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Abstract— High-frequency radar measurements of man-made
targets are dominated by returns from isolated scattering centers,
such as corners and flat plates. Characterizing the features
of these scattering centers provides a parsimonious, physically
relevant signal representation for use in automatic target recog-
nition (ATR). In this paper, we present a framework for feature
extraction predicated on parametric models for the radar returns.
The models are motivated by the scattering behavior predicted by
the geometrical theory of diffraction. For each scattering center,
statistically robust estimation of model parameters provides high-
resolution attributes including location, geometry, and polariza-
tion response. We present statistical analysis of the scattering
model to describe feature uncertainty, and we provide a least-
squares algorithm for feature estimation. We survey existing
algorithms for simplified models, and derive bounds for the error
incurred in adopting the simplified models. A model order selec-
tion algorithm is given, and anM -ary generalized likelihood ratio
test is given for classifying polarimetric responses in spherically
invariant random clutter.

I. INTRODUCTION

T HE high-frequency scattering response of a distributed
object is well approximated as a sum of responses from

individual scatterers, or scattering centers [1]. These scatterers
provide a physically relevant, yet concise, description of the
object and are thus good candidates for use in automatic
target recognition (ATR) [2]–[7]. Beyond ATR applications,
attributed scattering centers provide high-resolution analysis
of scattering for data compression [8], for radar cross section
reduction in stealth design, and for elimination of spurious
scattering in compact ranges [9]. In this paper, we present scat-
tering models and statistical estimation techniques to extract
attributed scattering centers for use as discriminants in ATR.
Attributes for each scattering center include high-resolution
downrange and crossrange locations, amplitude, frequency de-
pendence (partially characterizing scattering center geometry),
and polarimetric properties.

Scattering center attributes are estimated as parameters in
a model of radar scattering. The use of scattering models in
conjunction with statistical estimation permits us to quantify
uncertainty, which is needed for Bayesian evidence accrual in
target discrimination and identification. Attribute uncertainty
is described as a function of radar system characteristics
such as bandwidth and target-to-clutter ratio. Furthermore,
statistical analysis of attribute uncertainty provides bounds
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on achievable performance; these bounds are independent of
estimation algorithm.

Fig. 1 illustrates the use of attributed scattering centers
for radar signature analysis. The figure shows an inverse
synthetic aperture radar (ISAR) image of a pickup truck
computed from stepped frequency measurements (specifically,
the GTRI K-band ISAR, 1 ft 1 ft resolution, 5.5 depression,
119.2 azimuth). Radar illumination is from the top of the
image. The traditional ISAR image is shown in pseudo-
color; the superimposed icons show the dominant scattering
centers extracted from the radar phase history using a model-
based estimator. Each scattering center has an associated
subpixel location, amplitude, phase, frequency dependence,
and polarimetric signature. Ground truth is unavailable for the
target; however, 70.1% of the entire image energy is modeled
by the six estimated scattering centers. This introductory
example is given as a notional illustration of a scattering
center description. Descriptions of the scattering attributes and
examples computed from measurements of known objects are
given in subsequent sections.

The use of simplified scattering center models is well
established for high-resolution radar imaging [10]–[14] and for
estimation of location and amplitude of dominant scattering
mechanisms [3], [15]–[17]. Our proposed set of attributes
expands the target description to more fully exploit phe-
nomenology observable as a function of frequency, aspect, and
polarization. Significantly, diverse scattering behavior across
wavelength and polarization has become accessible with the
emergence of both ultrawideband (UWB) and fully polarimet-
ric sensors. We adopt a statistical estimation framework that
provides estimates of feature uncertainty. Used in conjunction
with other features, such as shadows, context, and image
texture, attributed scattering center features hold promise for
both feature-based [18] and model-based [19] ATR systems.

The remainder of the paper is organized as follows. In
Section II we present a parametric scattering model based
on the geometric theory of diffraction (GTD) and describe a
maximum likelihood (ML) estimation algorithm. We charac-
terize feature uncertainty with statistical analysis of parameter
variance as a function of system parameters. In Section III,
we survey simplified models for radar scattering. For both the
damped and undamped exponential signal models we relate the
model parameters to the scattering center attributes parameter-
ized by GTD-based model. We bound the approximation error,
review algorithms for estimating the model parameters, and
highlight parameter estimation issues arising from use of the
simplified models. Additionally, we present an order-selecting
maximum likelihood estimation algorithm addressing the crit-
ical issue of model order for target classification. In Section
IV we discuss polarization attributes of scattering centers and
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Fig. 1. Scattering center description of a SAR image represents the target
as a collection of estimated scattering centers. The table shows attributes for
the right-most scattering center.

present an -ary hypothesis test for classifying polarimetric
responses measured in spherically invariant random clutter.
Concluding remarks are presented in Section V.

II. PHYSICS-BASED SCATTERING CENTER MODEL

The synthetic aperture radar (SAR) sensor gives access to
information about a target and pose through the phase history,
which is a complex-valued function of frequency, aspect angle,
and polarization. For analysis of the received signal, we adopt
a parametric scattering model based on the geometrical theory
of diffraction.

A. Scattering Model

Let the incident field be a plane wave propagating in the
direction as shown in Fig. 2. From the geometrical theory

of diffraction (GTD) [1] and its uniform version [20], if the
wavelength of the incident excitation is small relative to the
target extent, then the backscattered field appears to originate
from a set of discrete scattering centers. The backscatter can
be accurately approximated [21] by

(1)

where is frequency in Hertz, is the propagation velocity,
is the target aspect angle, and

is the round-trip propagation delay of the th
scattering center. The amplitude is a frequency

Fig. 2. Sensor and target geometry.

and angle dependent coefficient determined by geometry,
composition, and orientation of the scattering mechanism.
Here the approximation is invoked by
assuming both far-field backscatter and scattering centers close
to the origin. The corresponding normalized field for a given
polarization (suppressing the time convention)

(2)
where and are the slant-plane downrange and cross-
range locations of the th scattering center.

For frequency dependence, the GTD predicts that scattering
amplitude is of the form where is an integer
multiple of . Table I summarizes the parameters, and
hence frequency dependencies, of five example scattering
mechanisms; for multiple-bounce scattering, the frequency
dependencies are multiplicative.

For many man-made scatterers, the dependence of
on angle is well approximated as a combination of sinclike
terms. For example, the angle dependence of the GTD scat-
tering amplitude for a strip of length is given [1] by

sinc (3)

However, no simple but widely applicable model similar to (3)
is presently available; different forms of the angle dependence
appear for different canonical scattering geometries. This
difficulty motivates the use of a simpler but more universal
model for angle dependence over small angle intervals. For
narrow angles encountered in SAR imaging (e.g., 3for 1-
ft crossrange resolution at X-band), we choose to model the
amplitude dependence as an exponential, . Thus, we adopt
the following model for the backscattered electric field

(4)

where is the center frequency. The model parameters
characterize the individual

scattering centers. For the th scattering center,
gives the slant plane location with respect to a zero-phase
reference, characterizes the geometry, and hence frequency
dependence, characterizes the angular dependence of
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TABLE I
TYPE PARAMETERS FORCANONICAL SCATTERING MECHANISMS

scattering, and is a complex scalar charactering the
magnitude and phase.

If multiple transmit and receive polarization pairs are avail-
able, the GTD predicts the same angle and frequency depen-
dence across polarizations but with a different amplitude [3],
[15], [22]. Accordingly, the scattering measurement and am-
plitude coefficients are written as complex-valued vectors. For
example, for a fully polarimetric radar using a horizontal and
vertical polarization basis, the amplitude is the complex-
valued triple and the polarimetric measurements are modeled
by

(5)

The frequency-dependent behaviors in Table I can be inferred
from single polarization data, with an uncertainty as discussed
in Section II-B below. Multipolarization data provides further
characterization of scattering mechanisms and can provide
discrimination among mechanisms, as presented in Section IV.

The GTD is a high-frequency model, but remains highly
accurate for objects of remarkably small electrical size, ,
where is the object length and is the wavelength. More-
over, modeling accuracy degrades gracefully as decreases.
For illustration, we compare the GTD prediction of frequency
dependence in (4) to the analytically derived solution of
scattering from an m diameter perfectly conducting
disk oriented 15 from normal to the radar line of sight.
Stepped frequency samples are computed from 1 to 3 GHz
with 10 MHz sample spacing. The disk and largest wavelength

are depicted in Fig. 3(a). The frequency range corresponds
to disk electrical sizes from 5 wavelengths to only 1.67
wavelengths. Nonetheless, the GTD model differs from the
exact analytical scattering solution by only 1.4% in root
mean-square (RMS) error summed over the 201 frequency
samples. The exact and modeled scattering are shown in
Fig. 3(b); the small discrepancy is discernible near 0.5 m. At
higher frequencies, the GTD model is even more accurate.
Computation of a least-squares fit of the model in (4) correctly
identifies the values of the two edge diffractions (
for and ) and two second-order diffraction mechanisms
( for and ). The estimated locations and
values are depicted by the vertical bars in Fig. 3(b). The
and mechanisms are separated by only 0.0008 Fourier

(a)

(b)

Fig. 3. GTD model accurately predicts frequency dependence.

bin in range and, hence, not resolvable by Fourier analysis,
as seen in the figure. (One Fourier resolution bin ,
which is 0.075 m for this example.) However, the two are
resolved by the model-based analysis. The four scattering
locations are estimated using the GTD-based model with an
average range error of 0.065 Fourier bin.

Equation (4) represents a general scattering model, and
forms the basis of all parametric scattering models we con-
sider. In many applications, the radar measurements are sam-
pled on a polar grid [23]

(6)

It is desirable in many cases to consider scattered field
measurements sampled on a rectilinear grid. The primary
reason is that the phase term in (4) or (5) is nonlinear on a polar
grid, but becomes linear on a rectilinear grid. Many estimation
algorithms exploit linear phase for computational speed. If the
total angular deviation is small (so )
and if the measurement frequency range is narrowband (so

), then the polar grid is approximately equal to a
rectilinear grid with spatial frequency axes and aligned
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to the range and crossrange directions

(7)

The resulting linear phase scattering model is given by

(8)

where . When the small angle
or small fractional bandwidth assumptions do not hold, the
phase terms must be resampled to lie on a rectilinear grid
using, e.g., methods described in [24] and [25]. The amplitude
terms and in (4) vary much more slowly than
the phase term in (4) as functions ofand , and therefore
the amplitude terms need not be resampled. The result is again
a model with frequency and angle dependence as in (8) and
linear phase increments.

B. Maximum Likelihood Estimation and Cram´er–Rao Bound

Given the physically based scattering model in (8), the
attributed scattering center analysis task is to determine the
model parameters from noisy
samples of . A least-squares estimator for the model
parameters entails a nonlinear, nonconvex minimization over
a mixture of continuous and discrete variables. We have
developed an algorithm for computing least-squares estimates
of the scattering center attributes parameterized in (8). For
additive white Gaussian noise, this estimator is a maximum
likelihood estimator, and the estimates asymptotically achieve
the Craḿer–Rao (CR) bound. A detailed description of the
algorithm and its application to scattering center estimation is
presented in [28], and the corresponding parameter CR bounds
are derived. Here, we summarize the important conclusions
of [28].

The algorithm is an iterative descent procedure. Any local
descent procedure relies on good initialization; bounds on
initialization error using a fast eigendecomposition are pro-
vided in Theorem 1 below. Additionally, the combinatorially
expensive search over possible sets of parameters is
avoided by using a continuous reparameterization [27] of the
discrete parameters, then mapping the continuous estimates
into discrete values.

The statistical properties of the algorithm can be analyzed
by considering the CR bound. The CR bound of the parametric
model in (4) is derived in [28] and provides a lower bound
on the variance of model parameters estimated in the presence
of additive white Gaussian noise. The bound is valid, within
modeling assumptions, for parameter variance using any unbi-
ased estimation algorithm. We find that estimation algorithms
achieve the CR bound for moderate signal strengths; hence,
the bounds provide analytical predictions of uncertainty in
estimation attributes [28].

From the analysis presented in [28], we distill four lessons
that characterize the effect of system parameters on attribute

Fig. 4. Best- and worst-case resolution of two scattering centers using
GTD-based ML algorithm.

uncertainty. The derivation parallels [29], [30], and the con-
clusions are similar to those drawn from statistical analysis
of simplified scattering models [29]–[31]. In particular, we
consider resolvability of scattering centers, uncertainty due to
neighboring scattering centers, the effect of frequency sample
spacing, , and the role of fractional bandwidth in reliably
estimating .

First, we address resolution. A location estimate
is asymptotically Gaussian with a covari-

ance bound ; is determined from the CR bound for the
continuous model parameters assuming known, discrete
parameters. Let define an ellipse

containing 90% of estimates of scattering center location.
We define two scattering centers to be resolvable if their
location variances are such that these 90% ellipses have no
intersection. The resolution as a function of signal-to-noise
ratio (SNR) is shown in Fig. 4. Since estimation uncertainty
is affected by the orientation of the line segment between
the two scattering centers with respect to the ellipse axes, we
plot curves for the best and worst case orientations. We find
that scattering centers 10 dB above the clutter background
are resolvable to 0.27 Fourier bin (i.e., ). The
geometry type, , does not significantly affect the uncertainty
of location estimates of equal energy scattering centers.

Second, while neighboring scattering centers affect parame-
ter estimates, for separations exceeding two Fourier bins, two
scattering centers may be considered isolated.

Third, for fixed fractional bandwidth, variance in both
location and type estimates decreases linearly when sample
spacing is reduced while retaining constant bandwidth.

Fourth, for isolated scattering centers and a fixed SNR, the
sensor fractional bandwidth determines the reliability of
estimates. In general, reliable inference of geometric type from
the frequency dependence of scattering increases with SNR or
fractional bandwidth. We predict the reliability of the discrete

estimates by treating theparameter as continuous, deriving
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Fig. 5. Probability of correct type estimation using GTD-based ML algo-
rithm for a radar with 1-ft. range resolution.

the Fisher information matrix (FIM) for the model parameters
(including the parameters), invoking the asymptotic normal-
ity of estimates, and using the inverse of the FIM to estimate
the variance for the parameter estimates; probabilities for
the discrete types are then obtained by integrating the normal
distributions. (Such predictions are within 3% of detection
rates computed for simulated noisy scattering data [28].) The
curves in Fig. 5 show the probability of correctversus SNR
for two fractional bandwidths. The lower curve is for 1-ft
resolution at 33 GHz center frequency, while the upper curve
is for 1-ft resolution at 10 GHz center frequency (2.73% and
9% fractional bandwidths, respectively). For example, from
the figure we observe that for an isolated scattering center
6 dB above the background clutter,estimation at 10 GHz
cannot exceed 97.5% reliability, while accuracy for 33 GHz
is limited to 50.2%.

III. REDUCED COMPLEXITY MODELS

The algorithm in the previous section provides ML estimates
of parameters directly from the GTD-based model in (8).
The statistical accuracy of the estimated scattering attributes
achieves the CR bound; however, the algorithm is computa-
tionally intensive, as it involves an iterative descent procedure.
This motivates development of computationally less demand-
ing algorithms that retain good statistical properties.

Computational efficiency can be gained by simultaneously
considering reduced complexity models and corresponding
reduced complexity estimation algorithms. One need not em-
ploy reduced complexity models, but instead can consider
computationally simpler methods to estimate the parameters
in (8). Such algorithms have been proposed in [32]–[36].
However, for many radar system operating specifications, the
bias incurred by using a model simpler than (8) is small
compared to the parameter variances. Thus, the benefit sought
in adopting a reduced complexity model is availability of
computationally efficient yet statistically accurate parameter
estimation algorithms.

We thus consider approximations to (8) for reduced com-
putational complexity. In particular, we consider both damped
and undamped exponential signal models, which have been
used extensively for radar signal analysis [11], [24], [2],
[3], [37], [22], [17]. For each of these reduced complexity
models, we present the parametric form, relate the parameters
to the scattering center attributes parameterized by GTD-
based model in (8), bound the approximation error, review
algorithms for estimating the model parameters, and highlight
parameter estimation issues arising from use of the surrogate
models.

A. Damped Exponential Model

1) Scattering Model:First, we consider a sum of damped
exponentials as a surrogate for the GTD-based scattering
model. Let denote a sampled version of the phase
history in (8). The damped exponential model is given
by

(9)

where and are the complex modes (poles) describing
the exponential behavior of the th scattering center in the
downrange and crossrange dimensions, respectively. Equating
(9) to (8) to first order, one arrives at a mapping from
parameters in (9) to the physically based parameters in (8).
From the signal modes, the estimated slant plane location and

parameter for the scattering center are given by

(10)

2) Error in the Reduced Complexity Model:Several au-
thors have suggested that for narrow fractional bandwidths,
the power dependence of scattering amplitude as a function
of frequency in (8) can be well approximated by a damped
complex exponential [2], [34], [16]

(11)

For example, the linearly increasing amplitude of flat plate
scattering can be approximated by an exponential with
. We formalize this intuitive approximation in the following

theorem. For clarity and simplicity, we state results for the
one-dimensional (1-D) range lines, with fixed, and
range samples indexed from 0 to .

Let be samples of superimposed damped
exponential signals

(12)

and let be the corresponding Hankel data matrix

...
...

(13)
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The exponential modes can be obtained
from the rank matrix by solving a generalized eigen-
value problem using the numerically stable singular value
decomposition (SVD) [38]–[40]. For a single, let the
frequency samples from the GTD scattering model in (8) be
denoted . Let denote a Hankel data
matrix formed from , with .

Theorem 1: Given a GTD Hankel matrix , there exist
matrices and such that , and the
approximation error satisfies the error bound

BW

BW

(14)

where are the initial and step frequencies, BW is
the sensor fractional bandwidth , and are
amplitude and geometry of the th scattering center in (8).
Furthermore, is a rank damped exponential signal
matrix defined in (12) and (13) whose mode angles are
exactly related to range locations via

(15)

A proof of the theorem is given in [28]. The theorem
generalizes the approximation result in [41] to allow an
arbitrary combination of scattering types, rather than only
one type of nonpoint scattering. For statistical accuracy of
parameter estimates using damped exponential modeling,

is often suggested [42], [39], [30].
Theorem 1 shows that the Hankel data matrix formed

from GTD scattering model (8) is close to a Hankel data
matrix formed from a damped exponential model whose
mode angles are exactly specified by the scattering center
range parameters. The bound in (14) quantifies closeness.
Continuity of eigendecomposition implies that estimated mode
angles closely approximate the range parameters, and justifies
the use of damped exponential models when the error
is sufficiently small with respect to noise and clutter. In
addition, the result that the range locations found from
are exactly the range locations from (8), coupled with the
error bound (14) computable from radar system properties
and scattering constants, motivates the use of the damped
exponential model. Consequently, we access a rich literature
on damped exponential modeling algorithms for computing
parameter estimates.

3) Estimation Algorithms:Adopting the damped exponen-
tial model, estimation of attributed scattering centers becomes
an exercise in fitting the parametric model to the phase
history samples . In (9), the curve fit is a nonconvex
optimization problem in a high-dimensional space; yet, for
damped exponential models there are many available estima-
tion algorithms in the statistical signal processing literature,
including 2-D iterative quadratic maximum likelihood (IQML)
[43], 2-D method of direction estimation (MODE) [46], 2-D
matrix pencil methods [44], and 2-D extensions to total least-
squares (TLS)-Prony methods [16], [22]. These algorithms

exploit the low-rank property of the (block) Hankel noiseless
data matrix, or, equivalently, the property that thenoiseless
damped exponentials in (9) are the solutions to anth-
order, homogeneous, constant coefficient difference equation.
A comparison of these methods can be found in [45].

To summarize key results in [45], 2-D IQML gives max-
imum likelihood parameter estimates, but is computationally
and memory intensive; there is no significant computational
advantage over estimating parameters using the GTD-based
ML method discussed above. The 2-D MODE, 2-D matrix
pencil, and 2-D TLS-Prony techniques are 2-D extensions of
similar 1-D algorithms, and use subspace-based decomposition
of or its 2-D extensions. Some of the 2-D extensions
are “true 2-D” generalizations; these involve singular value
decompositions (SVD’s) of very large matrices (e.g. 2000
400 matrices for 64 64 scattering data arrays) and are com-
putationally intensive. However, they have good asymptotic
statistical properties because they exploit the 2-D exponential
structure in the data. Other 2-D extensions compute separately
the downrange modes and crossrange modes using small-
dimensional data matrices, and then match the downrange and
crossrange modes in some way [22], [46]. These methods are
less computationally or memory intensive than the “true 2-D”
methods, but they are also less accurate. Moreover, the mode
matching step can generate errors, especially for weak modes
or low SNR [45].

Statistical analysis of both 1-D [47], [48], [39], [49] and
2-D [22], [43], [50] damped exponential estimators, and cor-
responding CR bounds [43], [51], are available. The “true 2-D”
methods generally outperform the combined 1-D methods
because they exploit the damped exponential structure in both
dimensions simultaneously. The relative accuracy between
these two approaches can be significant—the variance of the
location estimates can differ by a factor of 10 or more [52].
We note that these statistical analyses give only a partial
guide to estimation performance for radar applications, since
the analyses assume the damped exponential model is correct
and the noise is additive, white, and Gaussian. The mismatch
between the model and noiseless signal affects statistical
behavior of parameter estimates. However, from Theorem 1
and the continuity of estimation algorithms, the predictions
from statistical analysis are accurate when the radar fractional
bandwidth is narrow and scattering centers are separated by
two or more Fourier bins [29].

B. Undamped Exponential Model

1) Scattering Model:Similar to the damped exponential
model, the undamped exponential model is given by

(16)
From the angles and , the slant plane location of the
scattering center is given by

(17)

The undamped exponential model is equivalent to the GTD-
based model in (8) for the special case of . Thus,
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the undamped exponential model is obtained by assuming ideal
point scattering, i.e., scattering amplitude is independent of
both frequency and angle.

2) Approximation Bound:Intuitively, an isotropic,
frequency-invariant scattering center model is a good
approximation to the GTD model only for small relative
bandwidth and very small angular aperture. Such scenarios
are encountered with K-band radars and with X-band radars
at lower resolution. The following theorem, analogous to
Theorem 1, quantifies the approximation error between the
GTD model (8) and the undamped exponential model (16).
The bound is expressed in terms of system variables, such
as bandwidth, target-to-clutter ratio, and frequency sample
spacing. We again consider range lines for fixed.

Theorem 2: Given a GTD Hankel matrix , there exist
matrices and such that , and the
approximation error satisfies the error bound

(18)

Furthermore, is a rank undamped exponential signal
matrix whose mode angles are exactly related to range
locations via .

The proof is given in [28]. We see that the GTD Hankel ma-
trix is close to the undamped exponential Hankel matrix when
the undamped exponential model scattering center locations
align exactly with the true locations.

3) Estimation Algorithms:There are many estimation algo-
rithms for fitting the model in (16) to the phase history; see,
e.g., [53]. The early work of Kennaughet al. [10], [11] used
the magnitude of the fast Fourier transform (FFT) followed by
a nonlinear peak extraction to identify signal modes; due to
its computational simplicity, this approach remains attractive,
and variants include order-recursive matched pursuit tech-
niques techniques [54], [55]. These methods were designed for
sidelobe suppression for the case of well-separated scattering
centers having widely differing amplitudes [56]; consequently,
while they locate isolated scattering centers to within less than
a Fourier resolution bin at high SNR, these methods are unable
to significantly super-resolve closely-spaced scattering centers.
More importantly for radar, the methods are biased, and it is
often their bias that limits applicability to scattering center
extraction [56].

Many signal subspace versions of undamped exponential
modeling algorithms are also available [53]. These methods are
very similar to corresponding damped exponential subspace
methods. Some algorithms exploit the conjugate symmetry
property of undamped exponential sequences to slightly im-
prove estimation accuracy for small data sizes or low SNR
[53].

C. Model Order Selection

Any estimation procedure for fitting a parametric signal
model to measured data must address the critical issue of
model order selection; here, choice of should be motivated
by performance of estimated parameters in an ATR system,
and not solely by the asymptotic variance of the estimates

themselves [57]. For the models in (8), (9), and (16), under-
estimating usually results in high bias of the scattering
center estimates. For example, an underestimated model order
often results in estimating one center in place of two closely
located scattering centers on the target. Overestimation of
can result in spurious scattering center estimates and increased
variance of the scattering attribute parameters.

Model order estimation techniques for both the damped and
undamped exponential models have been developed, primarily
for the 1-D modeling case [58]. Additionally, authors of both
1-D and 2-D subspace methods suggest estimating model
order by considering the distribution of singular values in
the Hankel data matrix. These methods are not well suited
to radar scattering center extraction because they are based on
either ad hoccriteria or information theoretic measures, and
are not closely related to probabilities of order misestimation.
Moreover, in ATR applications there is a need to associate
different costs to model underestimation and overestimation;
these costs reflect the need to penalize high parameter bias
that results from underestimation (such high bias is unde-
sirable in subsequent feature match processing, for example,
[18]). Unfortunately, most existing order selection criteria
offer no convenient way to incorporate different costs for
undermodeling and overmodeling. The lack of reliable model
order estimation techniques and the high bias behavior in
parameter estimates have overshadowed parameter variance in
the application of parametric feature extraction to radar ATR.

Incorrect model order estimation also adversely affects
most ML techniques because initial estimates with high bias
(resulting from underestimation of order, for example) are
far from the global minimum of the likelihood function;
subsequent descent from these initial biased estimates results
in convergence to suboptimal local minima [59].

We have developed an order-selecting ML (OSML) algo-
rithm to mitigate these problems [60], [57]. The approach
jointly estimates model order and least-squares parameter
estimates. The algorithm uses an FFT to initialize a para-
metric model. Bias resulting from FFT resolution limitation
is substantially reduced by splitting FFT peaks into multiple
closely located peaks; the number and separation of the split
peaks is governed by their associated CR bound resolution
limit. Specifically, each FFT peak is split into
equal-amplitude peaks ( is the data length), with frequency
separations of chosen as the 95% confidence (based on
the CR bound) that two equal-amplitude exponentials can be
resolved; see [60] for details. Extraneous modes that may
generated by the peak splitting are subsequently eliminated by
thresholding amplitudes after the ML descent iteration; this
amplitude test can be tied to the probability of false alarm of
a scattering center. Thus, the algorithm provides both model
order estimation and ML initialization that is within the region
of attraction of the global minimum of the likelihood function
[60].

Fig. 6 shows the undamped exponential modeling results
for both the OSML algorithm and the matrix pencil algo-
rithm [39] applied to scattering center range estimates of
X-band radar scattering of an aircraft, simulated using XPatch.
The scattering measurements are corrupted by additive white
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(a)

(b)

Fig. 6. Comparison of (a) OSML and (b) matrix pencil methods for range
profile modeling. XPatch-generated range profile of an aircraft at X-band, with
SNR= 13.89 dB. Solid line: original range profile. Dotted line: range profile
reconstructed from scattering center location and amplitude estimates.

Gaussian noise with SNR of 13.89 dB. For illustration, a
single aperture angle is considered. For each algorithm we
show the original FFT range profile for comparison as a
ground truth, and vertical lines to represent the locations and
magnitudes of the estimated scattering centers. Also shown
is the reconstructed FFT range profile using the estimated
scattering parameters (at the FFT resolution). The model order
was autoselected as 48 by the OSML method; for matrix pencil
both the Akaike information criterion (AIC) and minimum
description length (MDL) [61] predicted a model order of
thirty-three. (The matrix pencil method with model order 48
also exhibits misestimation of dominant peaks, and a fit error
of 8.7%.). We see that the matrix pencil method fails to locate
several of the higher energy scattering mechanisms, while the
OSML method faithfully estimates all of the scattering centers
that are within 26 dB of the peak. In addition, the use the
more general damped exponential model in the matrix pencil

Fig. 7. Inverse SAR image of scattering from 2-ft-square plate. The overlay
shows the plate, and circles indicate the estimated scattering center locations.

approach results in almost no difference from Fig. 6(b); this
is expected because of the small relative bandwidth of the
data—the estimated damping coefficients in the exponential
modes are nearly zero. The matrix pencil algorithm, if used
as an initial estimate to an ML descent procedure, results in
convergence to a suboptimal local minimum because of the
high initial bias. Finally, we note that the 3.93% residual error
in the OSML estimate agrees very closely with the predicted
3.92% error that would result from perfect modeling of the
target in white noise with SNR of 13.89 dB.

D. Measured Data

In Fig. 7 we show application of the damped exponential
model in (9) and (10) to scattering from a 2-ft-square metal
plate measured in The Ohio State University ElectroScience
Laboratory anechoic chamber. The data collection parameters
are , , MHz,
GHz, and horizontal polarization. The inverse SAR image is
formed by the magnitude of the inverse FFT of the Hamming
windowed data; the overlay shows the plate, with circles
indicating the estimated scattering center locations.

The frequency dispersion parameter,, is correctly esti-
mated as (corner scattering) for each of the four
corners. The six distances between the corners are estimated
with an average error of 0.0040 ft, which is the Fourier bin
spacing. The maximum error in estimated edge length, as com-
puted from estimated corners, is 0.022 ft (0.045 Fourier bins).
The damped exponential model represents the backscattered
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energy with 13.0% residual error. We conjecture that most of
the error is due to unmodeled spurious scattering from the
plate support structure.

IV. POLARIMETRIC ATTRIBUTES

Polarization diversity in radar measurements allows further
description of a scattering center. Fusion of the data from mul-
tiple antenna polarizations requires processing of multichannel
amplitudes. For a horizontal and vertical polarization basis,
and monostatic scattering (i.e., colocated transmit and receive
antennas) we form the scattering matrix

(19)

where, for example, gives the amplitude and phase
of measured backscatter at frequencyand angle for
horizontal transmit and vertical receive polarization.

Scattering matrices for many canonical scattering centers are
well known [62]. In this section, we use an-ary generalized
likelihood ratio test to classify the measured polarimetric
signature of a scattering center. As a byproduct, we obtain
the ML estimate of the unknown orientation angle, further
describing a scattering center.

A. Physical Model

In general, the scattering matrixis a function of frequency
and angle of incidence. As presented in [5], [3], [22], a
scattering model can be used to jointly process multiple
polarization channels. A processing gain is realized since
measurement of multiple polarizations increases the signal
energy. From the scattering models in (8), (9), or (16), we have
estimates of the scattering coefficients for a given frequency
and angle. For example, from the exponential signal models
in (9) and (16) the horizontal transmit and horizontal receive
(HH) amplitude coefficient for the th scattering center is

. Similarly, for the GTD-based model
in (8), the th scattering center has HH amplitude coefficient

(cf. (5)).
Alternatively, the scattering may be approximated from

complex-valued pixels in pixel registered polarimetric im-
agery. When using image pixels, each resolution cell is as-
sumed to contain a dominant scattering center whose scattering
response is independent of frequency and angle. Further, for
time-domain pulse radars, the scattering matrix can be inferred
from the complex envelope of the range profiles [63].

The Huynen polarimetric representation [62] expresses a
general complex-valued scattering matrix in terms of six
parameters physically linked to the geometry of the scatterer

(20)

where is the magnitude, is the absolute phase, is the tilt
(orientation) angle, is the ellipticity angle, is the skip angle,
and is the characteristic angle. The matrix is unitary.
Reviews of polarimetric representations are given in [63] and
[64].

We adopt a vector representation of the Huynen model that
is more suitable for computation. Assuming monostatic scat-

TABLE II
POLARIMETRIC SIGNATURES FORCANONICAL SCATTERING CENTERS

tering in free space, we invoke reciprocity, , to rep-
resent as the complex-valued triple, .
For each of eight canonical polarimetric signatures, we rep-
resent as

(21)

where is a complex amplitude and the 3-by-1
complex vector is the th canonical signature
at an orientation angle represented in the basis for
convenience. In Table II we summarize the factorization
for eight canonical scattering matrices [65]. The parameters
describing absolute phase, amplitude, and orientation angle
are modeled as deterministic and unknown. Choice of the
remaining Huynen parameters, , defines a canonical
form. The parameters are physical descriptors of the target.
For example, the skip angle is related to the number of
bounces of the geometric optics reflected signal; odd bounce
mechanisms correspond to , whereas even bounce
mechanisms correspond to .

B. GLRT Processing

For canonical target polarization signatures we have
corresponding hypotheses. We have also the null hypothesis,
which corresponds to the clutter-only case. By minimizing the
Bayes risk, we obtain two Bayes-optimal decision rules: one
Neyman–Pearson-type decision rule for detection of canonical
targets in clutter and one maximuma posteriori (MAP) type
rule for classification of detected canonical forms. The
hypotheses are

(22)

i=1 (23)

For the clutter signal we adopt an additive, spherically
invariant random vector (SIRV) model, which includes Gauss-
ian, K, log-normal and Weibull clutter probability distributions
as special cases [66]. The complex clutter random vector is
the product of a positive real amplitude with a complex
Gaussian random vector. Product models have been found
to accurately model heavy-tailed forest and terrain clutter [63],
[67]–[69]. Let the probability density function for the scalar
random variable be , and let the Gaussian random vector
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be zero mean with covariance. Then the probability density
function of can be expressed as

(24)

where is a real-valued, decreasing function of a non-
negative real variable, and is the weighted
norm of .

We assign a Bayes cost to each decision as

Costdecide

(25)
Note that choice of serves to penalize missed detection
differently than misclassifications of the polarimetric sig-
natures. The Bayes risk is given by

Risk (26)

where is the prior probability of and is the
probability of deciding when is true. The Bayes optimal
decision rule partitions the measurement space to minimize the
risk and can be expressed as a piecewise linear rule in an-
dimensional space with coordinates [70] given by likelihood
ratios

(27)

Two decision rules emerge as a consequence of minimizing
the Bayes risk. First, we have the following decision rule for
the detection of canonical targets in SIRV clutter:

(28)

Second, we have a decision rule for classifying the scattering
center in one of the classes when is rejected.

(29)

However, the likelihood ratios depend on the unknown target
parameters . A complete Bayes approach would be
to integrate over these parameters using
their prior distributions and use this reduced form in the
likelihood ratios. In the absence of prior distributions, we adopt
a generalized likelihood ratio test (GLRT). That is, we replace
the likelihood ratios in (27) with the maximum likelihood
ratios, where the unknown parameters in (27) are
replaced by their maximum likelihood estimates [70].

For equal priors , the detection rule in (28)
is in the form of a Neyman–Pearson test, as follows:

(30)

and the classification rule is in the form of a MAP rule (since
is monotone decreasing)

(31)

where and are ML estimates for and , respec-
tively. Inserting the ML estimates [65] in (31), the decision
rule for classification is

(32)

Polarimetric classification of scattering matrices was pre-
viously suggested in [71] and [72]; however, (31) and (32)
implement the concept in a GLRT by computing ML estimates
of amplitude, phase, and orientation angle, and incorporating
a SIRV clutter covariance model. The prescreener in (28) is an
extension of the binary GLRT in [63] and [73] that classifies
each pixel as either dihedral in clutter or as clutter.

The detection rule in (32) admits a simple geometric inter-
pretation and implementation in . Variation of for a
canonical polarimetric signature forms the surface of a cone in

. The MAP polarimetric classification rule in (32) selects the
target cone closest to the measured scattering matrixusing
a distance weighted by the inverse of the clutter covariance,

. The weighted projection onto the cone also yields ML
estimates of orientation, amplitude and phase, [65].

For computation, the 1-by-3 complex vectors in
(32) can be precomputed for sampled values of, leaving only
inner products to be computed for classification of a measured
signature, . A sampling increment of 5, together with target
symmetries, requires evaluation of only 165 inner products in

to implement (32).
As with other scattering center attributes, an associated

uncertainty can be computed for each polarimetric signature.
For each scattering center hypothesis, the relative certain-
ties in classification are given by the posterior probabilities

. Computation of requires in-
tegration over all values of the unknown parameters
and is therefore computationally burdensome. Hence, we re-
place the distributions with a point mass assumption at their
maximum likelihood values

(33)

where is the minimum weighted distance of scattering
center to th canonical target cone. Then, using Bayes Rule,
we compute thea posteriori probabilities as

(34)

C. Polarimetric GLRT Example

Fig. 8 illustrates application of the polarimetric GLRT to
ultrawide bandwidth rail SAR data collected at Ohio State
University Big Ear Radio Observatory (237–1558 MHz, 120-ft
linear aperture). Fig. 8(a) shows the PWF image of a 240-
ft-by-120-ft forested scene (0.75-ft pixel spacing in range
and crossrange). Illumination is from the left. The subimages
in Fig. 8(b)–(d) show classification of the three dominant
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(a)

(b) (c) (d)

Fig. 8. Polarimetric detection results for three subregions; superimposed icons denote detected signatures.

scattering centers in the 30-by-50 pixel region centered on
pixel [195 110]; the superimposed icons depict one trihedral
and two cylinders. Survey data indicates one 4-ft trihedral
and two trees exceeding 14 in diameter at breast height,
respectively, at the corresponding locations in the scene.

V. CONCLUSIONS

A high-frequency approximation of electromagnetic scatter-
ing as provided by the GTD shows that the scattering response
of an object is well approximated as a sum of scattering
centers. The GTD model remains accurate for targets that
are larger than a few wavelengths in extent. For such targets,
an attributed scattering center model provides a parsimonious,
physically relevant description of the backscattered signal.

In this paper, we presented a feature extraction approach
in which physically based scattering models are used to
analyze SAR data. Model parameters are estimated from the
measurements, and the estimated values describe attributes
of each scattering center. We proposed a scattering model
derived from the GTD and described a nonlinear least-squares
estimator for the model parameters. The estimated scattering
center attributes include location, fully polarimetric ampli-
tudes, aspect-dependent amplitude taper, and geometric type.

Additionally, we discussed two reduced complexity scattering
models, the damped exponential and undamped exponential
models. Parameters in the reduced complexity models were
related to the physically based GTD model parameters, and
we surveyed relevant results from the statistical signal pro-
cessing literature. Further, we quantified the modeling error
incurred in adopting the reduced complexity models. An order-
selecting ML algorithm for scattering center estimation was
proposed for addressing the important issue of model order
estimation. Finally, we presented an-ary GLRT detector for
fusion of multiple polarization scattering data in non-Gaussian,
spherically invariant random clutter; the detector classifies the
polarimetric signature of each scattering center.

Scattering centers, as described by estimated attributes,
offer a rich set of discriminating features for SAR ATR.
However, such features have limitations and cannot serve as
the only vocabulary for ATR. Scattering centers should be aug-
mented by additional features describing, for example, shadow,
context, and image texture—behavior not incorporated in a
scattering center model. In addition, parametric scattering
center extraction is computationally more demanding than
traditional image formation and is therefore inappropriate for a
prescreening detection function. Related to computational cost
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are the numerical challenges of model order selection, non-
convex optimization, and complexity in modeling the angular
dependence of scattering behavior. Finally, some scattering
attributes are not universally applicable. For example, the

descriptor of geometry requires large relative bandwidth
(or very high SNR) for reliable estimation, as depicted in
Fig. 5. Likewise, the polarimetric classification of scattering
centers requires multipolarization measurements with proper
calibration and registration.

Attributed scattering center models exploit scattering phe-
nomenology that is not accessed through SAR imaging forma-
tion. Frequency, aspect and polarization dependent scattering
behavior can be jointly processed to provide descriptive,
high-resolution analysis of regions of interest. The extracted
attributes and associated statistical uncertainty offer a pre-
dictable, compact characterization of single and multiple polar-
ization SAR data. Research in attributed parametric modeling
of scattering continues, and several generic parametric model-
ing issues remain. First, the unified theory of diffraction offers
improved modeling of the aspect dependence of scattering
centers. Second, time-domain modeling is of interest for
ultrawideband pulse radar systems. Third, development con-
tinues toward computationally efficient parameter estimation
methods that appropriately select model order and avoid high
parameter bias caused by inaccurate initialization. Modeling
of the complex image potentially offers clutter suppression
and approximate partitioning of scatterers and, hence, reduced
computational complexity.
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