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Attributed Scattering Centers for SAR ATR

Lee C. PotterMember, IEEE,and Randolph L. Mosesenior Member, IEEE

Abstract— High-frequency radar measurements of man-made on achievable performance; these bounds are independent of
targets are dominated by returns from isolated scattering centers, estimation algorithm.

such as comers and flat plates. Characterizing the features g 1 jjystrates the use of attributed scattering centers
of these scattering centers provides a parsimonious, physically

relevant signal representation for use in automatic target recog- [Of radar signature analysis. The figure shows an inverse
nition (ATR). In this paper, we present a framework for feature ~ Synthetic aperture radar (ISAR) image of a pickup truck
extraction predicated on parametric models for the radar returns.  computed from stepped frequency measurements (specifically,
The models are motivated by the scattering behavior predicted by the GTRI K-band ISAR. 1 ft 1 ft resolution. 5.5 depression

the geometrical theory of diffraction. For each scattering center, . . L .
statistically robust estimation of model parameters provides high- _119'2 azimuth). Radar illumination is from the top of the

resolution attributes including location, geometry, and polariza- image. The tra(_jitional |SAR image is shown in pseudq-
tion response. We present statistical analysis of the scattering color; the superimposed icons show the dominant scattering

model to describe feature uncertainty, and we provide a least- centers extracted from the radar phase history using a model-

squares algorithm for feature estimation. We survey existing paqeq estimator. Each scattering center has an associated
algorithms for simplified models, and derive bounds for the error

incurred in adopting the simplified models. A model order selec- SUPPixel location, amplitude, phase, frequency dependence,
tion algorithm is given, and an M-ary generalized likelihood ratio and polarimetric signature. Ground truth is unavailable for the

test is given for classifying polarimetric responses in spherically target; however, 70.1% of the entire image energy is modeled
invariant random clutter. by the six estimated scattering centers. This introductory
example is given as a notional illustration of a scattering
center description. Descriptions of the scattering attributes and
examples computed from measurements of known objects are
HE high-frequency scattering response of a distributegiven in subsequent sections.
object is well approximated as a sum of responses fromThe use of simplified scattering center models is well
individual scatterers, or scattering centers [1]. These scatteressablished for high-resolution radar imaging [10]-[14] and for
provide a physically relevant, yet concise, description of thestimation of location and amplitude of dominant scattering
object and are thus good candidates for use in automati@echanisms [3], [15]-[17]. Our proposed set of attributes
target recognition (ATR) [2]-[7]. Beyond ATR applicationsexpands the target description to more fully exploit phe-
attributed scattering centers provide high-resolution analysismenology observable as a function of frequency, aspect, and
of scattering for data compression [8], for radar cross sectiglarization. Significantly, diverse scattering behavior across
reduction in stealth design, and for elimination of spuriougavelength and polarization has become accessible with the
scattering in compact ranges [9]. In this paper, we present sG@hergence of both ultrawideband (UWB) and fully polarimet-
tering models and statistical estimation techniques to extraf sensors. We adopt a statistical estimation framework that
attributed scattering centers for use as discriminants in ATRovides estimates of feature uncertainty. Used in conjunction
Attributes for each scattering center include high-resolutiQith other features, such as shadows, context, and image
downrange and crossrange locations, amplitude, frequency f&ture, attributed scattering center features hold promise for
pendence. (part.ially chargcterizing scattering center geometiygi feature-based [18] and model-based [19] ATR systems.
and polarimetric properties. _ The remainder of the paper is organized as follows. In
Scattering center attnk_Jutes are estimated as parametergiiiion || we present a parametric scattering model based
a model of radar scattering. The use of scattering modelSdf the geometric theory of diffraction (GTD) and describe a
conjunc.t|on wnh stgustlcal estimation perm|t§ us to q“ant'%aximum likelihood (ML) estimation algorithm. We charac-
uncertainty, which is needed for Bayesian evidence accrualifyi; e feature uncertainty with statistical analysis of parameter
target discrimination and identification. Attribute uncertainty_ .. o< 4 function of system parameters. In Section I,

IS dhescrlbbed das_ d?h fungtut)n Oft trad?rttsystetm clr;ar{ahcterlstwa survey simplified models for radar scattering. For both the
such as bancwidih and target-to-ciutier ratio. Furthermog amped and undamped exponential signal models we relate the
statistical analysis of attribute uncertainty provides boun

odel parameters to the scattering center attributes parameter-
ized by GTD-based model. We bound the approximation error,

Manuﬁc”m rece”etd dN_OVem'toebf 1t'h 1%%5 feVijeF? July gOF', 1_99?ATh'réview algorithms for estimating the model parameters, and
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Fig. 2. Sensor and target geometry.

and angle dependent coefficient determined by geometry,
composition, and orientation of the scattering mechanism.
Here the approximationict — 2 - 7| ~ |ct| is invoked by
assuming both far-field backscatter and scattering centers close
to the origin. The corresponding normalized field for a given
polarization (suppressing theé?™/* time convention)

M .

X —i4 .
Scattering center attributes | E(f,0) = ZSm(fve)exp{ chf(azmcosﬁ—i-ymsme)}
Position = (3.19 m. 3.25 m) | m=1 @
Amplitude = 1432 — 14°

where z,, andy,, are the slant-plane downrange and cross-
=1 (see Table 1 | range locations of thenth scattering center.
Dihedral; il = —37 For frequency dependence, the GTD predicts that scattering
amplitude is of the form(jf)*~ where «,,, is an integer
Fig. 1. Scattering center description of a SAR image represents the tarﬁﬁtjltiple of 1. Table | summarizes ther parameters, and
as a collection of estimated scattering centers. The table shows attributes, for 2 . . ’ .
the right-most scattering center. hence frequency depgndenmes, of five -example scattering
mechanisms; for multiple-bounce scattering, the frequency

) o . _dependencies are multiplicative.
present anM-ary hypothesis test for classifying polarimetric g, many man-made scatterers, the dependensg, of, 6)

responses measured in spherically invariant random cluttgr, angle is well approximated as a combination of sinclike
Concluding remarks are presented in Section V. terms. For example, the angle dependence of the GTD scat-
tering amplitude for a strip of lengtt is given [1] by

Il. PHYSICSBASED SCATTERING CENTER MODEL

The synthetic aperture radar (SAR) sensor gives access to  cos <dﬁ coS 9) + jdﬁsinc<dﬂ cos ) 3
information about a target and pose through the phase history, ¢ o ¢ o
which is a complex-valued function of frequency, aspect angfg{)wever, no simple but widely applicable model similar to (3)
and polarization. For analysis of the received signal, we addptPresently available; different forms of the angle dependence
a parametric scattering model based on the geometrical theBppear for different canonical scattering geometries. This

of diffraction. difficulty motivates the use of a simpler but more universal
model for angle dependence over small angle intervals. For
A. Scattering Model narrow angles encountered in SAR imaging (e.g§.f& 1-

Let the incident field be a plane wave propagating in tHE crossrange resolution at X-band), we ghoose to model the
+2 direction as shown in Fig. 2. From the geometrical theoﬁnplltude_dependence as an exponential. Thus, we adopt
of diffraction (GTD) [1] and its uniform version [20], if the the following model for the backscattered electric field
wavelength of the incident excitation is small relative to the M if
: ioi E(£,0)=3 An(2L) o
target extent, then the backscattered field appears to originate (f,0) = Z w7 €
from a set of discrete scattering centers. The backscatter can m=1 .
be accurately approximated [21] by - exp { —Jan f (T €OS 0 + Yy Sin 9)} (4)
- M C
E*(f,0,1) ~ @enwﬁ Z Sm(f,0)exp{—j2nft,} (1) where f. is the center frequency. The model parameters
ct M i indivi
m=1 {Am; Ty Yms Om, B}y Characterize theM individual
where f is frequency in Hertz¢ is the propagation velocity, scattering centers. For theith scattering center(z,,, ym)
6 is the target aspect angle, ahg = %Fm-;ﬁ = %(a:m cosf+ gives the slant plane location with respect to a zero-phase
ymsind) is the round-trip propagation delay of theith referenceq,, characterizes the geometry, and hence frequency
scattering center. The amplitudg,,(f,d) is a frequency dependenceg,, characterizes the angular dependence of
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TABLE | i
TYPE PARAMETERS FOR CANONICAL SCATTERING MECHANISMS » 0 .
=15

Value of a | Example scattering geometries : .
flat plate at broadside; dihedral poQ4 Q2

singly curved surface reflection Q3

—

O [rop

point scatterer; doubly curved surface reflec-
tion; straight edge specular

curved edge diffraction

Ll TS

corner diffraction

Qi

scattering, andA,, is a complex scalar charactering the
magnitude and phase. Ao
If multiple transmit and receive polarization pairs are avail-

able, the GTD predicts the same angle and frequency depen-
dence across polarizations but with a different amplitude [3], 4,4, :
[15], [22]. Accordingly, the scattering measurement and am- ~0pp-0% —1)-1
plitude coefficients are written as complex-valued vectors. For o.03sf [~ g‘Teé";:f;‘C od
example, for a fully polarimetric radar using a horizontal and

vertical polarization basis, the amplitudg,, is the complex- 0.03r
valued triple and the polarimetric measurements are modeled0 025

by
EHH(f7 9) M AHH,rn Jf =255
EHV(f7 9) = Z AHV,rn <f_> e,ame
Eyv(f.0) m=1 | Ayv,m ¢

— ,'4

- exXp { jan ] (Zm €08 0 + Y, sin 9)} 0.01f
c

(5) 0.005+

The frequency-dependent behaviors in Table | can be inferred , .

from single polarization data, with an uncertainty as discussed -t -0.5 Range i?\ meters

in Section 1I-B below. Multipolarization data provides further

characterization of scattering mechanisms and can provide ()

discrimination among mechanisms, as presented in Section IV. Fig. 3. GTD model accurately predicts frequency dependence.
The GTD is a high-frequency model, but remains highly

accurate for objects of remarkably small electrical sizg),

where L :js }_he object Iength ar:jd is the \;valllvelendgth. More- 45 seen in the figure. (One Fourier resolution=big¢7,
over, modeling accuracy degrades gracefully. a4 decreases. which is 0.075 m for this example.) However, the two are

For illustration, we compare the GTD prediction of frequency solved by the model-based analysis. The four scattering

dependence in (4) to the analytically derived solution Pcations are estimated using the GTD-based model with an
scattering from an. = 0.5 m diameter perfectly conducting average range error of 0.065 Fourier bin

disk oriented 15 from normal to the radar line of sight.
Stepped frequency samples are computed from 1 to 3 G
with 10 MHz sample spacing. The disk and largest Wavelengé
g are depicted in Fig. 3(a). The frequency range correspo
to disk electrical sizes from 5 wavelengths to only 1.6
wavelengths. Nonetheless, the GTD model differs from the fr = fo+kAf, k=-K,... K

exact analytical scattering solution by only 1.4% in root 0, = 6y+1A8, l=-L,... L. (6)
mean-square (RMS) error summed over the 201 frequency

samples. The exact and modeled scattering are shown int is desirable in many cases to consider scattered field
Fig. 3(b); the small discrepancy is discernible near 0.5 m. Ateasurements sampled on a rectilinear grid. The primary
higher frequencies, the GTD model is even more accurateason is that the phase term in (4) or (5) is nonlinear on a polar
Computation of a least-squares fit of the model in (4) correctlyrid, but becomes linear on a rectilinear grid. Many estimation
identifies then values of the two edge diffractions: = —0.5 algorithms exploit linear phase for computational speed. If the
for (J; and(.) and two second-order diffraction mechanismwtal angular deviatiod: Aé is small (sosin(L Af) = L Af)

(e = =1 for Q,Q- and(@3(2,). The estimated locations amd and if the measurement frequency range is narrowband (so
values are depicted by the vertical bars in Fig. 3(b). Th€: K Af < f.), then the polar grid is approximately equal to a
and Q34 mechanisms are separated by only 0.0008 Fouriectilinear grid with spatial frequency axgs and f, aligned

F

(@

0.02

Magnitude

0.0151

bin in range and, hence, not resolvable by Fourier analysis,

Equation (4) represents a general scattering model, and
ms the basis of all parametric scattering models we con-

er. In many applications, the radar measurements are sam-
8d on a polar grid [23]
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to the range and crossrange directions

fa},k fc+kAf, k}:—K,...,K (7)
f’y,l chel, l = —L, . .,L.

The resulting linear phase scattering model is given by

ZA < Af) CBMAGI
m f

m=1

. exp { —J i”f c < f;f ke + Af lym> } 8)

where A,,, = A,,jn¢Prb0c=i*mfe/c When the small angle
or small fractional bandwidth assumptions do not hold, thé& 0

phase terms must be resampled to lie on a rectilinear grid 1 X
using, e.g., methods described in [24] and [25]. The amplitude 10'_25 o p 10 15 20
terms(f/f.)* andc®? in (4) vary much more slowly than SNR (dB)

the phas-e term in (4) as functions $fand ¢, and theref(_)re Fig. 4. Best- and worst-case resolution of two scattering centers using
the amplitude terms need not be resampled. The result is a -based ML algorithm.

a model with frequency and angle dependence as in (8) and

linear phase increments.
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uncertainty. The derivation parallels [29], [30], and the con-
clusions are similar to those drawn from statistical analysis
B. Maximum Likelihood Estimation and CramRao Bound ¢ simplified scattering models [29]-[31]. In particular, we

Given the physically based scattering model in (8), theonsider resolvability of scattering centers, uncertainty due to
attributed scattering center analysis task is to determine timgighboring scattering centers, the effect of frequency sample
model parameters{A,.., T, ¥m, ¥m, Bm }21_; from noisy spacing,Af, and the role of fractional bandwidth in reliably
samples ofE(f, ). A least-squares estimator for the modegstimatinga.
parameters entails a nonlinear, nonconvex minimization overFirst, we address resolution. A location estimaig =
a mixture of continuous and discrete variables. We ha¥yen.,¥r) IS asymptotically Gaussian with & x 2 covari-
developed an algorithm for computing least-squares estimaggse bound:; ¥ is determined from the CR bound for the
of the scattering center attributes parameterized in (8). Fegntinuous model parameters assuming known, disatgte
additive white Gaussian noise, this estimator is a maximuparameters. Letq, define an ellipse
likelihood estimator, and the estimates asymptotically achieve H
the Cranér—Rao (CR) bound. A detailedydezcriptioz of the {s:(r =957 (r — ) S ow}
algorithm and its application to scattering center estimation dsntaining 90% of estimates of scattering center locatign
presented in [28], and the corresponding parameter CR boulds define two scattering centers to be resolvable if their
are derived. Here, we summarize the important conclusiolegation variances are such that these 90% ellipses have no
of [28]. intersection. The resolution as a function of signal-to-noise

The algorithm is an iterative descent procedure. Any locedtio (SNR) is shown in Fig. 4. Since estimation uncertainty
descent procedure relies on good initialization; bounds @ affected by the orientation of the line segment between
initialization error using a fast eigendecomposition are prthe two scattering centers with respect to the ellipse axes, we
vided in Theorem 1 below. Additionally, the combinatoriallyplot curves for the best and worst case orientations. We find
expensive search over™ possible sets ofv parameters is that scattering centers 10 dB above the clutter background
avoided by using a continuous reparameterization [27] of tlee resolvable to 0.27 Fourier bin (i.€ 272A 7K ) The
discrete«: parameters, then mapping the continuous estimagsometry typeg, does not significantly affect the uncertainty
into discrete values. of location estimates of equal energy scattering centers.

The statistical properties of the algorithm can be analyzedSecond, while neighboring scattering centers affect parame-
by considering the CR bound. The CR bound of the paramettér estimates, for separations exceeding two Fourier bins, two
model in (4) is derived in [28] and provides a lower boundcattering centers may be considered isolated.
on the variance of model parameters estimated in the presencéhird, for fixed fractional bandwidth, variance in both
of additive white Gaussian noise. The bound is valid, withitocation and type estimates decreases linearly when sample
modeling assumptions, for parameter variance using any ungpacing is reduced while retaining constant bandwidth.
ased estimation algorithm. We find that estimation algorithms Fourth, for isolated scattering centers and a fixed SNR, the
achieve the CR bound for moderate signal strengths; hensensor fractional bandwidth determines the reliability cof
the bounds provide analytical predictions of uncertainty iestimates. In general, reliable inference of geometric type from
estimation attributes [28]. the frequency dependence of scattering increases with SNR or

From the analysis presented in [28], we distill four lessorfgactional bandwidth. We predict the reliability of the discrete
that characterize the effect of system parameters on attributestimates by treating theparameter as continuous, deriving
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1 . i . — We thus consider approximations to (8) for reduced com-

] e putational complexity. In particular, we consider both damped
0.9y f6=10 GHz 1 and undamped exponential signal models, which have been
osk (9% bandwidth) | used extensively for radar signal analysis [11], [24], [2],

[3], [37], [22], [17]. For each of these reduced complexity
0.7} 1 models, we present the parametric form, relate the parameters
to the scattering center attributes parameterized by GTD-
0.6- ,7 c=33 GHz T

+"(2.73% bandwitn) based model in (8), bound the approximation error, review

algorithms for estimating the model parameters, and highlight

Probability of correct estimation

0.5} ¥ ]
parameter estimation issues arising from use of the surrogate

o4r 1  models.

o3y 7 1 A. Damped Exponential Model

0-2',,,.»"/ 1 1) Scattering Model:First, we consider a sum of damped

0 ‘ , , ) exponentials as a surrogate for the GTD-based scattering

-5 0 5 SNR (dB) 10 15 20 model. Let £(k,l) denote a sampled version of the phase

history E(f, 8) in (8). The damped exponential model is given

Fig. 5. Probability of correct type estimation using GTD-based ML algday
rithm for a radar with 1-ft. range resolution.

M
S k=-K,. . . K-1
. . . . E(kvl) = Z Arnpxrnpynu = —L,...,L— 1 (9)

the Fisher information matrix (FIM) for the model parameters m=1
(including thea parameters), invoking the asymptotic normalwherep..,, andp,,, are the complex modes (poles) describing
ity of estimates, and using the inverse of the FIM to estimatée exponential behavior of theith scattering center in the
the variance for they parameter estimates; probabilities foownrange and crossrange dimensions, respectively. Equating
the discrete types are then obtained by integrating the norrf@l to (8) to first order, one arrives at a mapping from
distributions. (Such predictions are within 3% of detectioparameters in (9) to the physically based parameters in (8).
rates computed for simulated noisy scattering data [28].) Téom the signal modes, the estimated slant plane location and
curves in Fig. 5 show the probability of corregtversus SNR « parameter for the scattering center are given by

for two fractional bandwidths. The lower curve is for 1-ft - — arg{pam }c . —arg{Pym}c
resolution at 33 GHz center frequency, while the upper curve ™ ArAf 7 " 4r f. A0 (10)
is for 1-ft resolution at 10 GHz center frequency (2.73% and  » _ ([Pem| = D fe B, = I [Hym|

9% fractional bandwidths, respectively). For example, from ™ Af ’ TNl

the figure we observe that for an isolated scattering center2) Error in the Reduced Complexity ModeSeveral — au-

6 dB above the background clutter, estimation at 10 GHz thors have suggested that for narrow fractional bandwidths,

cannot exceed 97.5% reliability, while accuracy for 33 GHthe power dependence of scattering amplitude as a function

is limited to 50.2%. of frequency in (8) can be well approximated by a damped
complex exponential [2], [34], [16]

lll. REDUCED COMPLEXITY MODELS <{f_f) ~ % (11)

The algorithm in the previous section provides ML estimat br example, the linearly increasing amplitude of flat plate

of parameters directly from the GTD-based model in (8). . " .
e . . . Scattering can be approximated by an exponential ywith >
The statistical accuracy of the estimated scattering attribute : e L .
: . : : . We formalize this intuitive approximation in the following
achieves the CR bound; however, the algorithm is computg- . o
: ; . o ] . eorem. For clarity and simplicity, we state results for the
tionally intensive, as it involves an iterative descent procedure.” ™ ~ : . . .
. . . opie-dimensional (1-D) range line&;(f) with 6 fixed, and
This motivates development of computationally less demand- .
. . . S . range samples indexed from 0 16 — 1.
ing algorithms that retain good statistical properties. .
. gy . . Let {Do,..,Dn_1} be samples of superimposed damped
Computational efficiency can be gained by simultaneousl| e
o . .exponential signals
considering reduced complexity models and corresponding
reduced complexity estimation algorithms. One need not em- Mo
ploy reduced complexity models, but instead can considex = E Apexp{(vm + jom)k}t k=0,.,N-1 (12)
computationally simpler methods to estimate the parameters m=1

in (8). Such algorithms have been proposed in [32]-[36nd letH,. be the corresponding x @ Hankel data matrix

However, for many radar system operating specifications, the Dy D, D, o+ Dg_,

bias incurred by using a model simpler than (8) is small D, Dy Ds o Dg

compared to the parameter variances. Thus, the benefit sought _ | D, Ds D, Dos1 (13)
in adopting a reduced complexity model is availability of de = 1 . '

computationally efficient yet statistically accurate parameter : :
estimation algorithms. Dp_y Dp Dpyr -+ Dy
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The M exponential modesxp{~., + j¢mn} can be obtained exploit the low-rank property of the (block) Hankel noiseless
from the rankM matrix H,. by solving a generalized eigen-data matrix, or, equivalently, the property that fi¥enoiseless
value problem using the numerically stable singular valldamped exponentials in (9) are the solutions to /Mih-
decomposition (SVD) [38]-[40]. For a singlé let the N order, homogeneous, constant coefficient difference equation.
frequency samples from the GTD scattering model in (8) lfe comparison of these methods can be found in [45].
denoted{Ey, .., Ex_1}. Let H denote aP x () Hankel data  To summarize key results in [45], 2-D IQML gives max-
matrix formed from{ Ey, ..., Ex_1 }, with min(P, Q) > M.  imum likelihood parameter estimates, but is computationally
Theorem 1: Given a GTD Hankel matrixd, there exist and memory intensive; there is no significant computational
matricesHy, and H,, such thatd = H, + H.,, and the advantage over estimating parameters using the GTD-based

approximation errotH,.,. satisfies the error bound ML method discussed above. The 2-D MODE, 2-D matrix
M .. pencil, and 2-D TLS-Prony techniques are 2-D extensions of
[Herll2 € VPQ Z Am [(1 + %) similar 1-D algorithms, and use subspace-based decomposition

m=1 2 of Hy or its 2-D extensions. Some of the 2-D extensions

BW\ & Af (N-1) are “true 2-D” generalizations; these involve singular value
- <1 - T) <1 + af—> decompositions (SVD’s) of very large matrices (e.g. 2000

0 400 matrices for 64« 64 scattering data arrays) and are com-

(14) putationally intensive. However, they have good asymptotic

where (fo, Af) are the initial and step frequencies, BW iStatistical properties because they exploit the 2-D exponential
the sensor fractional bandwid H—\l&?;; and(4,,,a,,) are Structure in the data. Other 2-D extensions compute separately
amplitude and geometry of theth scattering center in (8). the downrange modes and crossrange modes using small-
Furthermore,Hy, is a rank M damped exponential signaldimensional data matrices, and then match the downrange and

matrix defined in (12) and (13) whose mode angles are Crossrange modes in some way [22], [46]. These methods are
exactly related to range locations via less computationally or memory intensive than the “true 2-D”
methods, but they are also less accurate. Moreover, the mode
Pm = —dnAfzn/c. (15) matching step can generate errors, especially for weak modes
A proof of the theorem is given in [28]. The theoreror low SNR [45].
generalizes the approximation result in [41] to allow an Statistical analysis of both 1-D [47], [48], [39], [49] and
arbitrary combination of scattering types, rather than onB:D [22], [43], [50] damped exponential estimators, and cor-
one type of nonpoint scattering. For statistical accuracy tfsponding CR bounds [43], [51], are available. The “true 2-D”
parameter estimates using damped exponential modélirg, methods generally outperform the combined 1-D methods
N/3 is often suggested [42], [39], [30]. because they exploit the damped exponential structure in both
Theorem 1 shows that the Hankel data matrix formedimensions simultaneously. The relative accuracy between
from GTD scattering model (8) is close to a Hankel datf€se two approaches can be significant—the variance of the
matrix formed from a damped exponential model whodgcation estimates can dlffe_r by a factor of _10 or more [52].
mode angles are exactly specified by the scattering cenféf Note that these statistical analyses give only a partial
range parameters. The bound in (14) quantifies closen gllde to estimation performance for radar a_ppllcatlon_s, since
Continuity of eigendecomposition implies that estimated mo& ¢ analyses assume the damped exponential model is correct

. . _.and the noise is additive, white, and Gaussian. The mismatch
angles closely approximate thg range parameters, and Jus“ﬁ%%ween the model and noiseless signal affects statistical
Fhe us.e.of damped ex.ponentlal modelslwhen the ekfgr behavior of parameter estimates. However, from Theorem 1
is sufficiently small with respect to noise and clutter. |

" ; Und the continuity of estimation algorithms, the predictions
addition, the result that the range locations found fréf. o statistical analysis are accurate when the radar fractional

are exactly the range locations from (8), coupled with the,nqwidth is narrow and scattering centers are separated by
error bound (14) computable from radar system properti§So or more Fourier bins [29].

and scattering constants, motivates the use of the damped
exponential model. Consequently, we access a rich literat@eUndamped Exponential Model

on damped exponential modeling algorithms for computing 1) Scattering Model:Similar to the damped exponential

parameter estimates. _ model, the undamped exponential model is given by
3) Estimation Algorithms:Adopting the damped exponen-

gil Zfsrili's?ti??i?:i): of attributed scattering centers becomesE(Iﬁ )= Z A citembgitunl k_: 0,---,K-1

g the parametric model to the phase [=0,---,L-1.
history samplest(k,1). In (9), the curve fit is a nonconvex m=t (16)
optimization problem in a high-dimensional space; yet, fqtrom the angles,,, and¢,., the slant plane location of the
damped exponential models there are many available estirggattering center is given by
tion algorithms in the statistical signal processing literature,
including 2-D iterative quadratic maximum likelihood (IQML) T = ~Pzme Ym = M a7
[43], 2-D method of direction estimation (MODE) [46], 2-D ArAf Am A0
matrix pencil methods [44], and 2-D extensions to total leasthe undamped exponential model is equivalent to the GTD-
squares (TLS)-Prony methods [16], [22]. These algorithnised model in (8) for the special casewf = 3,, = 0. Thus,

M
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the undamped exponential model is obtained by assuming iddsmselves [57]. For the models in (8), (9), and (16), under-
point scattering, i.e., scattering amplitude is independent eftimating A4 usually results in high bias of the scattering
both frequency and angle. center estimates. For example, an underestimated model order
2) Approximation Bound:Intuitively, an isotropic, often results in estimating one center in place of two closely
frequency-invariant scattering center model is a goddcated scattering centers on the target. Overestimatialf of
approximation to the GTD model only for small relativecan result in spurious scattering center estimates and increased
bandwidth and very small angular aperture. Such scenari@iance of the scattering attribute parameters.
are encountered with K-band radars and with X-band radarsModel order estimation techniques for both the damped and
at lower resolution. The following theorem, analogous tondamped exponential models have been developed, primarily
Theorem 1, quantifies the approximation error between tf@r the 1-D modeling case [58]. Additionally, authors of both
GTD model (8) and the undamped exponential model (16)-D and 2-D subspace methods suggest estimating model
The bound is expressed in terms of system variables, swder by considering the distribution of singular values in
as bandwidth, target-to-clutter ratio, and frequency sampleée Hankel data matrix. These methods are not well suited
spacing. We again consider range lines for fi¥ed to radar scattering center extraction because they are based on
Theorem 2: Given a GTD Hankel matrixH, there exist eitherad hoccriteria or information theoretic measures, and
matricesH,. and H., such thatd = H,. + H.,, and the are not closely related to probabilities of order misestimation.
approximation errotH.,. satisfies the error bound Moreover, in ATR applications there is a need to associate
o —1 different costs to model underestimation and overestimation;
<ﬂ) " (18) these costs reflect the need to penalize high parameter bias
Jo ' that results from underestimation (such high bias is unde-

) o sirable in subsequent feature match processing, for example,
Furthermore,H,.. is a rankM undamped exponential signali gy) - ynfortunately, most existing order selection criteria

matrix whose mode angles,, are exactly related 10 rangeqger no convenient way to incorporate different costs for
locations viag,, = —4rAf zm/c. undermodeling and overmodeling. The lack of reliable model
.T.he proof is given in [28]. We see thgt the GTD HanI_<eI M&rder estimation techniques and the high bias behavior in
trix is close to the undamped exponential Hankel matrix wheq, .o meter estimates have overshadowed parameter variance in
the undamped exponential model scattering center locatiqng 4ppjication of parametric feature extraction to radar ATR.
align exactly with the true locations. o Incorrect model order estimation also adversely affects
_3) Estimation Algorithms:There are many estimation algo+yqg¢ ML techniques because initial estimates with high bias
rithms for fitting the model in (16) to the phase history; Segyeqyiting from underestimation of order, for example) are
e.g., [53]. The early work of Kennaugit al. [10], [11] used (5 from the global minimum of the likelihood function:
the magnitude of the fast Fourier transform (FFT) followed |°¥ubsequent descent from these initial biased estimates results
a nonlinear peak extraction to identify signal modes; due convergence to suboptimal local minima [59].
its computational simplicity, this approach remains attractive, \ye have developed an order-selecting ML (OSML) algo-

and variants include order-recursive matched pursuit teqjﬂhm to mitigate these problems [60], [57]. The approach

niques techniques [54], [55]. These methods were designed {Ghyy estimates model order and least-squares parameter
sidelobe suppression for the case of well-separated scatte#'

: : e ; dmates. The algorithm uses an FFT to initialize a para-
centers having widely differing amplitudes [S6]; consequentl¥netric model. Bias resulting from FFT resolution limitation

while they Iocate_ isolqted sgattering centers to within less thE”substantiaIIy reduced by spliting FFT peaks into multiple
a Fourier resolution bin at high SNR, these methods are una Ilgsely located peaks: the number and separation of the split

to significantly super-resolve closely-spaced scattering centeﬂgaks is governed by their associated CR bound resolution
More importantly for radar, the methods are biased, and itl|§nit Specifically, each FFT peak is split into = 2=

often thelr bias that limits applicability to scattering Cemeéqual-amplitude peaks\( is the data length), with frequency
extraction [56].

ianal sub . f und d s‘%farations ofAw chosen as the 95% confidence (based on
Man_y signal subspace versions of undampe exponen{ CR bound) that two equal-amplitude exponentials can be
modeh'ng. algorithms are als.o available [53].These.methods olved: see [60] for details. Extraneous modes that may
very similar to corresponding damped exponential subsp Enerated by the peak splitting are subsequently eliminated by

methods. Some algorithms expl_oit the conjugate symme f¥resholding amplitudes after the ML descent iteration; this
property of undamped exponential sequences to slightly I%ﬂ

rove estimation accuracy for small data sizes or low SN mplitude test can be tied to the probability of false alarm of
FSS] y scattering center. Thus, the algorithm provides both model

order estimation and ML initialization that is within the region

) of attraction of the global minimum of the likelihood function
C. Model Order Selection [60].

M
BW "
| Horlls < VELZ- 3 ‘Amam

m=1

Any estimation procedure for fitting a parametric signal Fig. 6 shows the undamped exponential modeling results
model to measured data must address the critical issuefaf both the OSML algorithm and the matrix pencil algo-
model order selection; here, choice &f should be motivated rithm [39] applied to scattering center range estimates of
by performance of estimated parameters in an ATR systeKiband radar scattering of an aircraft, simulated using XPatch.
and not solely by the asymptotic variance of the estimat&be scattering measurements are corrupted by additive white
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Fig. 7. Inverse SAR image of scattering from 2-ft-square plate. The overlay
shows the plate, and circles indicate the estimated scattering center locations.

approach results in almost no difference from Fig. 6(b); this
is expected because of the small relative bandwidth of the
data—the estimated damping coefficients in the exponential
modes are nearly zero. The matrix pencil algorithm, if used
as an initial estimate to an ML descent procedure, results in
convergence to a suboptimal local minimum because of the
high initial bias. Finally, we note that the 3.93% residual error

Fig. 6. Comparison of (a) OSML and (b) matrix pencil methods for rangg]‘ the OSML estimate agrees very closely with the predicted

SNR = 13.89 dB. Solid line: original range profile. Dotted line: range profil
reconstructed from scattering center location and amplitude estimates.

.92% error that would result from perfect modeling of the
target in white noise with SNR of 13.89 dB.

Gaussian noise with SNR of 13.89 dB. For illustration, & Measured Data

single aperture angle is considered. For each algorithm wi
show the original FFT range profile for comparison as a
ground truth, and vertical lines to represent the locations a

Gn Fig. 7 we show application of the damped exponential
model in (9) and (10) to scattering from a 2-ft-square metal
te measured in The Ohio State University ElectroScience

magnitudes of the estimated scattering centers. Also sho éboratory anechoic chamber. The data collection parameters

is the reconstructed FFT range profile using the estimat

fEK =25 L =5A60 =05, Af = 20 MHz, f. = 10

scattering parameters (at the FFT resolution). The model Or‘@ﬁﬁz, and horizontal polarization. The inverse SAR image is
was autoselected as 48 by the OSML method; for matrix pengitmed by the magnitude of the inverse FFT of the Hamming
both the Akaike information criterion (AIC) and minimumyindowed data; the overlay shows the plate, with circles
description length (MDL) [61] predicted a model order Ofngjcating the estimated scattering center locations.
thirty'three. (The matrix penCiI method with model order 48 The frequency dispersion parameter” is Correcﬂy esti-
also exhibits misestimation of dominant peaks, and a fit errgrated as = —1 (corner scattering) for each of the four
of 8.7%.). We see that the matrix pencil method fails to locai®rners. The six distances between the corners are estimated
several of the higher energy scattering mechanisms, while #hgh an average error of 0.0040 ft, WhiCh—li% the Fourier bin
OSML method faithfully estimates all of the scattering centetspacing. The maximum error in estimated edge length, as com-
that are within 26 dB of the peak. In addition, the use theuted from estimated corners, is 0.022 ft (0.045 Fourier bins).
more general damped exponential model in the matrix pen€ihe damped exponential model represents the backscattered
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energy with 13.0% residual error. We conjecture that most of TABLE I
the error is due to unmodeled SpUI‘iOUS Scattering from the POLARIMETRIC SIGNATURES FORCANONICAL SCATTERING CENTERS
plate support structure.

[ Scattering Center I bi(y)
V. POLARIMETRIC ATTRIBUTES T
| Trihedral [100]

Polarization diversity in radar measurements allows furtheg
description of a scattering center. Fusion of the data from myipihedral (@a=0)
tiple antenna polarizations requires processing of multichanneNarrow Diplane (a = %.)

amplitudes. For a horizontal and vertical polarization basi$,Dipole (a = 1) [ a cos(2¢) sin(21) }T
and monostatic scattering (i.e., colocated transmit and receiv€ylinder (a = 3)
antennas) we form the scattering matrix Quarter Wave (a = j)
A T
Sun(f,0) Suu(f. 6 ) i i oI 2 IR
S(f,0) = wi(f,0)  Swo(f,0) (19) Left (Right) Helix e [ 0 1 (=) }

S’Uh(f? 9) S'U'U(f’ 9)

where, for exampleS,(f,6) gives the amplitude and phase
of measured backscatter at frequengyand anglef for tering in free space, we invoke reciprocif,, = S,x, to rep-
horizontal transmit and vertical receive polarization. resentS as the complex-valued triple, = [Sh1 V254, Swu]?

Scattering matrices for many canonical scattering centers @ each of eight canonical polarimetric signatures, we rep-
well known [62]. In this section, we use ad-ary generalized resentS as

likelihood ratio test to classify the measured polarimetric 11 g
signature of a scattering center. As a byproduct, we obtain S = A.Bbi(1) = A. \6§ \6§ 1| () (21)
the ML estimate of the unknown orientation angle, further %f —71 0
describing a scattering center. . z vz

g g where A, = Ae?? is a complex amplitude and the 3-by-1
A. Physical Model complex vectorb;()) € C? is the ith canonical signature

. . . at an orientation angle) represented in the basi8 for
In general, the scattering matrixis a function of frequency ; . N
o : convenience. In Table Il we summarize the factorization
and angle of incidence. As presented in [5], [3], [22], . . . :
: - . for eight canonical scattering matrices [65]. The parameters
scattering model can be used to jointly process multip s . . .
o . A . ."describing absolute phase, amplitude, and orientation angle
polarization channels. A processing gain is realized since . .
. N ) ._are modeled as deterministic and unknown. Choice of the
measurement of multiple polarizations increases the signal

energy. From the scattering models in (8), (9), or (16), we haye "2Ning Huynen parameters;, v, ), defines a canonical

; . . ) orm. The parameters are physical descriptors of the target.
estimates of the scattering coefficients for a given frequen%r example, the skip angle is related to the number of
fand angle. For examp_le, from the egponennal. signal moc.j%lgunces of the geometric optics reflected signal; odd bounce
in (9) and (16) the horizontal transmit and horizontal receive :

) o . . mechanisms correspond to = 0°, whereas even bounce
(HH) amplitude coefficient for thenth scattering center is mechanisms correspond fo— +45°
Stun(fo,60) = Agp . Similarly, for the GTD-based model P -
in (8), themth scattering center has HH amplitude coefficiery, GLRT Processing
Sun(fe,00) = Agami®™ (cf. (5)). - TR
Alternatively, the scattering may be approximated from For M canonical target polarization signatures we have

complex-valued pixels in pixel registered polarimetric imgorrespondmg hypotheses. We have also the null hypothesis,

agery. When using image pixels, each resolution cell is ﬁhlch corresponds to the clutter-only case. By minimizing the

sumed to contain a dominant scattering center whose scatte es risk, we obtain two !Sgyes-optlmal deC|§|on rules: one
response is independent of frequency and angle. Further, man—Pearson-type decision rule for detection of canonical

time-domain pulse radars, the scattering matrix can be inferrt gefts ml clu_tft_er tgnd (;nde tma;a(rjnumpos_terll(;rl (MA%typle
from the complex envelope of the range profiles [63]. fule for classirication ot detected canonical forms. Tder

The Huynen polarimetric representation [62] expresseshgpOtheses are
general complex-valued scattering matrix in terms of six Hy:S=n (22)
parameters physically linked to the geometry of the scatterer H;:S=ABb#)+n i=1,--., M. (23)

S = IPU* (7, ,,)AF 02 }UH@/}’T’ V) (20)  For the clutter signah we adopt an additive, spherically
0 tan®vy invariant random vector (SIRV) model, which includes Gauss-
where A is the magnitudey is the absolute phase, is the tilt ian, K, log-normal and Weibull clutter probability distributions
(orientation) angles is the ellipticity angley is the skip angle, as special cases [66]. The complex clutter random vector is
and v is the characteristic angle. The matrx is unitary. the product of a positive real amplitude with a complex
Reviews of polarimetric representations are given in [63] ar@aussian random vectaer. Product models have been found
[64]. to accurately model heavy-tailed forest and terrain clutter [63],
We adopt a vector representation of the Huynen model tH&7]-[69]. Let the probability density function for the scalar
is more suitable for computation. Assuming monostatic scaandom variable be f(a), and let the Gaussian random vector



88 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 1997

be zero mean with covarianée Then the probability density and the classification rule is in the form of a MAP rule (since

function of n can be expressed as F,, is monotone decreasing)
i=arg min (5~ Abi()TS7HS — Acibi(9)) (31)
Faln) = 312 / f(g) exp(—nTS " n/a?)da where A.; and¢; are ML estimates ford., and ;, respec-
mXlJo e tively. Inserting the ML estimates [65] in (31), the decision
= Fa([ln|lz) (24)  rule for classification is
bi(p)HEx—Ls
{=arg max |[sup M . (32)
where F,,(-) is a real-valued, decreasing function of a non- =L M |y 09|z
negative real variable, anfh||z = n'"%"!n is the weighted  Polarimetric classification of scattering matrices was pre-
norm of . o viously suggested in [71] and [72]; however, (31) and (32)
We assign a Bayes cost to each decision as implement the concept in a GLRT by computing ML estimates
0, i=j of amplitude, phase, and orientation angle, and incorporating
C;; = CosfdecideH;|H;] =} 1, i# g J#0 a SIRV clutter covariance model. The prescreener in (28) is an
7, i j=0. extension of the binary GLRT in [63] and [73] that classifies

(25) each pixel as either dihedral in clutter or as clutter.
Note that choice ofy serves to penalize missed detection The detection rule in (32) admits a simple geometric inter-
differently than misclassifications of th& polarimetric sig- pretation and implementation &¥. Variation of (A.,) for a

natures. The Bayes risk is given by canonical polarimetric signature forms the surface of a cone in
M M C3. The MAP polarimetric classification rule in (32) selects the
Risk = Z ZPJCUP”]» (26) target cone closest to the measured scattering méttising
§=0 i=0 a distance weighted by the inverse of the clutter covariance,

where P is the pnor probabmty ofH and P|J is the 2~ L. The Welghted prOJeCtlon onto the cone also ylelds ML
probablhty of decidingd; whenH; is true. The Bayes optimal estimates of orientation, amplitude and phase,A, p) [65].
decision rule partitions the measurementspace to minimize ther computation, the 1-by-3 complex vect% in
risk and can be expressed as a piecewise linear rule i an (32) can be precomputed for sampled valueg ataving only
dimensional space with coordinates [70] given by likelihoomthner products to be computed for classification of a measured
ratios signature,S. A sampling increment of § together with target
Pgp, (S|Hy) symmetries, requires evaluation of only 165 inner products in
Ap(S) = = ——= k=1---,M. 27 : !

K(9) Ps|11, (S|Ho) T @7) ¢3¢0 implement (32). _ _
Two decision rules emerge as a consequence of mwmmnaﬁs W_'th other scattering center attrlbute_s, an as_somated
the Bayes risk. First, we have the following decision rule fdfncertainty can be computed for each polarimetric signature.

the detection of canonical targets in SIRV clutter: For each scattering center hypothesis, the relative certain-
i . ties in classification are given by the posterior probabilities
1U...udng . . . .
max {PA (S)} 2 nP. (28) P(HilS),i=1,.--, M.Computation of”(H;|S) requires in-
i=1,.., 0 H, tegration over all values of the unknown parametetsp, ¢)
Second, we have a decision rule for classifying the scatterifgd is therefore computationally burdensome. Hence, we re-
center in one of thél/ classes whetH is rejected. place the distributions with a point mass assumption at their
_max. PA () (29) maximum likelihood valu?s ) o
L P(S|H;) = Fn((S = Acbi())TE7HS — Acbi(9))

However, the likelihood ratlos depend on the unknown target vin
£ (di™™) (33)

parameterg A4, p, ). A complete Bayes approach would be

to |ntegratef)(s’|‘E[k7 (A o, r(/})) over these parameters us|ngNhere drnzn is the minimum WEIghted distance of Scatte”ng

their prior distributions and use this reduced form in thgenters ‘o kth canonical target cone. Then, using Bayes Rule,

likelihood ratios. In the absence of prior distributions, we adopt€ compute the posteriori probabilities as

a generalized likelihood ratio test (GLRT). That is, we replace Py Fo(dm)

the likelihood ratios in (27) with the maximum likelihood PUHEWNS = S5t iy (34)
ratios, where the unknow(A, p,) parameters in (27) are ’
replaced by their maximum likelihood estimates [70]. . .
For equal priorsP; = --. = Py, the detection rule in (28) C. Polarimetric GLRT Example
is in the form of a Neyman—Pearson test, as follows: Fig. 8 illustrates application of the polarimetric GLRT to

‘ S\ Hsee1 S ultrawide bandwidth rail SAR data collected at Ohio State
MaXi=1,...,.M {F"(S = Acibi(i))"ETHS ~ ACin(wl))} University Big Ear Radio Observatory (237—1558 MHz, 120-ft

F,(SHY1S) linear aperture). Fig. 8(a) shows the PWF image of a 240-
HIU-;UHM ft-by-120-ft forested scene (0.75-ft pixel spacing in range
5 n and crossrange). lllumination is from the left. The subimages

! (30) in Fig. 8(b)-(d) show classification of the three dominant
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Fig. 8. Polarimetric detection results for three subregions; superimposed icons denote detected signatures.

scattering centers in the 30-by-50 pixel region centered éwlditionally, we discussed two reduced complexity scattering
pixel [195110]; the superimposed icons depict one trinedmalodels, the damped exponential and undamped exponential
and two cylinders. Survey data indicates one 4-ft trihedralodels. Parameters in the reduced complexity models were
and two trees exceeding 14 in diameter at breast heigfslated to the physically based GTD model parameters, and
respectively, at the corresponding locations in the scene. we surveyed relevant results from the statistical signal pro-
cessing literature. Further, we quantified the modeling error
incurred in adopting the reduced complexity models. An order-

selecting ML algorithm for scattering center estimation was

A high-frequency approximation of electromagnetic SC";‘tteAB'roposed for addressing the important issue of model order

ing as provided by the GTD shows that the scattering reSPONSimation. Finally, we presented af-ary GLRT detector for

of an object is well approximated as a sum of scatteri : R . ) .
) bp r} on of multiple polarization scattering data in non-Gaussian,

centers. The GTD model remains accurate for targets thgﬁ: cally i ant rand lutter- the detector classifies th
are larger than a few wavelengths in extent. For such targ&g erically invariant random clutter, the detector classities the

an attributed scattering center model provides a pars;imonioﬂglsa”memC signature of each scattering center. _
physically relevant description of the backscattered signal. _>cattering centers, as described by estimated attributes,

In this paper, we presented a feature extraction approaﬁfﬁer a rich set of discriminating features for SAR ATR.
in which physically based scattering models are used iRpwever, such features have limitations and cannot serve as
analyze SAR data. Model parameters are estimated from th& only vocabulary for ATR. Scattering centers should be aug-
measurements, and the estimated values describe attribifi@gted by additional features describing, for example, shadow,
of each scattering center. We proposed a scattering mogentext, and image texture—behavior not incorporated in a
derived from the GTD and described a nonlinear least-squaggattering center model. In addition, parametric scattering
estimator for the model parameters. The estimated scatterii@ter extraction is computationally more demanding than
center attributes include location, fully polarimetric amplitraditional image formation and is therefore inappropriate for a
tudes, aspect-dependent amplitude taper, and geometric typescreening detection function. Related to computational cost

V. CONCLUSIONS
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are the numerical challenges of model order selection, ndmz] R. T. Compton, Jr., “Two-dimensional imaging of radar targets with the
convex optimization, and complexity in modeling the angular

dependence of scattering behavior. Finally, some scatterifg
attributes are not universally applicable. For example, the
« descriptor of geometry requires large relative bandwidin!i 4
(or very high SNR) for reliable estimation, as depicted i

Fig.

5. Likewise, the polarimetric classification of scatterinib]

centers requires multipolarization measurements with proper

calibration and registration.

[16]

Attributed scattering center models exploit scattering phe-
nomenology that is not accessed through SAR imaging forma-

tion. Frequency, aspect and polarization dependent scatterjirg

behavior can be jointly processed to provide descriptive,
high-resolution analysis of regions of interest. The extractegh
attributes and associated statistical uncertainty offer a pre-
dictable, compact characterization of single and multiple p0|a,L,E_9]
ization SAR data. Research in attributed parametric modeling
of scattering continues, and several generic parametric modé®
ing issues remain. First, the unified theory of diffraction offers
improved modeling of the aspect dependence of scatteripg)
centers. Second, time-domain modeling is of interest for
ultrawideband pulse radar systems. Third, development c&%z—]
tinues toward computationally efficient parameter estimation
methods that appropriately select model order and avoid hi#!
parameter bias caused by inaccurate initialization. Modeling
of the complex image potentially offers clutter suppressida4]

and approximate partitioning of scatterers and, hence, redui:;g

computational complexity.
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