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Abstract—The focus of this paper is a convergence study of
the frequency sensitive competitive learning (FSCL) algorithm.
We approximate the final phase of FSCL learning by a diffusion
process described by a Fokker–Plank equation. Sufficient and
necessary conditions are presented for the convergence of the
diffusion process to a local equilibrium. The analysis parallels
that by Ritter and Schulten for Kohonen’s self-organizing map
(SOM). We show that the convergence conditions involve only
the learning rate and that they are the same as the conditions
for weak convergence described previously. Our analysis thus
broadens the class of algorithms that have been shown to have
these types of convergence characteristics.

Index Terms—Diffusion processes, Fokker–Plank equations,
neural networks, learning systems, vector quantization.

I. INTRODUCTION

T HE frequency sensitive competitive learning (FSCL) is
a conscience type competitive learning algorithm devel-

oped by Ahaltet al. [1] to overcome problems associated
with the simple competitive learning (CL) and Kohonen’s
self-organizing feature maps (SOM’s) in vector quantization
applications.

The FSCL algorithm is a modification of simple CL in
which units are penalized in proportion to some function
of the frequency of winning, so that eventually all units
participate in the quantization of the data space as rep-
resentative vectors of a data cell of nonzero probability.
This frequency-sensitive conscience mechanism overcomes
the codeword underutilization problem of simple CL [4], [13].
The SOM algorithm [6], [7], also successfully solves the above
problem, however, it appears less suitable for some vector
quantization applications for the following reasons. First, since
SOM was developed to establish feature maps, an essential
feature of the SOM algorithm is the definition of a topology
on the set of codewords, which is a difficult problem for
high-dimensional data spaces. Second, the required update of
several codewords at each iteration makes the algorithm more
computationally intensive than CL and FSCL.
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One of the main issues in vector quantizer designs is the
ability of the algorithms to generate a codebook that is as near-
optimal as possible in a reasonable amount of time. Simple
CL is a stochastic gradient descent algorithm; like the batch
LBG algorithm [9] it may become stuck in a local minimum
of the total distortion function, although it has some ability
to escape local minima because of its stochastic nature. The
strongest type of convergence for CL has been shown for the
case of sufficiently sparse patterns in [4], otherwise, sufficient
and necessary conditions for convergence with probability one
to a local minimum are the corresponding conditions of the
Robbins–Monro process [12]. More relaxed conditions are
required for weak convergence to a local minimum [8].

The convergence of the SOM algorithm has been analyzed
by Ritter and Schulten [11] under the assumption that the state
of the algorithm is close to some local equilibrium and in the
limit of small learning rate. Ritter and Schulten analyzed a
Fokker–Plank equation (FPE) describing SOM’s and found
necessary and sufficient conditions that make the mean and
variance of the state deviation from equilibrium vanish. Their
conditions correspond to the weak convergence conditions
presented in [8]. Cottrell and Fort [2] analyzed a similar
process, although restricted to a uniform input data probability
density function and data spaces of dimension one and two,
formulated as a Robbins–Monro recursion—thus arriving at
the conditions in [12].

In this paper, we study the final phase of the FSCL algorithm
learning. We assume that both the time index and the learning
rate are small and we follow the same analysis as described
in [11] deriving the FPE that approximates the evolution of
the process. From the analysis point of view, this work should
be considered as an extension of Ritter and Schulten’s work
[11] to a different class of learning algorithms. The results
show that in the limit of large time, i.e., for the final learning
phase, only conditions on the learning rate must be imposed to
guarantee the convergence of the diffusion process to a local
equilibrium. This result supports the use of the FSCL algorithm
in applications, e.g., video and speech encoding, in which
accurate representation, computation, and underutilization all
must be managed simultaneously in an on-line coding process.

A global convergence analysis, not restricted to the neigh-
borhood of some local equilibrium, would certainly involve
all the algorithm parameters and not just the learning rate.
We are unaware of any global convergence analysis for self
organizing maps and conscience type algorithms. The only
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algorithm that has been proved to converge to the global min-
imum of the distortion function is simulated annealing (SA)
[5], [10], and heuristic combinations of SA with previously
mentioned algorithms have been used to cope with the very
large computational requirements of SA [14].

II. FSCL ALGORITHM

In FSCL, a network of units or codewords is trained
by a set of input data vectors. The data vectorsbelong
to a -dimensional space and their distribution is described
by a probability density function . The units have asso-
ciated positions in the -dimensional space and
associated update frequencies , where the update
frequencies are defined as with the (count)
being the number of times that unithas been updated up
to time . Clearly, . The time index takes on
integer values.

At time , an input data vector is presented to the
network and a winning unit is selected as the one that
minimizes the product of afairness function, , which is an
increasing function of the update frequency, times the distance
(distortion measure) from the input data vector, as

winner (1)

The winning unit’s position is updated as

(2)

where is the learning rate, and the winning unit count
is incremented by one. All other units keep the same

counts and positions.

III. D IFFUSION APPROXIMATION

The FSCL network can be described as a Markov process
with state defined as

The analysis of FSCL convergence parallels the analysis of
the SOM algorithm by Ritter and Schulten in [11]. We consider
an ensemble of networks whose states at timeare distributed
according to a density function defined over the set
of all possible network states. This density function obeys the
Chapman–Kolmogoroff equation

where is the transition probability from state
to expressed as

where we denote by the set of possible previous
inputs given previous winner and present state . The
transformation denotes the state at time given
the state and input at time . Thus

Every term in the above sum is conditional upon the
winner at time . Given the winner at time , the inverse
transformation uniquely defines the state at time

from the state and the input ; every unit is
transformed as

To express the right-hand side in terms of, instead of ,
we integrate with respect to

The matrix is of dimensions .
Assuming is the winner, the update rule for the state of unit

is

The Jacobian is independent of the winner

and

In the above expression only the volume depends on
the winner selection rule and the fairness function in particular.
Our goal is to derive a linear FPE that approximates the



1028 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

evolution of the process. We expand and
keeping only derivatives up to second order (FPE neglects
higher order derivatives) and of these only the leading order
in

(3)

where for large .
Let be the set of inputs that makethe winning unit

when the network is at state. The sets cover the whole
space without overlapping. In contrast, the sets may, in
general, overlap, i.e., given present state, there are inputs
such that two (or more) possible previous statesand exist
for which and . Furthermore,
the sets do not necessarily cover the whole space. As
a result of the fairness function weighting, the regions
and are not separated by hyperplanes but by higher
order surfaces, even if the Euclidean distance is used as the
distortion measure. Assuming a fairness function of the form

, where is a positive parameter, we could write
the following approximation for the case of one-dimensional
data, i.e.,

volume volume

where

In -dimensions we would roughly approximate

volume

volume

volume

The important conclusion is that the difference between the
volumes of and is of the order of the learning
rate and of , and it can be neglected in our expansion
where we keep only the leading-order terms. Consequently,
the following analysis is valid forany fairness function that
preserves this close relation between and . The
difference between the first moments of and
would be even smaller (if the two volumes have similar
shapes) while the difference between the second moments is
slightly larger (they would roughly relate through a factor of

instead of ).
Assume that the system is close to the equilibrium state.

We express (3) in terms of the deviationfrom

Let . Keeping only the leading terms in
and , we obtain the FPE

where

and

We make the notation more compact by defining

for

for ,

for and

for

otherwise.
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Thus, we obtain the following linear FPE with time-
dependent coefficients

Assuming a given value of this process at time, the mean
at time is given as

for

Necessary and sufficient condition for this mean value to
vanish as is

The covariances

obey the differential equation

with solution

where

The covariance matrix vanishes, as , if equivalently
its diagonal terms (variances) vanish. The variances obey the
differential equation

with solution

This tends to zero as if equivalently

Thus, the necessary and sufficient conditions for the mean and
covariance to converge to zero are

and (4)

These conditions are of the same type as those encountered
in [8] to guarantee weak convergence of stochastic approxi-
mation processes. The similarity is not surprising since weak
convergence is similar to convergence in distribution and
in our analysis we demand that the mean and variance of
deviations from the equilibrium vanish.

We also note that the final phase of FSCL learning imposes
conditions only on the learning rate and not on the fairness
function. As discussed earlier in the analysis, the same results
are obtained for any reasonable choice of the fairness function.
The exact form of the fairness function affects the global
behavior of the algorithm, its ability to approach the global
minimum of the total distortion measure and it also determines
the set of possible equilibrium states of the algorithm. The
effect of the fairness function on the equilibrium codeword
distribution has been studied in [3].

IV. CONCLUSION

Our conclusion is that, by selecting learning rates that offer
sufficient excitation, one expects, regardless of the specific
fairness function, to converge to a solution that is locally opti-
mal. The fairness function can then be independently selected,
e.g., to yield a desired codeword distribution [3]. Thus, this
result supports the use of FSCL clustering for applications such
as VQ codebook design, unsupervised clustering for mixture
density analysis, and design of radial basis funcsions.
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