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I. INTRODUCTION

Adaptive antenna arrays have become extremely
important in a wide range of engineering prob\iems. These
antennas adjust their patterns to attenuate unknown or
time-varying interference. This property makes them
especially useful for protecting communication and radar
systems from interference.

An adaptive array forms its output signal as a
weighted sum of the individual antenna signals. The main
signal processing task in an adaptive antenna system is
the determination and updating of the weights used in this
weighted sum. Much effort has focused on this problem,
and several weight control algorithms have been
developed [1-9]. Nearly all of these algorithms are based
on the information in the spatial covariance matrix of the
antenna signals.

When an adaptive array is used to protect a
communication or radar signal from interference, the
weights in the array are often chosen to maximize the
signal-to-interference-plus-noise ratio (SINR) at the array
output. This criterion is generally appropriate because the
performance of a signal detector at the array output will
ultimately depend on this ratio. Well-known adaptive
array weight control techniques, such as those due to
Applebaum [17] and Widrow, et al. [20], maximize this
ratio.

Adaptive array concepts are also useful in another
problem context: estimating the arrival angles of signals.
Since an adaptive array forms nulls on interfering signals,
the directions of these nulls can be used to estimate signal
arrival angles. Angle estimation techniques are of interest
in a number of important applications, such as
surveillance, remote sensing, sonar, etc.

When an adaptive array is used for angle estimation,
maximizing array output SINR is no longer the relevant
goal. (In fact, in angle estimation problems, there may
not even be a desired signal. There is simply a set of
incoming signals, whose arrival angles we wish to know.)
Instead, the goal is to obtain the best estimates of the
unknown signal arrival angles. In this case one is more
interested in quantities such as the bias and variance of
the angle estimates.

It is well known that when the weights in an adaptive
array are controlled by a conventional technique based on
the inverse of the covariance matrix (such as the least
mean square (LMS) algorithm), the array pattern that
results does not necessarily have nulls pointed precisely at
incoming signals. To maximize array output SINR, these
algorithms compromise between nulling the interference
and the thermal noise at the array output. As a result,
nulls are usually not infinitely deep and often do not
point exactly at the signals. In other words, angle
estimates based on these null directions are biased.

To remove this bias, other techniques, not based
simply on the inverse of the covariance matrix, have been
of interest. For example, the so-called eigenvector-
eigenvalue decompositions of the covariance matrix have
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been found to yield better performance. These techniques
attempt to remove the bias in the angle estimate by
eliminating the thermal noise contribution to the
covariance matrix before computing the weights. Ideally,
without thermal noise, the nulls would be infinitely deep
and would point exactly in the correct directions.
However, algorithms for obtaining eigenvector-eigenvalue
decompositions are iterative in nature; thus, these
methods can be computationally burdensome, although
improvements have ‘been demonstrated [23].

We present a different weight computation algorithm
that may be used for angle estimation in adaptive arrays.
The procedure we present is an alternative to the
eigenvalue-eigenvector decomposition methods. It is
computationally simpler than those methods and is related
to the instrumental variable (IV) approach of parameter
estimation. These algorithms take advantage not only of
spatial correlations in the data, but temporal correlations
as well. The use of this extra information can provide
lower variances in the weight estimates when
autocorrelations must be estimated from data.

The outline of the paper is as follows. Section II
presents weight selection algorithms for the case that
exact data autocorrelations are available. Section III treats
the case where the autocorrelations must be estimated
from the data, and derives numerically reliable estimation
procedures. In Section IV we present simulation studies.
Section V concludes the paper. '

II. NARROWBAND PROCESSING GIVEN EXACT
CORRELATIONS

The basic narrowband (NB) array processing
configuration is shown in Fig. 1. For simplicity we
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Fig. 1. Basic NB array processing configuration.

assume that the-M array elements are collinear and
equally spaced. The signals measured on'the array may
include p narrowband interference (NBI) terms incident at
various angles 8, 1 < k =< p, and a background noise
term {v(#)}. In some applications there is also a desired
signal d(t) incident at an angle 8,. After sampling and
frequency shifting, the antenna data vector y(n) is given
by
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y(m) = [y ... yu(mY (1a)
where
.. p .
you(n) = d(n)e’™ + 2 Ake.lwﬁ(n“’rmvk)l + Vu(n)
=1
(1b)
with
) .
v = «wD sin 0, (1¢)
A
and
p Number of sinusoidal interference signals.
Ay Amplitude of each interference signal.
¢ . Initial phase of each interference signal.
Wy Temporal frequency of each interference
signal. . .
i Wavelength of each interference signal.
Vi Spatial frequency of each interference signal.
0, Incident angle of each interference signal.
v.(n)  Sampled noise term measured on the mth
antenna element.
D Distance between array elements.
Equations (1) may be written more compactly as
: » ‘ :
y(n) = dn)s(vy) + 2, A/ s(v) + v(n)
k=1
2)
with
v(n) = [vi(n) va(n) ... vy(m)Y’
and

s(o) = [e /™ ... eTIM],

It is necessary to make some assumptions about the
noise statistics. We assume {v(n)} to be stationary, and
correlated for only a finite time, so that

R.(I) A E{v(myvi(n—-D} = 0, || > q. 3
Note that no assumption is made about the correlation of
{v(n)} for lags less than or equal to g; in particular, v;(n)
and v;(n) may be correlated for i#. Note also that the
(more common) white noise assumption is a special case
of (3) for q equal to zero. We further assume that the
sinusoidal sources are uncorrelated with each other. Thus,
we assume that the ¢, are mutually independent random
variables distributed on [—m, w]."

The output of the antenna array of Fig. 1is a
weighted sum of the individual ‘alitenna signals. Thus,

s(n) = wH(n) y(n) (4a)

where w(n) is the M X 1 (complex-valued) weight

vector

wn) = [w,(n), ..., wu(n)]". (4b)
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The array processing problem is to choose w(n) to realize
some goal. If a desired signal is present, the goal usually
is to separate that signal from the noise. In other
applications one wishes to estimate the angles of arrival
of the interference signals. We consider these cases
separately.

A. No Desired Signal Present

We first consider the case in which no desired signal
term is present, that is, when d(n) =0 in (2). For this
case, the goal is to choose w(n) to obtain unbiased
estimates of the interference signal arrival angles. We
consider this problem first by assuming that the second-
order statistics of these signals are known exactly.

From the assumptions on ¢, and v(n), the
autocorrelation sequence R, (!) of y(n) can be found.
From (2) and (3) it follows that '

R, () & E{y(m) y*(n— D} = Ri(D) + R,,()) (52)
where
p
Ri(l) = X A2/ s(up)st(v,). (5b)
k=1

Let us now consider the selection of the weight
vector. The classical solution is found by selecting w so
as to minimize the output noise power, with the
constraint that w # 0, or

(6)

min w#R, (O)w

hfw=1

where h is some M X 1 constraint vector. Note that by
stationarity the optimum weight is independent of the
time index n. The solution is (6) is well known [1, 2]:

—KI[R,,(0] 'h

where K is a scalar chosen to ensure that hflw = 1.

One major drawback of the weight vector in (7) is
that, unless v(n) is not present, these weights do not give
unbiased estimates of the interference signal arrival
angles. As a consequence, two (spatially) closely spaced
interferences cannot be resolved. (See Section IV for an
example of this phenomenon).

Most research effort at removing this bias has
focussed on eigenvalue-eigenvector decompositions of
R,,(0) to separate the noise from the NBI. However, such
decompositions can be computationally inefficient, as
they require iterative algorithms to realize solutions.”
Moreover, eigenvalue methods may not work well in low
SNR or colored noise environments. '

Another approach is to obtain the weights using the
correlation sequence R,,(!) for |{| > g; in this way the
noise component R, (/) is zero in (5a), and only
interference signal correlation terms are present. As a
result, a weight vector chosen using R, (1) for |I| > ¢ is
not affected by the noise.

)

W =
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In particular, we still use the weight vector defined as
any (nonzero) solution to

R, (OHw = 0.

This weight choice is-similar in philosophy to IV
estimators in the time series literature [11, 12, 15}, so we
call the weight vector in (8) an IV weight vector. We
claim the IV weight vector completely nulls the
interference signais, even when noise is present.
Moreover, this weight vector is the same as the classical
one in (7) when there is no noise term (v(n) = 0) there.
To show this, note that for any |I| > ¢, R,,() = R;(0),
and it can be written as (cf. (5b))

®

R, (1) = ST()SH (9a)
where
1 see 1
AL il
S = ¢ H ¢ H ’
e~ JM=1yv, e iM=wp |y o,
e 0
x e (9b)
0 e_j"” p xXp
|A[2ein! 0
T() = e (9¢)
0 .lAl,Ize"“""

The first matrix in (9b) is p columns of a Vandermonde

matrix. It is well known that these columns are linearly

independent (if the v; are distinct). The second matrix is

nonsingular, so it follows that rank(S) = p. Moreover,

T() in (9c) is nonsingular, so it follows that R (/) has

rank p. Thus, R, (/) has M — p eigenvalues equal to zero.
Let w be a solution to (8). Then

ST(HSHw = 0.

Since S has full column rank, it has a pseudoinverse S*
= (8"5)7'S" such that S'S = I,, the p X p identity
matrix [22]. Premultiplying (10) by T7'(/) S* gives

(10)

SHw = 0 (11a)
or
sfopw =0, i=1,2,..,p. (11b)

Equation (11b) states that the response of the array at
each interference arrival angle 0, is zero.

It immediately follows from (11) that the array output
s(n) has no interference component. From (2)-(4) we
have :

s(n)

P
v {Z S(V)A e/ T 4 V(n)}
k=1

Il

wv(n). 12)
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Thus, no interference component is present at the output
of the array.

It turns out that the IV weight vector from (8) (even
with noise present) is the same solution as that of the
classical minimization problem when no noise is present.
IfR,,(0) = O, then

(A, 0
' ] sH
0 - Al

This matrix has M — p zero eigenvalues, so any weight
vector w that minimizes (6) is an eigenvector
corresponding to a zero eigenvalue of (13). Thus, the set
of weight vector solutions is an (M — p)—dimensional
subspace. Since any IV weight vector has the property
(11), it follows from (11) and (13) that

R,(0)w =0

for any 1V weight vector. Thus, the IV weight vector
(obtained for nonzero noise) is the same subspace as the
classical weight vector for the noiseless case. (Note that
rank (R,,(1)) = p, so the solution to (8) is not unique;
the set of solutions is the same M — p—dimensional
subspace as in the noiseless classical case.) As the noise
is increased, the IV null locations do not change, but the
classical ones do. This effect is shown in Fig. 2. It can

R,,(0) =S (13)

g
o

-12.00

-24.00

-36.00

CONVENTIONAL
5 element array

PH _(DB)

10 08

8 Known correlation
) iso8 |
‘T NBI at 18° and 22°
20 DB
&
8 + Y ; . : y
'-90.00 -64.29 -38.57 _-12.86 12.86  38.57  64.23  90.00
ANGLE
8
o
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~24.00
£

8 x
z 'T INSTRUMENTAL VARIABLE o 0508 7
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@ Known correlation + 1008
T NBI at 18° and 22° x 1S DB b
g z 2008
2 } 4 ‘ I | I 4
'90.00 -64.29 -38.57 _-12.86 12.85  38.57 64.29  90.00
ANGLE
Fig. 2. Conventional and IV array gains parameterized on INR.
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be seen in this figure that as the noise level increases, the
classical weight vector is not able to resolve the two
closely spaced interference signals; however, the IV
weights continue to provide perfect nulling.

Note that the above derivation remains valid for any
choice of ! satisfying |{| > g. Therefore, perfect
interference nulling is obtained if w is a solution to the
weighted concatenation of R, (/) matrices as

Rw =10 (14a)
where

aq+1 Ryy(q + l)
E é aq+2 Ryy(q + 2) (14b)

o, R, (L)

g_nd where oy = 0. The proof of this follows as before;
R can be written as

_ [sr@+ns?
R= :
ST(L)S"

Premultiplying by the matrix diag[T~'(g + )S’, ...,
T~ Y(L)S*] gives S”w = 0 as before.

To summarize, if w is any solution to (8) or (14,
then the array output s(n) has no interference component,
as shown in (12). Moreover, this weight vector (which is
obtained in the presence of noise) is also a solution to the
classical minimization problem for the noiseless case.
Thus, this IV weight vector effectively eliminates the bias
due to noise, and provides perfect nulling of interference
signals.

Equation (14) can also be interpreted as a weight
selection which whitens the array output s(n). Recall that
the conventional weight selection of (7) renders s(n) as
white as possible [1, 5]. We can attempt to whiten s(n)
by ensuring that

r(k) & E{s(n) s*(n—k)} = 0, k> 0.

In particular, we can effect this by solving
min {allrss(l)lz + 0+ aLIrs:(L)lz}
hHw=1

for some given nonnegative weighting parameters o, ...,
a, . If v(n) is white noise (i.e., ¢ =0 in (3)) then from
(3)—(5) we have
r) = WiR,()w,  1>0
= WHRii(I)W, {>0.
Therefore, the above minimization becomes
min
h”\‘vv=l

L
{2 lwHa Rii(l)wlz} .
i=1
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This minimum is zero, and is found for any w satisfying
(14). : S

Finally, note that we can combine the IV. and the
conventional estimate simply by appending the first g + 1
autocorrelation terms to R in (14) as

aORyy(O)
R = a]R{y(I)
aLRyy(L)
We can in general not find a w so that Rw = 0, so we
choose to find instead the minimum mean square error
solution. Thus, the generalized minimization problem is
min [RwW]#[Rw]. (16)

hHw=1

(15)

If ) = O for I = 1, (16) reduces to the classical weight
selection of (6). If o, = 0 for 0 = / = ¢, then (16)
yields the pure IV estimate. Choices of the {o,}
coefficients between these two extremes are compromises
that retain a desired balance between. the properties of
each, such as a tradeoff between perfect nulls and
minimum output power for example.

The solution to (16) is straightforward. Assume the
first element of h is nonzero. (Since h # 0, the columns
of R and the elements of h and w can be compatibly
rearranged so that the first element of h is nonzero). Now
partition R and w as

Rele 21

(17a)
1 M=-1
w = [1 w ], wy
1 M-1
then (16) can be solved by
w = — [PHP]*PHp (17¢)

where # denotes a generalized inverse. Then w; is
chosen to make h¥w = 1.

B. Desired Signal Present

There are' many array processing problems in which a
desired signal is present. The processing goal is to
recover this signal from the noise and interference.
Generally, this goal is realized by:choosing the weights in
the array to maximize the SINR at the output. This
criterion is appropriate in most cases, although it is not
always the ‘‘best’” criterion. For example, in digital
communications the objective is to minimize the bit error
probability at the array output; for some types of
detectors, maximizing the SINR does not minimize the
bit error probability. In HF communication systems,
postprocessing to remove channel fading and dispersion
effects is often required, but this processing is very
sensitive to NB interference [10]. Finally, the weights

196

that maximize SINR are derived under the assumption of
signal stationarity; in time-varying environments (such as
in the presénce of pulsed jammers), these algorithms may
no longer maximize the SINR: For these and other
situations, it may be more desirable to select the array
weights to completely attenuate the interference signals
[21]. Thus, it is useful to generalize the IV method of the
previous section to the case that d(n) is present.

When a desired signal is present, two standard types
of information are generally available: either the signal
angle 9, is known, or the desired signal itself is assumed
known. These cases are discussed below. '

1) Known Signal Angle: If 0, is known, then the
weight vector w must be constrained so that the antenna
gain is some constant (say 1) at the incident angle 6,.
This can be accdmp!ished by using, the constraint vector

h = [l /™M Dhy

in (16) where v, is related to 6, by (1c). Thus, the weight
vector for this case is also given by (17).

2) Known Desired Signgj: If some estimate d(n) of
the desired signal is known, then it may be incorporated
into the weight selection procedure. In this case d(n) is
subtracted from the array output s(n) to generate an error
signal e(n): ‘

e(n) = s(n) — d(n) = W”y(n) —‘d(n)-

The optimal IV weight is the one that minimizes

L
min [ > o|Elen) e*(n—l)}|2]
w I=q+1 .

L

= min [ > owHR (Dw — ri(-Dw
w I=g+1
- wir () + rd,(l)|2]

where

r () & E{y(m) d*(n—D} M X 1).

This minimum is zero, and realized for w satisfying

Rw =T (18a)

where R is given in (14) and

Qg1 Tyalg + 1)
F = 5 .
o Tu(L)
As before, we can extend this method to include the
first ¢ + 1 autocorrelations to get

(18b)

min[Rw — r]”[Rw — r] (19a)
where R is given by (15) and
“ol'yd(o)
r = : . (19b)
c'*Lryd(L)

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC'SYSTEMS VOL. 24, NO. 2 MARCH 1988



Equation (19) is solved by

= [RHR)* RHr. (20)

11l. WEIGHT ESTIMATION FROM DATA

In practice, the array data autocorrelation are not
known, but must be estimated from data. This section
discusses autocorrelation estimators, and derives update
formulas for the corresponding weight vector
computations.

A. Some Autocorrelation Estimators

Consider first the estimation of the M X M
autocorrelation matrix R(/). A standard estimate is given

by

corresonding elements along a diagonal of Ry (1) or R%())
are different estimates of the same quantity. An improved
estimate (i.e., one with an‘asymptotically lower variance)
results by averaging these estimates. To this end, define
the Toeplitz matrix

] (25)

RR() = [

where K = 3 or 4. The element ry(/, s) is estimated by
averaging the corresponding diagonal elements in RA(0).
Similarly, r§ (I, s) is obtained from R% (l) Thus, we
have

rkd, 0) R, —M+1)

K, M-1) ri(, 0)

N M-—s
rils) = Z R [M — 2 ym(n)y:*(n—z)] , 520
n=l+1 . i=
N M ]
- AN __ W yEm =D <0 (26)
FE‘,M [M m_y i%ﬂp my¥@n-1) s \
s = N*WH [M — 12 Yiss(n)y¥ (n—l)] 520
= [ 2 Yies(m)y} (n—t)] 5<0. @n
n= 1v w+1 | M —

rymyH(n-1). Q1)

The subscnpt N is used to indicate an estimate based
on {y(1), ..., y(N)}. An exponentlal forgetting factor
AO<A=1)is mcluded in (21) to enable the tracking
of time vanatlons in the data. A larger value of \ yields
autocorrelation estimates with lower variances, but also
causes time variations to be tracked more slowly.

Another standard autocorrelatlon estimator is the
sliding window esnmate given by

5§

n=N

R = 1 ymyH(n 1. (22)

Again, W is chesen in ,é particular application to provide
a balance between lower variance (with larger W).and
better tracking ability (with smaller W). Time updates for

these two estimators are readily found to be
RM(D) = MRy, (1) + yWN)YH(N-D) (23)
Ri() = R}y, () + yNY*N-1)

— Y- W)yH N - W= D). @)

In the case of collinear, equally spaced antennas, the
autocorrelation estimates can be improved. In this case,
the elements along any diagonal of R([) are equal. The
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Thus, we have given four estimates of R,,(l). Two
estimates give Toeplitz matrices, while the other two do
not. Because the elements of the Toeplitz matrix
estimates have lower asymptotic variances than do the
non-Toeplitz ones, they are preferred. Of course, in
applications where the array elements are not equally
spaced and collinear, the Tbeplitz estimates cannot be
used. All four estimates incorporate a parameter to enable
tracking of time-varying statistics. This parameter is
chosen to trade off between tracking ability and variance
of the autocorrelation estimates.

For applications in which a desired signal is given, an
estimate of r (or estimates of r,,(/)) in (19b) is needed.
Two possible choices are the exponentially weighted and
finite window estimates of r,,(/), given respectively by

N
ra) = 2 MTymd*n-1), =0 (28a)
n=l+1
and
N
rya(l) = =N2w+,“")d*(”"’)’ [=0. (28b)

B. Weight Estimation

Estimating the array weights from data in principle
consists of first estimating the autocorrelations from the
data and then substituting these sample correlations into
(17) or (20). However, numerical difficulties can arise.
For example, If ag = --- = a, = 0in (17) or (20),

197



then R has rank p. Even if «, ..., o, are not all zero,
PP or R"R can be ill conditioned. Estimates of these
matrices will also be ill conditioned, and care must be
taken in inverting them.

One way to avoid these problems is to solve for the
weights recursively in order. To this end consider the
solution of (16), and define

R=1p | P, | On |

1 m M-m—1
Wi = [l E W E O]l C Wi (ng)
Wm = - [PﬁPm]‘]Pr’r{pl' (29C)

Equation (29c) can be updated in order by noting that

pip PHp
[P:‘I N Pm = m m mVm+ 1 30a
] w1l p{:+1Pm Pff.HPmH ( )
Phipy = [Plpy pH. 0] (30b)

where p,, . is the (m + 1)st column of R. The inverse of
(30a) can be directly updated. Define

- A b
[P;I;IMLI Pln+l] I= [bH d] :

Then the components of the inverse matrix are given by
(13]

d = AphsiPmst = Ph1 PulPiP,) Pl 17!
b= —{{Ph P, Pip,..}d

(31

(32a)
(32b)

A (32¢)

[PEP,]I"" + bb#d.

Singularity or near singularity can be detected by the size
of d. If P has rank m, then w,, is a solution to (17). If P
becomes nearly singular, then w,, can be used as a
numerically stable approximant of w.

The order update recursions are equally valid when
R is replaced by an estimate K. Moreover, we note that
when R or R is Toeplitz, the matrix (30a) has
displacement rank 4, so that computationally efficient
Levinson-like algorithms can be used to (recursively in
order) invert it [18].

An important special case of this estimator is obtained

by setting o, ,; = 1 and all other o; = 0. In this case
(16) becomes
Rig+DhHw =0 (33)

If we partition R(q + 1) as

I m—-1 M-m
—— Nt e, e
Rig+1) =] x X X o (34)
rm Rm X }m - l
x X x M - m

and again partition w as in (29b), then W,, can be found
by

‘-Nm = _R;;] L™ (35)

198

If R, is Toeplitz (which is the case if a Toeplitz estimate
is used for R), then (35) can be efficiently solved,
recursively in order, by using the Levinson algorithm. If
R,, is not Toeplitz, then R,,! can still be recursively
inverted. Note that R, is of the form

Rm-l b
R, = (36)
b ¢
where b and ¢ are (mn—2) X 1 and 1 X 1 vectors,
respectively. If we define
R,! [W x} (37a)
m = a
xf1 2
then
z={c—b¥R,;! b} ! (37b)
x=—-R,!, bz (37¢)
W=R,l +xx1z (37d)

To summarize (29) and (35) are the two sets of order-
recursive weight estimation equations. For the known-
desired-signal case, these equations can be modified in an
obvious way.

Finally, the desired weight estimates are obtained
from either (29) or (35) with estimated autocorrelations
replacing exact ones. We refer to estimates obtained from
(29) as the overdetermined instrumental variable (OIV)
estimates, and those obtained from (33) as the minimal
instrumental variable (MIV) estimates.

It can be seen that (35) requires fewer computations
to implement than (29) does. Moreover, in the ideal
(known autocorrelation) case, the weight vector obtained
from (35) is the same as that obtained from (29). It is
natural to ask why (29) should be used at all. The answer
is that for a given finite number of data points, or for
A < 1 in the autocorrelation estimates, more accurate
weight vector estimates are often realized by using an
overdetermined system of equations. Heuristic
justification is that more information than noise is added
to the weight estimate equation by including R(q + 2),
..., R(L), so the estimates are more accurate. This
phenomenon has been both experimentally and
theoretically substantiated in the time series literature [12,
15, 16]. The improvement in weight accuracy is most
pronounced when |R(k)| decreases slowly with k (as is
the case here). Thus, there is a tradeoff between the
computationally simpler MIV estimator (35) and the more
accurate OIV estimator (29).

1V. EXAMPLES

This section presents numerical simulations that
illustrate the performance of IV weight estimation
methods, when compared with conventional weight
estimators. We consider both the purely conventional
estimators in which only «(0) is nonzero and equal 1 and
purely IV estimators in which a(0) = 0 and a(l) = ---
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= a(L) = 1. Mixed estimates have properties
somewhere between these two.

For these examples, the antenna signals y;(n) were
generated using equation (1b) with the following
parameters: d(n) = 0, p = 2, o; = 0, w, = 0.05 m,
6, = 18°, 6, = 22°, D = A\/2. The interference
amplitudes were equal, and chosen to give interference-
to-noise ratio (INR) values as shown on the graphs. The
frequencies w, and w, are slightly different, in order to
decorrelate the interference signals in the simulations. in
addition, each noise signal v,,(r) was zero mean,
Gaussian white noise; thus R, () = ,8(l)andg = 0
for this case.

8

o T T T

8

N

sl §

8

pas R
g8
-8 4
Z 'l 5 element array

gl INR =5 dB

o| 200 data points/realization

T Toeplitz estimate h

3 NBI at 18° and 22°

8 R | B

'90.00 -84.29 -38.57 -12.86 12.86  38.57  ©4.29  90.00

ANGLE :

Fig. 3(a). OIV array gains for Toeplitz correlation estimate, L = 10.
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Fig. 3(f).

Fig. 2 shows ideal antenna patterns for five-element
arrays using the conventional weight estimator and the IV
estimator. Patterns are shown for varying INR. Note that
the conventional weight estimator is not able to resolve
the two sources at all INR levels; the IV method not only
resolves the interference sources, it also completely
attenuates them. (Fig. 2 is on page 195.)

For Figs. 3-35, patterns are obtained from estimated
weight vectors. The correlation matrix R was estimated
using either (21) for the non-Toeplitz estimates or (25)—
(26) for the Toeplitz estimates.

Fig. 3 compares array gain patterns estimated from
data. To facilitate comparison with the theoretical limit,
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Fig. 3(d). Conventional array gains for non-Toeplitz estimate.
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we use the above example, i.e:, two interference sources,
one at 18° and the other at 22°. To provide some idea of -
the statistical variation of these patterns, five independent
estimates are superimposed in the figure. Each estimate
was obtained using 200 data vectors, and in all cases the
exponentially weighted- autocorrelation estimates were
used with A =1 (i.é., no forgetting). Fig. 3 shows the
estimates obtdined for'a five-elentent array. We see that
the OIV method with £ equal to 10 exhibits lower
variance than tlie MIV of conventional methods. In fact
the conventional estimates do' not resolve the interference
sources at all; this is expected even for an infinite number
of data points (i.e., known correlations) as shown in Fig.
2. Note that the conventional method is actually a
minimal method in that the number of equations is equal
to the number of unknowns. Moreover, lower variances
result from using Toeplitz autocorrelation estimates rather
than non-Toeplitz ones. These results are in keeping with
the heuristic arguments provided earlier.

Fig. 4 shows array patterns for the OIV method for
array lengths of 3, 5, and 7 based on single realizations,

'
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Fig. 4. OIV array gains for 3, 5, and 7 element arrays, L = 10.

and Toeplitz autocorrelation estimates. This experiment
shows that more accurate pattern estimates are sometimes
obtained by increasing the number of array elements.
However, such an increase is undesirable because of
increase in hardware, computational burden, and spurious
attenuation peaks. This phenomenon has been noted also
in the context of spectral estimation [12, 19], but the
reason for this behavior is not well understood.

For 200 data points, 5 dB INRs, and very closely
spaced interference angles, we are operating close to the
limits of performance. A marked increase in resolving
power consistency is shown in Fig. S, as compared with
Fig. 3(a), due to an increase in INR from 5 to 10 dB. We
note that the MIV and OIV methods perform more alike
when INRs and/or data record lengths are increased.

200

0.00

-12.00

-24.00

PR _(DB)
-36.00

T 5 element array .

INR = 10dB

200 data points/realization
[ Toeplitz estimate

NBI at 18° and 22°

-48.00

8
3 1 i 4 i { i
'-90.00 -64.29 -38.57 _12.86 12.06  38.57  64.29  90.00
ANGLE
Fig. 5. OIV array gains for Toeplitz estimate and 10 dB INR,.
L = 10.

V. CONCLUSIONS

We have presented a class of algorithms for
estimating the weights in an adaptive antenna array
system. This class is based on the well known IV method
of parameter estimation in time series analysis. The ideal
weights obtained using this method are not affected by
finitely correlated noise in the antenna signals, and are
thus comparable to ideal weights obtained by
eigendecomposition methods. On the other hand, the IV
methods require only a matrix inversion, so they are
computationally more appealing.

We have also derived overdetermined versions of the
IV algorithms that, although giving the same ideal
weights, can provide weight estimates with lower
variance than their corresponding minimal algorithms.
These overdetermined algorithms require more
computation than the minimal ones, but still do not need
iterative solution procedures. They should prove useful in
environments in which it is essential to obtain accurate
weight estimates from a small data sample, as is the case
in raidly time-varying signal environments.

The conventional, MIV, and OIV methods were then
combined into a single general estimator. Selection of
certain coefficients can effect a particular algorithm with
a desired blend of these three methods.

Finally, we have presented some simulation examples
to test the effectiveness of these algorithms. In these
examples it is seen that IV methods are able to resolve
closely spaced interference sources when conventional
matrix inversion techniques cannot. It is also shown that
overdetermined methods are capable of providing weight
estimates with lower variances than those of minimal
methods.
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