MODE-Type Algorithm for Estimating Damped, Undamped or
Explosive Modes

Mats Cedervall, Petre Stoica

Systems and Control Group
Uppsala University
Uppsala, Sweden S-75103

Abstract

We propose a new algorithm for estimating the pa-
rameters of damped, undamped or explosive sinusoidal
processes. The algorithm resembles the MODE algo-
rithm which is commonly used for direction of arrival
estimation in the array signal processing field. The
algorithm is asymptotically (for high SNR) optimal.
Nevertheless it is computationally simple and easy to
implement. Numerical examples are included to illus-
trate the performance of the proposed method.

1 Introduction

In this paper we consider the problem of estimat-
ing the parameters of a sum of (complex) exponential
modes from noisy data. The modes may be expo-
nentially damped, undamped, or exponentially explo-
sive; that is, the mode ”pole” locations may lie inside,
on, or outside the unit circle. We focus on subspace-
based estimation methods, because they provide the
dual advantages of computational efficiency and good
statistical properties.

A number of subspace or singular-value-based
methods have been developed for estimating param-
eters in exponential data, including [3, 6, 7, 8]. For
some of these methods, the modes are allowed to be
damped or undamped, but not exponentially explo-
sive. All of these methods exploit the low-rank prop-
erty of the Hankel data matrix to obtain accurate pa-
rameter estimates in many cases. The statistical prop-
erties of many of these algorithms have been studied
and compared to the Cramér-Rao bound; near optimal
accuracy can be achieved by many of the algorithms
(asymptotically in SNR, at least), but at the cost of
using large dimensional matrices. The high matrix di-
mensions impose a computational burden in singular
value decomposition steps.
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In this paper we develop a somewhat different esti-
mator for the exponential modes. We adopt a model
used widely in sensor array processing, and apply a
modification of the so-called Method Of Direction Es-
timation (MODE) algorithm [11]. The MODE algo-
rithm, like those in (3, 6, 7, 8], exploits low-rank struc-
ture in higher-dimensional matrices. However, the
MODE algorithm has the advantage of applying op-
timal weighting in the estimation problem to produce
estimates which have asymptotically (as SNR — oo)
minimum variance. As a result, one can use smaller
matrix sizes than in the unweighted algorithms, thus
reducing the computational costs related to these large
matrices. The optimal weights are dependent on the
parameters to be estimated; however, for high SNR, a
two-step algorithm can be used to achieve (asymptot-
ically) optimal performance at modest computational
cost.

This problem has importance in a number of appli-
cations, including speech modeling [5], electrocardio-
gram signal modeling [4], and radar scattering analy-
sis from stepped frequency measurements [1]. In all of
these applications, both damped modes and explosive
modes may arise. For example, in radar scattering,
damped or explosive modes can arise because the fre-
quency response of different scattering centers may be
decreasing or increasing as a function of frequency, re-
spectively.

2 Problem formulation

Let
§(t) =Y ouph +é(t), t=1,2,...N (1)
k=1
be the equation describing the observed signal. In

(1) ar € C, &(t) is a circularly symmetric Gaussian
distributed noise with variance o2 and n is given. The
number of data samples N is typically small, and the



signal to noise ratio (SNR) is usually assumed to be
high. The SNR of the k** component in (1) is defined
as follows:

SNRy, = 10log;, (NE;"E) [dB] (2)

where E}, is the total energy of the k** mode:
{ Nif |pp| =1

—_— 2N .
lenl " otherwise
1—|pxl

The problem of interest is to estimate {p;} (and per-
haps {ay} as well, which is an easy task once {p;} has
been obtained).

3 Solution Using MODE Estimators

In this section we present a method for estimating
{px} based on the Method Of Direction Estimation
(MODE) [11]. The MODE procedure is attractive be-
cause it is computationally simple, yet yields asymp-
totically (in SNR) efficient parameter estimates.

To apply MODE estimation techniques to the above
problem, form a vector y(¢) of the measured signal

(8 :

N-1
By = |’ > loxl™ = |ow/?
=0

()
y(t) = : @)
gt +m —1)
for some m > n, and define
T 1 1
4 PP @
ot ot et
[ apt } &(t)
z(t) = ; e(t) = : ()
| onpp, &t+m—1)
With the above definitions we can write
1 1 “es 1 ;
T [p ]*eu)
Pl o e
= Az(t) + e(t). (6)

The key equation here is (6), which resembles the
“standard” model used in sensor array signal process-
ing. We form the following covariance matrix

Ry=>) y((k—1d+1)y" (k-1d+1)  (7)
k=1
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where d > 0 is an integer which controls the degree of
overlap, between adjacent snapshots (the smaller the
d the more overlapped those vectors are; for d > m
there is no overlapping), and M is the total number
of snapshots defined as

N-—-m
PRLET

with |-| denoting rounding to the nearest smaller inte-
ger. The reason for the introduction of d is that when
d is increased the noise vectors in (6) become less cor-
related (they are uncorrelated for d > m) which might
improve the statistical performance in spite of the fact
that M decreases as d increases.

For sufficiently large SNR values Ry in (7) is close
to the matrix

Ry = APA* ®8)

where

M
Pp=) z((i-Dd+1)a* ((-1d+1). (9

i=1
Let
aip o [t pf oo pMV
be . o :
0 nprn || 1 pd pg,,M_l)d
It can readily be verified that
Pi=XX* (10)

and consequently, from basic rank properties of Van-
dermonde matrices

rank (P;) = min (M, n) 8. (11)

It seems reasonable to assume that M > n, and hence
that 4 = n = rank (Rg). This means that n can be
obtained as the “practical” rank of Rd, and the as-
sumption that n is known can be relaxed in practice.

Suppose we know n. Let {b;}7.., be the coefficients
of the following polynomial

n
boz"+---+bn_1z+bn=boH(z——pk)
k=1

and let

bn bO 0

B = (m —n) x m.



Also define the eigenvalue decomposition of Ry as

s 610 o[ o

where S is the matrix whose columns are the n prin-
cipal eigenvectors of Ry and A is a diagonal matrix
with the corresponding eigenvalues on the diagonal.
It is well known that R(S) = R(A), where R denotes
the range-operator. Consequently, as B*A = 0 (as is
readily verified) we have

B*S=0. (14)

This is a key property whose potential for parameter
estimation is rather obvious. Let S and A denote the
sample counterparts of S and A as defined in (13). In
view of (14), we can expect that the following equation
in the unknowns {b;}}_, (which are used to reparam-
eterize the estimation problem under discussion) holds
approximately (for SNR. > 1):

B*§ ~0.

Ry ] = SAS* (13)

(15)

Equation (15) can be implemented by minimizing the
quadratic cost function

) = [mB Wy Wi B swy |

tr [BWIB*§W2.§*] . (16)
We show in the Appendix that good choices of the
weighting matrices are Wo = A and W; = (B*B)™!
(or consistent estimates of these quantities). A more
intuitive argument for these choices is:

1. Since the eigenvectors in 5 are determined with
an accuracy that is proportional to the square
root of the corresponding eigenvalues, it makes

sense to post-weight the equations in (15) via
A2,

Experience with similar problems in array signal
processing and system identification [2, 9, 10, 11]
suggests that improved numerical and statistical
accuracy is obtained if row weighting is used to
make B column unitary, which is achieved with

Wy = (B*B)~L.

We note that, in view of (14), minimization of (16)
with Wi replaced by any positive definite matrix (such
as I) gives consistent (in SNR) estimates of {by}7_,.
Furthermore, it can be shown that, asymptotically in
SNR, replacement of the weight W; = (B*B)~! in
(16) by a consistent estimate has no effect on the
asymptotic accuracy. Hence the following two-step
procedure appears suitable to use for minimization of
(16).

Step 1. Compute the n principal eigenpairs of Ry. Let

Step 2.
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fw(b) = tr [Bw-lB*SAS*] .an
Obtain initial (consistent) estimates of b by min-
imizing fw (b), with W = I.

Derive enhanced estimates of {b} as the mini-
mizer of fw(b), with W = B*B and where B is
made from the estimates obtained in Step 1. Ob-
tain {py} from {b;}.

Both the minimization steps above can be effi-
ciently performed by the algorithm outlined in the
following subsection.

3.1 Minimizing fu (b)
We start out from the following form of the cost
function in (16):

f() = vec(B)* (WIT ® .§'W2§*) vec (B) (18)

b (wle Swgﬁ*) b. (19)

where vec denotes the vectorization operator, ® de-
notes the Kronecker product and

I;*
bT

I

vec(B) = [T 0T »T oT
[ bn b[) ] .

. ](20)
(21)

]

If we use { to denote the matrix W ® SW,8* from
which the rows and columns corresponding to the zeros
in b are eliminated, and also denote by ) the following
matrix

I
QT =1 1|, (22)
I
then (19) can be written as
F(b) = b*0b. (23)

The function (23) is to be minimized with respect to b,
under an appropriate constraint. If we choose a unit
norm constraint on b we get the total least squares
solution (TLS) which is easily obtained as the eigen-
vector of §) corresponding to the smallest eigenvalue.
In summary

|5=the smallest eigenvector of .
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Optimal
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Figure 1: Locations of 100 pole estimates calcu-
lated with the proposed method and the TLS-Prony
method. The leftmost graph corresponds to Step 1 in
the MODE algorithm and the middle one to Step 2.

4 Numerical examples
4.1 Example 1

Figure 1 compares the proposed method with the
TLS-Prony [8] method. The example is adopted from
[8]. There are ten exponential modes, which are se-
lected in such a way that the scenario is a rather gen-
eral one. The true pole locations are indicated with
large ‘x’s in Figure 1. There were N = 100 data points
and ¢ = 0.01. The amplitude coefficients, {ax}:2;,
are chosen so that each mode energy is unity. This
corresponds to an SNR of 20 dB per mode. In the
MODE algorithm d = 1 and m = 20 are used. In Fig-
ure 1 the ‘+’ signs show the pole-estimates obtained
from 100 independent Monte-Carlo simulations with
the proposed algorithm (both initial and optimal esti-
mates) and the TLS-Prony algorithm discussed in [8].
The proposed algorithm produces more reliable esti-
mates and in addition it is computationally simpler
and more straightforward to implement.
4.2 Example 2

The next example investigates, empirically, the per-
formance of the MODE algorithm as a function of d
and m. The scenario is the same as in Example 1. In
Figure 2 the sum of the RMSE’s of the ten modes,
calculated from 100 independent realizations, is dis-
played as a function of d and m. The user’s parame-
ters d and m are varied from 1 to 25 and from 10 to
30, respectively. The result in Figure 2 suggests that
d should be chosen small and that m should be chosen
as approximately twice the number of modes, for this
particular scenario.

A Optimal Weight Selection
For two general weights Wy and W, we can write
the cost-function (e.f. (16))

£(b) = vec (B)* (WlT ® SWQS) vec(B)  (24)
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25

Figure 2: Sum of the RMSE’s as a function of d and
m

Since b is a consistent (in SNR) estimate of b we have

b—b~—f"(b)7f(b), (25)

which can be simplified, by using calculations similar
to what is done in [2]:

b—b ~ (D*QD)"'D*Qvec (S*B) (26)
[(I@S’*) g;; (I®§*) -83—6";] (27)
where @ = WT @ W, and b = vec(B). Hence in order
to calculate the covariance matrix of 6 — b

E (b-b) (b~ b)*' — (D*QD)"' D*Q
[Evec (87B) vec (SB)] QD (D*QD)™, (28)

we need to calculate the high SNR covariance matrix
of vec(S*B). A rather lengthy asymptotic analysis, in-
cluded in the full version of the paper, shows that

E [vec (5" B) vec (3"B) =

D

M
~ 3 (M-g) [BTCI(©)B] ®

t=—M
[AT1S* APy(6)A*SA™T) . (29)
where the overbar denotes comples conjugate,
Ca(§) =E(e(t) e*(t +£d)) (30)

is the noise covariance function and
M —max(0,¢)—1

> zid+ 1)z ((+8d+1).
(31

i=—min(0,{)

Py(§) =



The expression (29) for the covariance of vec(SB) is
in general not in a Kronecker product form. This im-
plies that the trace-form criterion (16) is not general
enough to get optimal accuracy for the estimates of
b. However, previous experience (see e.g. [2]) suggests
that satisfactory accuracy can be obtained by trun-
cating the sum in (29) to include only the term with
£=0, ie.

E (5-b) (b-b) ~ M(D*@D)"' D*Q
[(BTCT(0)B) ® A~ QD (D*QD) ™!

where we have used the fact that

(32)

M
S* [Z Az (i —1)d+1)z* ((i —1)d+ 1) A*)|S = A.
i=1

The expression (32) is minimized by choosing the
weighting matrix Q) as

Q= (Wl oW,) = [(BTCT(0)B) o A7] ™

ie. W1 (B*C4(0)B)™" and W, = A. The above
calculations justifies the weights chosen in Section

3, under the white noise assumption (white noise =
C4(0) = *I).
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