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Efficient Maximum Likelihood DOA
Estimation for Signals with Known

Waveforms in the Presence of Multipath

Mats Cedervall and Randolph L. Moses

Abstract—We present a large-sample maximum likelihood (ML) al-
gorithm for estimating the directions of arrival (DOA’s) and signal
amplitudes of known, possibly coherent signals impinging on an array
of sensors. The algorithm is an extension of the DEML method of Liet
al. that handles coherent multipath that may be present in the signals. The
algorithm is computationally efficient because the nonlinear minimization
step decouples into a set of minimizations of smaller dimension.

I. INTRODUCTION

Array signal processing has been a topic of considerable interest.
A number of high-resolution DOA estimation algorithms have been
developed, including MUSIC, ESPRIT, and MODE. (see, e.g., [4],
[5], [7], and the references therein). There have also been considerable
developments on the accuracy of these techniques (see, e.g., [6]).

More recently, there has been interest in developing algorithms that
assume somea priori signal knowledge to improve DOA estimation
capability [1], [2]. This interest is motivated by applications in
which partial knowledge of the incoming signals is a reasonable
assumption. One such application is mobile telecommunications,
where incoming signals of interest have known preamble sequences
that can be exploited to improve DOA estimation accuracy and/or
decrease computational cost.

One attractive algorithm for DOA estimation of known signals is
the decoupled maximum likelihood (DEML) method [2]. The DEML
method is a large sample ML algorithm that is computationally
efficient because the nonlinear minimization step in the algorithm
decouples into a set of 1-D minimizations. The DEML algorithm in
[2] is based on the assumption that the desired signals are uncorrelated
with one another, and the algorithm breaks down when the signals
are strongly correlated. In this correspondence, we extend the DEML
algorithm to handle coherent signals impinging on the array. The
modification, which we term coherent decoupled maximum likelihood
(CDEML), is also a large sample ML algorithm, and its nonlinear
minimization step also decouples into a set of minimizations of
smaller dimension.

II. SIGNAL MODEL AND PROBLEM FORMULATION

The array output vectorxxx(t) is modeled as

xxx(t) = AAA(���)sss(t) + nnn(t) (1)

wherexxx(t) 2 C
m�1 is the received data vector,sss(t) 2 C

d�1 is the
incident signal vector, andnnn(t) 2 C

m�1 is an additive noise vector
term. The matrixAAA(���) (m� d) is the array manifold describing the
array transfer response as a function of the signal parameter vector
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��� = [�1; �2; � � � ; �d] 2 R
d�1. Each column ofAAA(���) is a steering

vector aaa(�k).
We make the following assumptions in the derivation of the

algorithm.
Assumption 1:The array manifoldAAA(���) is unambiguous, i.e., the

vectorsfaaa(�1); � � � ; aaa(�m�1)g are linearly independent for any set
of distinct f�1; � � � ; �m�1g.

Assumption 2:The noisennn(t) is circularly symmetric zero-mean
Gaussian with second-order moments

E[nnn(t)nnn�(s)] =Q�t; s

E[nnn(t)nnnT (s)] =0 (2)

where(�)� denotes complex conjugate transpose. The noise covari-
ance matrixQ is assumed to be positive definite but is otherwise
unknown.

Assumption 3:The impinging signalssss(t) are scaled versions of
a set ofc known sequencesfy1(t); � � � ; yc(t)g. In other words

sss(t) = ���y(t) (3)

wherey(t) = [y1(t); � � � ; yc(t)]
T , and��� is a (d � c) matrix. The

source signalsyk(t) are assumed to be “quasistationary” [3], that is,
the “covariance matrix” ofy(t) given by

Ryy = lim
N!1

1

N

N

t=1

y(t)y
�

(t) (4)

is well defined. We assumeRyy > 0 and that the source signals and
noise vectors are uncorrelated so thatRyn = 0, with Ryn defined
similarly toRyy.

Assumption 4:The matrix��� in (3) has the following structure:

��� =


11 � � � 
1d 0 � � � 0

0 � � � 0 
21 � � � 
2d 0 � � � � � � 0
...

.. .
...

0 � � � 0 
c1 � � � 
cd

T

:

(5)

Each indexfdkgck=1 denotes the (known) number of incoming signals
corresponding to thekth source signalyk(t).

Since there are onlyd unknown elements of��� , we parameterize
��� as��� (


), where the(d� 1) vector


 is defined as




 = [



T
1
; 




T
2
; � � � ; 




T
c ]

T
; (d� 1) (6)

and where each


Tk = [
k1; � � � ; 
kd ]. We correspondingly partition
��� as

��� = [���
T
1
; ���

T
2
; � � � ; ���

T
c ] (7)

where each���Tk = [�k1; � � � ; �kd ]T . Thus, each incident signal
skl(t) = 
klyk(t) and arrives at angle�kl for k = 1; � � � ; c and
l = 1; � � � ; dk. The casedk > 1 corresponds to coherent multipath
from the yk(t) source.

The CDEML algorithm we present is derived for signal scenarios
satisfying Assumptions 1–4. The DEML algorithm in [2] is a special
case, imposing the additional assumption that��� is square and
diagonal or, equivalently, thatdk � 1. Both CDEML and DEML
are large sample ML estimators whenRyy is diagonal.
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III. D ERIVATION OF THE ALGORITHM

In this section, we derive a large-sample maximun likelihood (ML)
estimator for��� and 


. The negative log-likelihood function of the
array output vectorsxxx(t); t = 1; � � � ; N ; to within an additive
constant it is given by

L(���; 


; Q) =

ln jQj+ tr Q
�1 1

N

N

t=1

[x(t)�By(t)][x(t)�By(t)]�

(8)

where j � j denotes the determinant of a matrix, and

B(���; 


)
�
= AAA(���)��� (


). In the following, we suppress the explicit

dependence ofAAA, B, and��� on ��� and 


 to simplify notation. An
extension to the derivation in [2] shows that minimizing (8) is
asymptotically equivalent to minimizing

F2(���; 


) = tr [Ryy(B�B)
�
Q
�1

(B�B)] (9)

where Q = Rxx � RyxR
�1
yyR

�
yx, B = RyxR

�1
yy , Ryy =

1=N
N
t=1 y(t)y(t)

�, andRxx andRyx similarly defined. Equation
(9) is a large sample ML estimator for a generalRyy matrix
and involves a nonlinear minimization of dimension2d. If we
further assume thatRyy is diagonal, which is a common situation
in communications, the minimization of (9) decouples into thec

minimization problems

���k; 


k = arg min
��� ;




[AAA(���k)


k � bk]
�
Q
�1

[AAA(���k)


k � bk]

k = 1; � � � ; c (10)

wherebk denotes thekth column ofB, andAAA(���k) is the part ofA
corresponding to���k. The minimization with respect to


k is




k(���k) = fQ�1=2
AAA(���k)g

y
Q
�1=2

bk (11)

where (�)y is the Moore–Penrose pseudo inverse of a matrix. Sub-
stituting (11) into (10), we arrive at the following cost function for
estimating���k:

���k = arg min
���

fb�k[Q
�1 �Q�1

AAA(���k)

� (AAA�
(���k)Q

�1
AAA(���k))

�1
AAA
�
(���k)Q

�1
]bkg: (12)

Once���k is found from (12), the amplitude estimates


k are obtained
from (11).

We remark that the above algorithm is consistent; this follows from
the consistency of the exact ML and the asymptotic equivalence of
the CDEML and ML methods.

Most iterative minimization algorithms require an initial estimate
of the parameter vector. A simple and effective initial estimate can
be found by considering the 1-D function

f(�) = b
�
k Q

�1 �
Q�1aaa(�)aaa�(�)Q�1

aaa�(�)Q�1aaa(�)
bk: (13)

The dk values of� giving the lowest local minima off(�) can then
be used as the initial estimate of���k. This 1-D cost function is similar
to a spectral MUSIC estimator for DOA’s. Note also that fordk = 1,
f(�) is exactly the function to be minimized in (12).

For uniform linear arrays (ULA’s), i.e., arrays with uniformly
spaced identical sensors, thedk-dimensional search in (12) can be
reduced to a polynomial root-finding operation using a technique
similar to that developed in [7].

IV. STATISTICAL ANALYSIS

In this section, we state some results on the statistical properties
of the CDEML algorithm. The asymptotic statistical properties of
the parameter estimates are stated in Theorem 1. Theorem 2 gives
the CRB for the corresponding signal model. Theorem 3 states that
the CDEML algorithm is asymptotically efficient for diagonalRyy.
The proofs of the theorems in this section are generalizations of the
corresponding proofs in [2], and for the sake of brevity, they are
omitted here. Let us define the(3d � 1) vector of real coefficients
to be estimated as

��� = [���T Ref


T g Imf


T g ]T : (14)

Theorem 1: If Ryy is diagonal, then the normalized asymptotic
(largeN ) covariance matrix of��� is given by

E((���� ���)(���� ���)
T
) =

1

2N
H
�1
VH

�1 (15)

H =

Re(H1) Re(HT
2 ) Im(HT

2 )

Re(H2) Re(H3) �Im(H3)

Im(H2) Im(H3) Re(H3)

V =

Re(V1) Re(VT
2 ) Im(VT

2 )

Re(V2) Re(V3) �Im(V3)

Im(V2) Im(V3) Re(V3)

H1 =D
�
Q
�1
D� (������

�
)
T

H2 =AAA
�
Q
�1
D� (���E

�

��� )
T

H3 =AAA
�
Q
�1
AAA� (E���E

�

��� )
T

V1 =D�
(R

�T
yy 
Q)D

V2 =D�
(R

�T
yy 
Q)A

V3 =A�
(R

�T
yy 
Q)A

D = diag fQ�1Dk


kg
c
k=1; A = diag fQ�1AAAkg

c
k=1;D = [D1;

� � � ;Dc] = [d11; � � � ; d1d ; � � � ; dcd ], wheredkl
�
= @aaa(�kl)=@�kl,

E��� denotes a matrix of the same dimensions as��� in (5) but with
the 
kl replaced by ones, and
 denotes the Kronecker product.

Theorem 2: For the signal model in Section II under Assumptions
1–4, and forRyy > 0, the CRB of��� is given by

CRB(�) =
1

2N

Re(F1) Re(FT
2 ) Im(FT

2 )

Re(F2) Re(F3) �Im(F3)

Im(F2) Im(F3) Re(F3)

�1

(16)

F1 =D
�
Q
�1
D� (���Ryy���

�
)
T

F2 =AAA
�
Q
�1
D� (���RyyE

T

��� )
T

F3 =AAA
�
Q
�1
AAA� (E���RyyE

T

��� )
T

and whereD andE��� are defined as in Theorem 1.
If Ryy is diagonal, it can be shown that the right-hand sides of

(15) and (16) are asymptotically equivalent, giving us the following
theorem.

Theorem 3: When Ryy is diagonal, the CDEML algorithm is
asymptotically statistically efficient.

V. NUMERICAL EXAMPLES

We examine the performance of CDEML for a uniform linear array
with 10 elements, spaced half a wavelength apart. There are two
known source signals; one arrives at5�, and the other arrives from
two directions:0� and10�. In the simulations, the source signals are
chosen as uncorrelated Gaussian sequences. Unless explicitly stated
otherwise, we collect 100 snapshots (N = 100), and the SNR of
each received signal is 0 dB. The signals are equal energy; therefore

��� =
ei0:25� ei0:5� 0

0 0 ei0:75�

T

:
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Fig. 1. CRB’s for CDEML (solid lines) and unknown signals (dash-dotted
lines). RMSE’s (� and�) of DOA estimates for the CDEML algorithm, as a
function of number of data samplesN .

In the figures that follow, the “�” and “�” symbols show the root
mean squared error (RMSE) of the CDEML algorithm DOA estimates
from 100 Monte Carlo trials; the “�” results are for the two coherent
signals, and the “�” results are for the single signal. The solid lines
are the corresponding CRB’s for these DOA estimates. The dash-
dotted lines are the CRB’s of the signals DOA’s if the signals are
assumed to be unknown. All RMSE and CRB values are presented
as standard deviations in degrees.

Fig. 1 shows the RMSE of the DOA estimates of the CDEML
algorithm for different numbers of snapshotsN . The solid lines
are the CRB standard deviations for the three received signals; the
lowest curve is for the single source from5�, and the two upper
curves are for the multipath signals arriving at0� and10�. Since the
sources are uncorrelated, these curves are also equal to the asymptotic
variance of the CDEML algorithm. The simulations agree closely
with the asymptotic theory even for short data lengths; in addition,
the difference between simulation and asymptotic theory diminishes
asN increases.

Fig. 2 shows the RMSE and CRB for the example considered as
a function of array sizem. As the array size increases, the CRB’s of
the two multipath signals approach the single source CRB. The array
beamwidth is approximately360=(�(m�1)); therefore, the coherent
signals are approximately 1.1 beamwidths apart form = 14, when
the CRB approaches the single-source CRB. Again, the simulation
performance agrees closely with the statistical theory.

Fig. 3 illustrates the performance of the algorithm when the
coherent signals have substantially different received powers. In this
case, we have two source signals; one signal arrives in two directions:
a strong signal (0 dB) at0� to simulate a direct path and a weaker
signal at10� to simulate a weak multipath signal. The power of the
multipath signal is varied between�50 and�10 dB with respect
to the direct-path coherent signal. When the multipath source is of
moderate power (�20 to �10 dB) the three-source statistical theory
is accurate, and the CDEML algorithm performance agrees closely
with the CRB. For a weaker multipath signal (�35 to �20 dB), the
CDEML variances increase from their predicted values.

For very low signal powers of the multipath signal, Fig. 3 shows
the effect of overestimating the number of signals in the model. In
this region, the signal model is practically that of two uncorrelated
signals because the multipath signal can be considered absent. The
algorithm is thus using an incorrectly large model order (3 instead
of 2). The weaker signal has variance corresponding to a completely
random DOA. The stronger source RMSE approaches that of the

Fig. 2. CRB’s for CDEML (solid lines) and unknown signals (dash-dotted
lines). RMSE’s (� and�) of DOA estimates for the CDEML algorithm, as a
function of number of array sizem.

Fig. 3. CRB’s for CDEML (solid lines) and unknown signals (dash-dotted
lines). RMSE’s (� and�) of DOA estimates for the CDEML algorithm, as a
function of the ratio between the two multipath signal amplitudes (
12=
11)
in dB.

CRB corresponding to a single uncorrelated signal (i.e., the lowest
solid CRB line). The simulation RMSE’s of the direct-path source
are about 2–3 dB above this line; the increased variance results from
assuming a model order that is too high for this signal environment.
Simulations repeated on this case, for very weak multipath signal
power values and using a model order of 2, verify that the CDEML
algorithm DOA RMSE for both strong signals are close to that of the
lowest solid line on the figure.
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Effect of Delay on the Performance of
the Leaky LMS Adaptive Algorithm

F. Laichi, T. Aboulnasr, and W. Steenaart

Abstract—This correspondence studies the effect of a nonzero delay
on the performance of the leaky LMS algorithm. The stability bound on
the stepsize is derived for error convergence. It is shown that leakage
allows for larger bounds on the step size of the delayed LMS algorithm.
Theoretical bounds are verified by simulations.

I. INTRODUCTION

In adaptive filtering, the LMS algorithm has been widely accepted
as a reasonable compromise between complexity, robustness, and
speed for many applications. The basic system identification setup
is given by

C(n) =C(n� 1) + �e(n)X(n);

e(n) = y(n)� d(n) (1)

where

C(n) coefficient vector
X(n) input vector
y(n) output value at timen
e(n) error signal defined as the difference between the output

y(n) = XT (n)C(n� 1) and the desired output at instant
n.

In (1), the assumption is that it is possible to computee(n) fast
enough to use it to update the coefficientC(n� 1) to obtainC(n).
However, this may not be feasible for a wide variety of reasons,
resulting in an unavoidable delay between the availability ofd(n)
and the corresponding update of the filter coefficients [4]. A more
realistic description of the LMS algorithm is given by

C(n) = C(n� 1) + �e(n�D)X(n�D): (2)

This is the delayed LMS (DLMS) studied recently in [1]–[4]. It was
shown in [1] and [2] that even though a small delay may have minimal
effects on the overall performance, it definitely reduces the bound on
the step size� required for the stability of the adaptive algorithm.
The convergence of the algorithm was shown to be slightly slower
than the LMS. AsD increases, deterioration of the adaptive filter
performance increases. LMS adaptation also runs into problems in
other nonideal situations. Finite-precision implementations as well as
spectrally insufficient inputs or feedback across the adaptive filter
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have been shown to result in “parameter drift” [7]. In this case,
the filter coefficients grow without bound away from the optimum
values. “Leakage” in the update equation was proven to be effective
in controlling parameter drift [7]. The leaky LMS (LLMS) equation
is described by

C(n) = (1� ��)C(n� 1) + �e(n)X(n): (3)

This update equation is derived based on minimizing an augmented
instantaneous square error function

J(n) = e(n)2 + �C(n)TC(n) (4)

where� is a measure of the leakage introduced. Since the norm of
the coefficient vector is minimized along with the error squared, the
algorithm ensures that the coefficients do not drift (depending on the
value of leakage�). This modification to the performance measure
to be minimized by the adaptive filter leads to a “biased” optimum
with small bias for low�.

The delay problem discussed earlier for the LMS still exists for
the LLMS. The LDLMS algorithm is given by

C(n) = (1� ��)C(n� 1) + �e(n�D)X(n�D): (5)

In this correspondence, we will discuss the effect of the delay on
the overall performance of the LLMS. First, general expressions for
stability bounds and steady-state excess error formula for the leaky
delayed LLMS (LDLMS) are derived. Results for regular, leaky, or
DLMS are special cases of these expressions. Finally, results are
confirmed through simulations.

II. CONVERGENCE OFLDLMS ALGORITHM

In this section, the convergence of the LDLMS algorithm is studied
based on the mean square error. The update equation of the LDLMS
is rewritten as

C(n) = 
C(n� 1) + �e(n�D)X(n�D) (6)

where
 = 1 � ��. Equation (6) can be reformulated in terms of
coefficient error vector�(n) as follows:

�(n) = 
�(n� 1) + �eopt(n�D)X(n�D)

� �X(n�D)X(n�D)T �(n�D � 1)

� (1� 
)Copt (7)

whereeopt(n) = e(n)�eopt, Copt is the optimum coefficient vector,
and �(n) = C(n) � Copt. Taking the expected value of both sides
of (7) and using the independence assumption [6] onX(n), eopt(n),
and �(n), we get

h�(n)i = 
h�(n� 1)i � �Hh�(n�D � 1)i

� (1� 
)Copt (8)

whereH is the input correlation matrix, andh:i denotes ensemble
averaging. Using the standard decoupling transformation in (8)

H =V �V T

W (n) =V
T (C(n)� Copt)

=V
T
�(n)

U(n) =V
T
X(n)

Ropt =V
T
Copt (9)

1053–587X/97$10.00 1997 IEEE
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whereV is an orthonormal matrix, the columns of which are the
eigenvectors ofH, and � is a diagonal matrix with the diagonal
elements corresponding to the eigenvalues ofH, we obtain

hW (n)i = 
hW (n� 1)i � ��hW (n�D � 1)i

� (1� 
)Ropt: (10)

The first two terms on the right-hand side of (10) are a part of the
natural response of the system, whereas the last term(1 � 
)Ropt

contributes to the forced response. Considering the instantaneous cost
function as [6]:

J(n) = Jmin + Jex(n) = Jmin + hW (n)
T
�W (n)i (11)

where Jmin is the minimum MSE of the LMS (� = 0 and
D = 0), and Jex(n) is the excess mean-squared error at
time index n. By substituting (10) into theJex(n) expres-
sion in (11) and following an approach similar to that in [2],
the steady-state excess MSEJex(1) is obtained in [7] as in
(12), shown at the bottom of the page, whereM = N

+ �x � 1,1 �2 = hx2ni, � = �2i = �i, P is the cross-
correlation vector, and� is the bias on the optimum tap-weight
vector. This steady-state excess MSE clearly depends on� andD. A
bias term on the true optimum tap weights appears in the numerator
due to the leakage parameter. This accounts for a tradeoff that has
to exist between dampening the undriven adaptive tap weights and
increasing the residual output error power. For� = 0, this equation
is identical to [2, (c.5)] for the DLMS case.

III. LDLMS STABILITY BOUNDS ON STEP SIZE

The denominator of (12) has an infinite number of terms. However,
in the region of stability,� is normally small. Hence, terms of order
higher than�4 decay quickly. The stability bound on the step size
is found by determining the value of� that makes the denominator
of (12) equal to zero.

S(�) � 2(�
2
+ �)� �(2��

2
+ �M�

4
+ �

2
+ 2�

4
D)

+ �
4
�
2
(2�D+ �

2
D(D+ 1))

� �
3
�
6
D(D+ 1)(�+ 1

3
(2D+ 1)�

2
)

+ �
4
�
8
D(D+ 1)

� (2D+ 1)�+
(D + 2)(3D + 1)

6
� 0: (13)

As � increases from zero to a value�max, S(�) decreases monoton-
ically from S(0) = 2(�2 + �) to S(�max) = 0, causingJex(1) at
�max to approach infinity and, as such, drives the adaptive system
to be unstable. For applications where�D � 1, S(�) can be
approximated as a polynomial of first order in�. In this case,Jex(1)

is given by

Jex(1) �=
�Jmin�N�

4
+ ��2P TH�1P + 2���2P T �

2(�2 + �)� �(2��2 + �M�4 + �2 + 2�4D)
(14)

and �max is easily obtained by setting the denominator of (13) to
zero. However, for moderately large values of�D, the second-order

1�x is the kurtosis ofx and is defined as�x = hx4i= hx2i2

Fig. 1. Stability bounds of the LDLMS(N��2) versus delay with� = 0:05
and N = 40.

term in � in (12) has to be retained. Then, the maximum step size
that constitutes the upper bound on� is given by

�max =
A2 � A2

2
� 4A1A3

2A1

(15)

whereA1 = 2�D+�2D(D+1),A2 = 2��2+�M�4+�2+2�4D,
and A3 = 2(�2 + �). For larger values of�D, if the term with
third power order has to be included, numerical methods have to be
employed to solve the roots of the denominator (12). Fig. 1 shows the
different approximations using different powers of� for the stability
bounds.

These bounds on the step size have been verified for different
leakage values by computer simulations and were proven close to the
theoretical ones [7]. Fig. 2 shows the approximate theoretical bound
in (13) compared with the experimental ones for the LDLMS stability
bound. It can be seen from Fig. 2 that as� increases,�max increases.
Table I summarizes the stability bound as a function of both delay
and leakage. As expected, for� = 0, the stability bound decreases as
D increases. However, as leakage is introduced (� > 0), the step-size
bound for the same delay is increased, showing that leakage, in some
sense, compensates for the reduction in stability bound caused by a
nonzero delay. The entries in Table I are obtained by evaluating (13).

IV. SIMULATION EXAMPLES

Analysis based on LDLMS has to be employed whenever a delay
in update of the adaptive algorithm is unavoidable and tap-wandering
or tap-drift exists. As an illustrative example, consider the case of a
system identification problem where the input does not have sufficient
spectral excitation eventually leading the DLMS to drift problems.
This will degrade the performance of the DLMS algorithm [1]. To
counteract this parameter drift in the DLMS algorithm, the LDLMS is
employed. Both the adaptive and unknown filters have the same filter
lengthN . Fig. 3 shows the performance of the LDLMS compared
with the DLMS for different values of leakage. Only one coefficient
is shown as an illustrative example. The drift of the filter tap-weight
for zero leakage is obvious in the figure.
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