based Initialization The initialization step se- SNR/mode: O‘_; (4)
lects dominant peaks using a Fourier-based method (such a
as the periodogram) and splits them into a several equi#dving selected the dominant peaks of the periodogram, each
energy modes as a first step in achieving higher resolof the peak is split inta modes, as described below.
tion. The amount of splitting is determined by the esti- We assume the peak results from two equal amplitude
mated CRB for the frequency parameter. modes (with each amplitud&/+/2) that are closely spaced in
2) ML RefinementA gradient descent of the likelihood func-frequency and ask what is the minimum frequency separation
tion is performed, using a fixed model order and the infor the two modes to be resolvable using the CRB as the bound
tialization as described in Step 1 above. on standard deviation of frequency estimates. Consider two
3) Mode CombiningThe ML estimate is used to estimatepoles on the unit circlp; = ¢/ andp, = ?“+2«)ei® where
the CRB, which in turn is used to combine extra modesa\w is the frequency separation. To define a detection resolution
The combining algorithm performs a hypothesis tesimit for closely spaced modes, we note that the resolvability

ONEach detected peak is splitinto a number of “super-resolved”
frequency estimates (i.e., separated by less than the Fourier reso-
lution limit) using an estimate of the best case CRB to determine
the frequency separation. For each mode, the SNR is estimated
as
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of two equal energy modes depends on the modes only throt '
their separatiomdw. We propose a resolution limit, (Aw)!

Ug (AUJ) é O'\/(O'z. + 0—3;-1—&4«; - 20w,w+Aw) (5)

where
2
oo T ot Acw
CRBy(w,w + Aw) = o @ gt
Ow,w+Aw OutAw

is the CRB matrix of the angles pf andp,, respectively. The
function u,,(Aw) is interpreted as the minimum value of fre-g
quency separation for which two equal energy amplitude moc &
can be resolved. Expressions for the CRB can be found in [1§
The resolution limitu,(Aw) also admits a geometric inter- =1
pretation. The Fisher information matrix is a Riemannian metr
on the statistical manifold obtained by varying the paramete
{e;, ¢;,wi } [20]. In other words, it is a local measure of dis- o :
tance on the manifold of possible true models. The quanti -2¢ ° 20
(Aw)? /[ugs(Aw)]? is proportional to the distance (induced by
the Riemannian metric) akw from Aw = 0 at high SNR. We Fig. 1. Best-case two-mode resolution bound as a function of SNR.
believe that this measure of distance is the natural quantity to
define the frequency resolution bound; this idea is further elab-
orated in [21]. Detection thresholds for closely spaced mo

have been defined and computed in [22]-{24]; the previous wo der is overestimated, we choggesuch that the resulting de-
has focused only on the diagonal entries of CRB. For Closeté(ction threshold is mi}limized, e Aw) = ming us(Aw),

spaced modeRAw < (27 /N)), the off-diagonal entries are of.l.hF best case phase difference occuss at ((m — 1)Aw) /2,

the same order (irrespective of the data length) as the dlagolng_' the phase difference is zero at the center of the data record;

entries and, hence, cannoi be ignored; the proposed resoluﬂ% resolution limit is the smallest frequency resolution that

bound (5) uses the complete CRB. For well-separated mod 0 h A pl CAW) /2
only diagonal entries of CRB are dominant and, hence, the péﬁ be supported by the data record. A plo(T - Aw)/2n

d limit red o th ious| d threshold rsusN-SNR is shown in Fig. 1. The normalization &fv by
posed limit reduces to the previously proposed thresholds. 7 /N gives the number of resolvable modes within a Fourier
Note thatu,(Aw) in (5) also gives a detection lower boun

for all binati f sianal ¢ | q esolution bin (Fbin, i.e2x /N rad). The independence on data
or all combinations of signals (e.g., two unequal energy mo § hgth of this curve (with appropriately normalized axes), and
more than two modes, etc.); for two unequal energy modes,

. 2 linear trend can be derived analytically following an exten-
smaller energy mode will have a larger CRB than the CRB Yon to [24] (the off-diagonal entries of thex2 2 CRB matrix

the higher energy mode, and consequently, the resoluj[ion Iimig% neglected in [24]). Givel the maximum number of resolv-
larger than Fhe one for the equal energy mode case (if choos e modes within a Fourier bin is inversely proportional to the
the energy in the equal energy case to match the energy oftt €olution limit and is given by

higher energy mode). In addition, the two-mode resolution limit
is a lower bound for all multiple mode cases; this is so because = [ 2”% (6)
if three or more modes are closely spaced, the CRB’s of these N -
modes are higher than the CRB'’s for the two-mode case \fhere[«] denotes the smallest integer that is larger than
choosing the shortest distance of the multiple mode case as thhitializing from an overparameterized model serves two pur-
distance of the two-mode case) [25] and, consequently, giv@@ses. First, it ensures that consistent estimates can be obtained
higher resolution limit. (in the sense described in [21]). Second, this acts as a guard
The resolution limit is found by using (5). We sef(Aw) = against an undermodeled initialization. Since the proposed pro-
~Aw for some user-selected choiceyadind determine the set of cedure reduces a high model by recursively combining close
Aw values that solve (5). For high SNRy(Aw) defines the modes, an undermodeled initialization leads to biased initial
distance between two modes with whighstandard deviation and, hence, biased final estimates.
CRB confidence intervals of the frequency estimates of the twoFinally, the new peaks are obtained as follows. A peak in the

ration (in Fourier bins)

i i i
40 60 80 100 120 140
N - SNR per mode (in dB) ’

The resolution limit., (Aw) depends on the initial phase dif-
Fence between the two modes. To ensure that the initial model

modes become disjoint; in particular kth Fbin is split intod; modes placed at
Pr(|Aw] < yitg | SNR N) > (1 — p) = &() opi =

where®d(x) = (2/v/2x) [ ¢~ **/?dx is the error function. In (k + IJ[—E) I 1=1,...,%, if % is an even integer
this paper, we use = 2, which gives a 95% CRB confidence (k . ) = _g y
interval. The effect ofy on over/under-modeling errors is dis- N e
cussed in Section II-D. (1)
We set the phases of the split peaks to that of the original peak.

1The subscript is used to emphasize the dependence of resolution limit lfﬂaCh of _the origi|_1al peaks with magnitude is split into ¢;
the initial phase difference. peaks with magnitudes; /+/7;.

|%], if ¢, is an odd integer.

N
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B. Step Il: ML Refinement periodogram. Second, since the model form under consideration

The mode estimates obtained from the initialization in SteIeads to nested model classes corresponding to different model
ders, a recursive procedure appears to be most natural.

| are refined using a gradient descent method. Under the givenl_0 obtain an initialization for model ordér— 1. we combine

assumptions, the ML problem is the same as minimizing the . !
. LT . L . two modes into one mode from the peak estimates for model
following simplified negative log-likelihood function

orderk. For combining, we propose to use the Wald test, which

L6 = o2 @) requires estimates from orderonly. The Wald test for (11) is
( ) - tz_% |yt St( )| . ) 9 combine
- 2 [ Us <
Consequently, many existing iterative ML algorithms [5], (wi —wj) <7> > 1 (13)

[26]—-[28] can be used to perform the required ML refinement

procedure. A summary of several useful ML algorithms ié/here% IS r(_acomputed from (5) “S'”9 . .ML gstlmaFes from
provided in [29]. tep Il. In this paper, we chooge= 2; a brief discussion on

choice ofy is given in Section II-D. Finally, the test (12) is

performed using the MAP rule. The two steps are summarized
C. Step Ill: Mode Combining below.

By using a lower bound to compute the resolution limit, the 1) Test whether two estimated modes correspond to a single
number of modes in the initialization is generally overestimated.  true mode The combining is implemented as follows.
We could use a standard_ ord_er sel_ectlon pr_o_cedure (such as a) Calculate the CRB at the ML estimates. This is
MDL [9] or MAP [11]) at this point, using the initial number of done by inserting the ML parameter estimates and
modes as an upper bound on model order, but that entails testing the noise power estimai#? [using (2)] into the
all model orders. Instead, we recursively decrease model order CRB expression for the undamped exponential
with a sequential hypothesis test, and as we reduce model order, model [19]. Assuming that the current model
the parameter estimates from the higher order model provide a order is ¢ .sort the frequency parameter vector
good initi{al estimate to the lower order log-likelihood descent (Gor, @, Mq) Pick the modes with smallest
computation. . . . . frequency separation, and test for potential com-

The model order is reduced by a recursive binary hypothesis bining using the Wald statistic. If not combined
test. The hypothesis test is performed using the estimated CRB pick the pair of modes with .the next smaIIes’t
(at the ML estimates after Step Il) followed by a test based on separation. If Wald's test suggests combining of
MAP [11] criterion. In combining two modes, the following bi- two modes, go to Step 1b: else go to Step 2.

hary hypothesis test is performed: b) Discard the lower energy mode from the pair of
H, : Model order< k£ — 1 modes that fails the Wald test. Combine only one
H, : Model order= k. 9) mode at a time, and repeat the ML refinement after

) each combining step.
In terms of the parameters, the above test can be written as

2) Test if any modes have small magnitudesthis case,

Ho:wi =w; forsomei#;j OR we can use the MAP information criterion to eliminate
op =0 for somel low energy modes. Given a set of estimates and the cor-
H, : Otherwise. (10) responding MAP, we first discard a mode, which is the

smallest energy mode. We then refine the estimates using
the ML procedure and compute the corresponding MAP
cost function. We compare the latter computed MAP cost
MAP(% — 1) to the former cost MAF%). If the MAP(k —

1) is smaller, we then use the second set of estimates as
the new estimates. We repeat the procedure until the best
model structure that has the smallest MAP cost is found.
The MAP information criterion for our case is found to

Thatis, either a single mode is modeled by two or more frequen-
cies near that mode, or small amplitude mode(s) are present.

The above formulation requires simultaneous testing on both
the frequency and the amplitude parameter. Because of the
Fourier-based initialization outlined above, the modes tend to
lie close to each other in groups. Hence, the hypothesis test in
(10) is approximated by

Hy:w; =w; forsomei # j be
Hy : Otherwise (11) MAP(q) = N log(L(6)) + > log(N) (14)
followed by
Hy:oq=0 forsomel e {1,...k} vyhere_L(e), N, andq are defined as above. The proposed algo-
rithm is summarized in Table I.
H :oq#0 VI (12)

The basic reason for separating the two tests is as follows.
We first consider test (11). We seek to use the ML estimat&be Fourier-based initialization captures the dominant peaks in
of parameters for model ordérto estimate the parameters fothe data, which we then split into several closely spaced peaks to
the model ordek — 1. The motivation of recursive estimationachieve high resolution. After the ML refinement, if two modes
is as follows. First, a recursive method that utilizes estimatave closer, they will tend to have similar energies. The CRB
from the higher model order will tend to inherit the robustness bking a lower bound on the estimation performance acts as a



TABLE |
SUMMARY OF THE OSML ALGORITHM

. Obtain the estimated noise power 52 using Equation (2). Using 352

as a threshold for the periodogram (computed using a Kaiser window
with 8 = 3), obtain the locations, magnitudes, and phases of the peri-
odogram peaks of the signal.

. Calculate the CRB resolution limit, u; (Equation (5)) and the maxi-
mum number of modes per Fbin, 9; (Equation (6)) for each peak. Split
each peak location into 9; equal peaks as described in subsection II-A.
Denote the total number of modes by 4.

. Perform ML refinement on mode estimates using nonlinear minimiza-
tion of the negative log-likelihood function (Equation (8)).

. Compute the CRB at the ML estimate. Test whether two closely
spaced modes should be combined using the Wald statistic (13).

. If any of modes are discarded in step 4, § < ¢ —1 and go to Step 3. If
no mode is discarded, go to step 6.

. Compute the MAP cost for § (Equation (14)). Discard the lowest
energy mode, perform ML refinement, and compute MAP(§ — 1).

. If MAP(§— 1) < MAP(§), then § + § — 1, and go to step 6. Else, the
estimation is complete.
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modes is potentially modeled by more than one closely spaced
mode. If any pair of the closely spaced modes is combined based
on the frequency separation, the initialization guarantees (with
high probability) that at least one of the modes is still close to
the true mode. Since every combining is followed by an ML re-
finement, the new mode estimates tend to be closer to the true
modes. As: increases, the frequency combining leads to higher
model order estimates; the bulk of model reduction is then per-
formed by the MAP test. We propose= 2 andu € [2, 16]

(» = 2 was used for simulations) as a possible set of parame-
ters. Larger values gi lead to high reliance on the MAP test,
which in our simulations led to a loss in detection performance.
Arigorous treatment on choice of the parameters remains a topic
of future research.

E. Practical Issues

For long data length and/or high SNR cases, the CRB resolu-
tion limit usually will be small, and hence, the number of peaks
resulting from the splitting algorithm will be large, and even un-
realistic, for some cases. Although the procedure is needed for
accurate detection of modes (since for large-sample and/or high

SNR signals the signal frequencies can be very closely spaced),
the price to pay is the high computational cost resulting from
extremely large initial model orders. If it can be reasonably as-

certificate of faith in the resolved modes. If the estimated mod@&gmed in a given application that no frequencies are closer than
are closer than the CRB resolution limits, we choose to combittepp! 'ad, then the CRB resolution in (5) can be redefined as
modes in accordance with the CRB. u' = max(Uappl, u)-

Having tested on frequencies, low-energy modes are removed
next. We have used a MAP test, but in fact, for the amplitude pa- [ll. SIMULATION STUDIES
rameter (whichis alinear parameterin additive Gaus;ian noise)| this section, we present three examples to demonstrate
qther standard tests (M.DL’ Wald) give ne_arly |d_e_nt|cal det?ﬁie performance of the proposed algorithm, which we refer
tion results. In fact, for linear parameters in additive Gauss% as the order-selecting maximum likelihood (OSML) algo-

noise, the Wald statistic can be obtained by scaling the 9eNeIdtm. The first example illustrates the order-selecting ability

:ﬁg lulk[()ell_lhood ratio statistic, leading to a test similar to MAﬁand the high resolution of the OSML algorithm. For illustra-

tive purpose, we detail all the steps of the algorithm using a
single noise realization. In the second example, we choose a
, general ten mode radar-like signal. We generate 100 Monte
The choice of scalar parameteraindy: denotes the tradeoff 1 simulations for different SNR's to collect performance

between the resolvability of close modes and correct detec“&%tistics. Performance is evaluated in terms of order detection

of the model order. A smalk can be understood as a lessz_légcuracy (via correct detection probability) and parameter esti-
or

D. Choosingy and ;.

faith in a Fourier-based method's resolvability capabilities a ation accuracy (via estimation variance). For order selection

proceeds in a more conservative fashion by oversplitting. X rformance, we compare the OSML Monte Carlo results with

example,y = 0 implies splitting every mode into an infinite o
number of modes. On the other hand, a large valyetehds to the AIC, MDL, and MAP approaches. For estimation accuracy,

combine only very close modes, again proceeding Cautiousw\gﬁtcmj;parec;hetOS(;\/It Mophte %asr:al_reslults_:r\:lth thefCRB re-
For ;s = oo, we obtain (a slightly modified version of) MAP,S s. 10 understand how the algorthm performs on

which recursively computes ML estimates. Thus, a small valf@dar signals, in the third example, we use a synthetic radar

of the ratio~/; potentially leads to more overmodeling tharp@ckscatter signal and compare the OSML algorithm to the
undermodeling errors. matrix pencil approach [30].

In our extensive simulations, we found that the algorithm's
performance is very robust to the choiceofor i > 2. We A Example One: Closely Spaced Modes
believe that the robustness comes from using Fourier-based inin the first example, we choose a data sequence of le¥gth
tialization coupled with mode splitting. We support our clain25 and composed of four exponentials with parametgrs=
with the following observation made during our extensive simi; w; = +(27/N),+1.8(2n/N) and¢;, = 0,i = 1,...,4.
lations. Since each periodogram peak is split into several closélye additive Gaussian noise is set so that the SNR per mode is
spaced modes, the model order following frequency splittinig) log;,(a? /o) = 0 dB. This example considers two closely
usually upper bounds the true model order. Thus, each of the tapaced frequencies that cannot be resolved by a Fourier-based
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(0, ©,9)  True Parameters (1.0,-0.2513,0)  (1.0,0.2513,0)
(1.0,-4524,0) (1.0,0.4524,0) (a)
1
Initial Estimates from FFT (0.701,-0.149,~0.98)

(0.906,0.538,~1.23)

(0.791,-0.520,1.10) (b)

' 1
Estimates After Split /\ /\ /\
‘ ! | 1

‘ (©)

Estimates After 1st MLE
| ‘ l ?
1
Estimates After Combining Algorithm y
| l (e)
] ]
Estimates After 2nd MLE (0.694,0.201,0.96)
i (0687,0530,-0.98) O
]
\* (0.694,0.201,0.96)
Estimates After Combining Algorithm (1.107,-0.237,0.17)
(1.34,-0.469,0.66) ‘ (0.687,0.530,-0.98) ©
|
(1.312,-0.259,0.415)
Estimates After 3rd MLE (0.716,0.195,0.998)
(1.247,-0.438,-0.01) (0.688,0.522,-0.899) )
1

(Final Estimates)

Fig. 2. Estimation results for Example One. The numbers in parentheses are the amplitudes, frequencies, and phases of the corresponding modes.

processing. This particular choice of parameters results in reBl- Example Two: A General Ten Mode Case

valued data; however, the estimation algorithm assumes coMye choose a ten-mode signal to demonstrate the statistical

plex-valued data. _ o properties of the OSML algorithm. The spectrum of the true
Fig. 2 shows the entire estimation process for Example TWQgnal is shown in Fig. 3(a). In Fig. 3(b), we show the locations

The periodogram has only three peaks and does not resolvedfighe signal modes. All ten modes have equal energy, and the

closely spaced modes. From the CRB expressions, the mgxta length isV = 64. We run 100 Monte Carlo simulations for

imum number of resolvable signals per Fhin is 2; therefore, fgich SNR per mode value. We consider a moderate SNR range,

this case, there are six initial modes. The algorithm convergesgfiere the SNR per mode ranges frer dB to 15 dB. We note

the correct model order after three ML iteration steps, as showiat some of the modes are closely spaced (seen from Fig. 3(a)),

in the figure. We see that the algorithm is able to determine thad the periodogram cannot resolve all 10 modes and, hence,

correct model order and resolve the closely spaced exponeannot be used to accurately estimate the model order.

tials, even though the initial periodogram peaks did not resolveln Fig. 4, we plot the probability of correct order selection

the modes. versus SNR obtained with four order detection algorithms,
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Positions of the true modes in Example Two
T T T T T

Range Spectrum of the radar-like signal in Example Two
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Fig. 3. (a) Spectrum and (b) mode locations of the radar-like signal in Example Two.

Comparison of order selection results for Example Two Variancss and CRBs for two modes of Example Three
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Fig. 4. Correct order selection probabilities of different order selectioﬁig' 5. Comparison of angle variances of Modes #1 and #3 for Example Two.
algorithms for Example Two.
The AIC, MDL, and MAP methods all tend to overestimate

OSML, AIC [31], MDL [9], and MAP [11], [32]. The ML thg modellorder (e.g., at SNR/Mode 10 dB of thg flglure, all

s-selections of the three algorithms are overestimation). For
w model order signals (such as model order of 2), the perfor-
ance of the other order selection algorithms are comparable to
g OSML algorithm.

estimates for different orders used in each algorithm are t
same and are obtained from the ML initialized with the OSML®
algorithm. The OSML algorithm stops when the order selecti

mechanism terminates; however, we calculate the ML estimal X L
rJn Fig. 5, we compare the frequency estimation performance

for all orders smaller than the upper bound for use by the othef he OSML algorith ith th dina CRB- |
three order detection algorithms. The ML estimates are useoowt e algorithm with the corresponding » we only

each of the criteria (AIC, MDL, and MAP), and the criteria ar§how the performance for two of the ten modes (others are sim-
defined as ilar). We see that the OSML algorithm asymptotically achieves

R the CRB. The estimates appear to be slightly biased as the
darc = arg H{Iin{m log(L(6wr.)) + 34} (15) sample variances lie below the CRB. The bias can be partially
. 3¢ explained by the finite grid of the Fourier-based initialization
GMDL = arg lnin{mlog(L(QML)) + 5 10g(m)} (16) and the finite precision stopping rule of the ML optimization.
! ) We also compared other parameter estimation algorithms, in-
GMAD = arg min{mlog(L(éML)) 424 1Og(m)} . (17) cluding the matrix pencil approach [30] and the IQML algo-
a 2 rithm [5] for this particular set of data. The estimation vari-
We see from the figure that the OSML algorithm performs sulances are much worse because the modes are misestimated ei-
stantially better than the other methods for this SNR rangher due to high sensitivity of the subspace for matrix pencil
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Fig. 6. Comparison of the OSML (a) and matrix pencil (b) methods for range profile modeling. XPatch generated range profile of an aircraft at X-band wit
SNR = 13.89 dB.

or poor initial estimates for IQML. The figure illustrates thewidth with periodogram resolution are also shown. The model
robustness of the Fourier-based technique for use in practioeder was autoselected to be 48 by the OSML method; for ma-
applications and encourages the development of hybrid nonp@¢ pencil, both the AIC and MDL [34] predicted a model order
rameteric-parametric modeling techniques. of 33.

We note from Fig. 5 that the SNR threshold points for both It is clear from the figure that the matrix pencil method fails
modes are close to 0 dB; from Fig. 4, the SNR threshold poittt locate several of the higher energy scattering mechanisms,
for good order detection is close to 2 dB. From the simulatiomhereas the OSML method faithfully estimates all of the scat-
results, it is evident that even though the model order is migring centers that are within 25 dB of the peak. The matrix
estimated, the mode parameters, at least for some modes,pemcil algorithm, if used as an initial estimate to a ML descent
still accurately estimated using the OSML algorithm, which igrocedure, results in convergence to a suboptimal local min-
a characteristic not found in the other parametric algorithnmeum because of the high initial bias. Finally, we note that the
considered. In [22] and [23], it was shown that the detectid93% residual error in the OSML estimate agrees very closely
threshold is lower than the estimation threshold for closelyith the predicted 3.92% error that would result from perfect
spaced modes. Our results show that even below the detectioodeling of the target in white noise with SNR of 13.89 dB. The
threshold, a subset of mode parameters can still be relialohatrix pencil method with model order 48 also exhibits mises-
estimated. In previous analysis [22], [23], a failure is declardiination of dominant peaks, and the relative modeling error is
if the model order is estimated incorrectly. Since, even with&7%.
detection error, reliable (unbiased) estimation of a part of the
parameter set is still possible, the criteria for declaration of a IV. CONCLUSION

failure may need to be modified. . . .
In this paper, we presented a combined order selection

C. Example Three: Simulated Radar Signal and approximate maximum likelihood parameter estimation
Th . | ider simulati ing dat tmethod for undamped exponential signals. The proposed
€ previous examples consider simufations using data I& tproach addresses the key issue of reliable initialization for

tejxacttlly matCTt thfe ats)stjhmt(:]d rgg?vlell_ Ir|1 Flgt.hG, we dsthhow th(te_ adient descent methods to compute the ML estimates. The
imation results for bo € aigorithm and theé matrig, o hased initialization results in an algorithm that models

pencil algorithm applied to scattering center range estimates (f)st of the signal energy, and the parametric estimation com-

X-band radar scattering of an aircraft synthesized using XPa : : :
. ) t d lut hen the SNR'’s of closel
[33]. XPatch is used to find the frequency response of the aE— nent provices stperresoiion when the S OF Closely

. paced modes are sufficiently high to support it. The algorithm
craft from 9.5-10.5 GHz in 2.451 MHz steps. Although thﬁ%ﬁjends on a few user-selectable parameters (i.e., resolution

i(Patch data is T.Otl a sgml OI exEoner][thls, |rt1.har1]sfbeen PrOPOHYinds, threshold in hypothesis testing), but algorithm perfor-
o use expgnen al mode’s to characterize nhigh-requency S%ﬁnce seems to be fairly robust to selection of these parameters
termg data; the peaks in the tran§f0rm domain (time orrangeilised on simulations performed. We demonstrate that order
this case) correspond to scattering centers on the aircraft. fection decisions using the Wald statistic [16] is effective for

XPatch scattering measurements are corrupted by additive wrg}s L : .
) ) . . er estimation at noise levels and data lengths of practical
Gaussian noise with SNR of 13.89 dB. For each algorithm, erest g P

show the original Kaiser-windowed periodogram range profile
(solid lines) for comparison as ground truth and vertical lines to
represent the locations of the estimated scattering centers. The
reconstructed periodogram range profiles (broken lines) usingThe authors would like to thank the reviewers for helpful
the estimated scattering parameters at the original data bacoimments and suggestions, which helped streamline and focus
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