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Maximum Likelihood Array Processing
for Stochastic Coherent Sources

Petre Stoica, Fellow, IEEE, Bjorn Ottersten, Member, IEEE, Mats Viberg, Member, IEEE,
and Randoiph L. Moses, Senior Member, IEEE

Abstract—Maximum likelihood (ML) estimation in array signal
processing for the stochastic noncoherent signal case is well
documented in the literature. Herein, we focus on the equally
relevant case of stochastic coherent signals. Explicit large-sample
realizations are derived for the ML estimates of the noise power
and the (singular) signal covariance matrix. The asymptotic
properties of the estimates are examined, and some numerical
examples are provided. In addition, we show the surprising fact
that the ML estimates of the signal parameters obtained by
ignoring the information that the sources are coherent coincide
in large samples with the ML estimates obtained by exploiting
the coherent source information. Thus, the ML signal parameter
estimator derived for the noncoherent case (or its large-sample
realizations) asymptotically achieves the lowest possible estima-
tion error variance (corresponding to the coherent Cramér-Rao
bound).

I. INTRODUCTION

ENSOR array signal processing addresses the problem
Sof estimating the parameters of multiple emitter signals
arriving at an array of sensors with known characteristics. A
multitude of estimators have been presented for this problem
and their asymptotic properties have been investigated [1], [2].
The stochastic maximum likelihood (ML) estimator, derived
under the stochastic emitter signal model, has been shown to
achieve the Cramér-Rao bound (CRB) in large samples and
hence it yields asymptotically efficient parameter estimates
[3]-[5]. This important property of the stochastic ML esti-
mator depends on the assumption that the emitter signals are
noncoherent (i.e., no two signals are fully correlated). When
coherent emitter signals are present, the maximum likelihood
estimator must be reformulated and a new Cramér-Rao lower
bound on the estimation error variance is also obtained. Note
that there are methods for consistently detecting the presence
of coherent signals [6],[7].

This paper formulates the stochastic ML, problem for co-
herent emitter signals, under a rank constraint on the emitter
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covariance matrix. By making use of an appropriate parame-
terization, we show that explicit large-sample expressions for
the ML estimates of the noise power and the signal covariance
matrix can be obtained. The asymptotic properties of the ML
estimates of the aforementioned parameters are examined. It is
shown both analytically and numerically that the ML estimator
of these parameters, which makes use of the rank information,
outperforms the ML estimator which ignores that information.
Regarding the signal parameters (such as the angles-of-arrival),
we prove the somewhat intriguing result that the asymptotic
estimation accuracy of these parameters is not affected by the
knowledge of the rank of the emitter signal covariance matrix.
Thus, the original stochastic ML estimator that ignores the rank
information, or its large-samples realizations (such as MODE
and WSF [4], [6], [8]), achieves the lowest possible estimation
error variance for the signal parameters.

In closing this section, we mention the related work by
Bresler [9]. The approach in [9] aims at deriving an exact
realization of the ML estimate in either coherent or noncoher-
ent scenarios, and it is somewhat intricate. The large-sample
ML estimator introduced in the following sections is much
simpler both conceptually and computationally.

II. PROBLEM FORMULATION

The following narrowband processing array model is hy-
pothesized:

v(t) = A(0)x(t) +n(t) . “(1)

The measurement vector, y(t), represents the m sensor out-
puts. The n emitter signals are collected in the vector x(¢)
and the additive noise is denoted n(¢). The array response,
A(#), is'a known function of the unknown signal parameters,
0, (these can be, for example, the angles-of-arrival).

The stochastic model assumes that the complex-valued
observation vector is zero-mean and circularly Gaussian dis-
tributed with

E{y(#)y*(s)} = Rt = (APA* + o21)6;, (2)
E{y(t)y"(s)} =0 NG))

where the superscript (-)* denotes the conjugate transpose,
o2 is the power of the (spatially white) sensor noise, P =
E{x(t)x*(t)} is the emitter signal covariance matrix and

6:s denotes the Kronecker delta. To simplify the notation,
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the dependence of A on the signal parameter vector, 0,
is suppressed whenever there is no risk for confusion. The
objective is to estimate the signal parameters, the emitter signal
covariance matrix, and the noise variance based on the sensor
measurements. It is assumed that the number of signals, n,
is known. When discussing the coherent ML estimator and
the corresponding CRB, we also assume that the rank of P
is known.

The maximum likelihood (ML) estimator based on the
model above consists of solving the following problem [4],
[91-(11]:

min [In|R|+ Tr(R™'R)] @
o,UQ,P
where | - | and Tr(-) denote the determinant and the trace

of a matrix, respectively, R is the covariance matrix of y(¢)
introduced above, and R is the sample covariance matrix of
the array output vector

I
R=—+ ; y(Bly* (). 5)

Hereafter, N denotes the number of available snapshots.

The minimization problem in (4) is greatly simplified by
employing a result in a paper by Bshme [10] (see [11] for
a simple proof of the result in question). According to [10]
and [11], the minimizing arguments of the function in (4) are
given by
1

m-—-n

52(0) = Tr [Hj(O)R] ' ot )

Pd) = Al(9) [R - 32(0)1] AT0)],_g (7)

@ = argmin
& 6

A(O)P(0)A*(0) + &2(0)1’ ®)

where
AT = (Ara)-1A~ ©)
i =1- AAT. (10)

The importance of the above result lies in the fact that
it provides explicit expressions for the ML estimates of the
noise power and signal covariance matrix, hence reducing the
dimension of the original optimization problem (4) by (n2+1).
On the other hand, the result has a drawback: Equations (6)—(8)
are derived by considering the minimization of the normalized
negative log-likelihood function in (4) with respect to P over
the set of Hermitian matrices, and not over the set of Hermitian
positive (semi)definite matrices as it should. As a consequence,
the minimizing p(ﬁ) so obtained (see (7)) is not guaranteed
to be positive (semi)definite, and indeed it is known [9] that
P(6) may be indefinite.

The aforementioned drawback is minor when P is (strictly)
positive definite. The reason for this is as follows. Since
the ML estimates above are consistent, P(8) tends to P as
N — 0o, which means that P(f) must be positive definite
(and hence a “valid” ML estimator) for sufficiently large N.
Hence, (6)-(8) provide a large-sample realization of the ML
processor in the case of a nonsingular covariance matrix P
(i.e., the case of noncoherent sources).

In the case of coherent sources, however, the covariance
matrix P is singular, whereas f’(ﬂ) given by (7) is nonsingular
(w.p. 1) for any finite V. In such a case, f’(()) cannot represent
a valid ML estimate of P (not even for N — c0). As a
consequence, # given by (8) may not be a realization of
the “true” ML signal parameter estimate which exploits the
knowledge that the sources are coherent. In fact, according
to the parsimony principle of parameter estimation (see, e.g.,
[12]), incorporation of any a priori knowledge into the ML
problem should lead to improved accuracy compared with
the situation where that knowledge is not incorporated (such
as is the case in (6)—(8)). This means that 0 given by (8)
might be expected to be less accurate than the ML signal
parameter estimate based on the information that P is singular.
Interestingly enough, though, numerical evaluations of the
Cramér-Rao bounds derived by ignoring and, respectively,
exploiting the information that rank(P) < n have shown
that the asymptotic signal parameter bounds corresponding
to the two cases are identical [4]. Thus, there is numerical
evidence supporting the conjecture that (8) is a large-sample
realization of the ML signal parameter estimator, even in the

- coherent source case. However, a proof of this conjecture was

not available.

The goal of this paper is threefold:

1) to derive explicit large-sample expressions that are com-
parable with (6)—(8) for the estimators that minimize (4)
in the case of coherent sources

2) to prove the conjecture that (8) still provides a large-
sample realization of the ML signal parameter estimate
even in scenarios where it is known a priori that P is
rank deficient

3) to establish the large-sample properties of the ML esti-
mates of the noise power and signal covariance matrix
derived under the rank constraint on P and to show that
they outperform the corresponding ML estimates that
ignore the information that P is rank deficient.

III. ML ESTIMATION FOR COHERENT SOURCES

Let the rank of the emitter signal covariance matrix be

p £ rank(P) < n . )
When there are coherent emitter signals present, p < n.
To guarantee that the estimation problem under study is
“parameter identifiable,” we make the assumption that the
array manifold is unambiguous and that m > 2n — p [13]. Let

P=LL" (12)
denote the Cholesky factorization of the signal covariance
matrix (L is n X p). It readily follows from (12) that P can
uniquely be written as

I o #*

p= [C]a T c (13)
where S is p x p, Cis (n — p) X p, and I is p X p. Note that
this square root parameterization requires p? + 2(n — p)p =
n2—(n—p)? real parameters, whereas the full parameterization
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(4) requires n? parameters. In what follows, it is assumed
that S is a nonsingular matrix. As the source signals can be
arbitrarily ordered, the previous assumption on S does not
introduce any restriction. Define

I
AczA[C]. (14)

With this notation, the matrix R in (2) can be written as

R =A_SA! + 7L (15)
Let a denote the parameter vector composed of the elements
of @ along with the real and imaginary parts of the elements
of C. We parameterize the negative log-likelihood function in
(4) by @, S, and ¢2. Using this parameterization, the matrix
P is guaranteed to be positive (semi)definite and to satisty the
rank constraint (11).

Since S in the representation (15) of R is positive definite,
it follows from the discussion on (6)—(8) that large-sample
realizations of the ML estimates of o2, S, and « are given by

1
m—-p =&

8@ = Al@[R - @1|Al @],

(&) =

Tr [Hic (a)ﬁ] (16)

an

&= argmoiln ‘Ac(a)g(a)Az(a) + 62(a)1’ . (18)

Next, we derive an explicit expression for the ML estimate of
the part of « corresponding to C. To this end, we note the
following result proved in [3]-[5] and [8].

Theorem 1: A large-sample realization of & in (18) (i.e., an
estimate of o having the same asymptotic distribution as &) is
given by the maximizer of the function

fle) =Tr [l A ()W) (19

where
s =AAl 20)
W=EA Ak @

and where E;, A and A are defined as follows. Let {;\k}z=1
and {&;};_, denote the p principal (largest) eigenvalues of R

and their associated orthonormal eigenvectors, respectively.
Then,

s =1[61,-+,8p] - (22)
A=diag (A1,-, Ap) (23)
A=diag (\; — 6 Ap — 62) (24)
with
62 = -—(Trf{—”[‘rfl). 25)
m o
O

A straightforward calculation shows that f(c), which was
defined in the previous theorem, -can be rewritten as

flo) =T { (it ceana) [é])

([1 C*(A*WA) {é ])}
=Tr {[X*(A*A)X] ' [X*(A*WA)X]}

x-[1].

Let {ur}h_; and {vg}i_; denote the p principal eigen-
values and their associated eigenvectors of the matrix
(A*A)"1(A*WA), and define

V(0) = [vr,...,v,] -

(26)

where

@7

(28)

Observe that the function f(a) is invariant to the post-
multiplication of X by any nonsingular matrix. It then follows
from the extended Rayleigh quotient result in [14] or from the
Poincaré separation theorem (see, e.g., [15]) that

P
Flo) <Y me (29)
k=1
where the upper bound is obtained for
XG = V() (30)

and where G is an arbitrary nonsingular matrix. If V(6) is
partitioned as

Ve R;Ezmi—p b
then (30) implies
cle - [ &

from which we immediately obtain the following explicit
expression for the minimizing C matrix:

C(0) = V,(0) VI'(0) . (33)
To arrive at a concentrated form for f(a), observe that
rank[(A*A) " (A*WA)] = rank[A*(0) E,] (34)

where now 6 denotes the indeterminate signal parameter
vector. Let E, denote the limit of E; as N — oo (E, is
defined from the p principal eigenvectors of R, similarly to
E; in (22)). It is well known that the subspace generated by
E; is included in the range of the true array matrix A. This
means that there exists an n X p matrix Q such that
E, = AQ. (35)

From (35), we obtain
(ESA)Q =1

(p x p) (36)



STOICA et al.: MAXIMUM LIKELIHOOD ARRAY PROCESSING FOR STOCHASTIC COHERENT SOURCES ' 99

which implies that

rank(E*A) = 37

Under a weak analyticity condition on the matrix A (#), viewed
as a function of 8, it then follows that

rank [A*(H)Es] =p (38)

for finite but large N values and for almost any @ vector in
a compact set including the true parameters (see, e.g., [12]).
Hence, for sufficiently large N and generically in , we have

rank [(A*A)—l(A*WAj] = (39)

which implies that the function of 8, left after the concentration
of f(a) with respect to C, is given by (cf. (29))

P

D

k=1

Tr[(A*A)TTA*WA]. (40)

In other words, a large-sample realization of the ML estimator
of 8, under the a priori information that rank(P) = p, is
given by

0 = arg min Tx [Hj(o)w]. @1)
This estimate, known as the MODE/WSF estimate, was shown
in [6] and [8] to be a large-sample realization of the stochastic
ML estimator in (8) (see also Theorem 1).

We summarize the previously derived results in the follow-
ing theorem.

Theorem 2: The ML signal parameter estimator (8), which
is derived by ignoring any a priori information about the
matrix P, is a large-sample realization of the ML signal
parameter estimator that does exploit the information that
P is a positive (semi)definite matrix of rank p. A large-
sample realization of (8) can be obtained by minimizing the
MODE/WSF function in (41).

Once @ is estimated, from either (8) or (41), large-sample
solutions to the ML estimation problem for o2 and P, under
the condition that P is positive semidefinite and its rank is p,
are given by (16) and, respectively, (13) and ( 17) where & is
composed from 6 in either (8) or (41) and C( ) in (33). O

As an illustration, we specialize the ML estimator previously
derived to the case of p = 1, which is important for radar
applications and multipath propagation studies. We present a
step-by-step summary of the proposed ML technique for this
case.

Step 1: Compute the principal eigenvector é; of R, and the
large-sample ML estimator of the signal parameters as

_ N PP ~
0 = arg moln [elﬂA(o)el].

Step 2: Evaluate

V172 }TL-'l

— (A*A) 1A%, 2 [Ym]} 1

Then, compute C = Vi,2/¥1,; and

2 11
A= L]
Here, A = A(@), with 8 provided by Step 1.

Step 3: Compute the large-sample ML estimates of the
noise power and signal covariance matrix by using (16) and,
respectively, (13) and (17), where A, is replaced by Ac and
C by € determined in Step 2.

The asymptotic properties of the ML estimates derived
above are examined in the next section.

IV. STATISTICAL ANALYSIS

The results of the previous section show that the estimation
accuracy of the signal parameters (such as the angles-of-
arrival) is not. affected by the choice of parameterization
for the signal covariance matrix P. The accuracy of the
estimates of the emitter signal covariance matrix and the noise
power is however affected when a low-rank parameterization
of P is used. In several applications, estimation of both @
and P is of interest. For instance, this is the case when P
carries information about the target signatures or the specular
multipath parameters. In such a case, it is important to use
the most accurate estimate not only for 8 but also for P,
as given by the ML estimator of Theorem 2 above. In the
following discussion we provide a means of evaluating the
asymptotic covariance matrix of this estimator, and also make
comparisons with the statistical performance corresponding to
the ML estimator which ignores the rank information (11).

Consider the following two parameterizations of the emitter
signal covariance matrix P. The full parameterization of the
Hermitian matrix P formed by stacking the real part of the
entries on and below the diagonal followed by the imaginary
part of the entries below the diagonal. The corresponding 7
parameters are arranged in the vector

m,=[P1 Pa...Pu Pyn... Py, Py ... Py q]” (42)
where (-) denotes the real part, and (- ) denotes the imaginary

part. Introduce the following notation:

Qp vec]?]

TpvecP “3)

1, = vech P = [
where vecP denotes the vector obtained by stacking the
columns of P on top of each other, and where @, is a
(n? + n)/2 x n? matrix selecting only the entries of vecP
corresponding to the elements on and below the diagonal of
P. The other (n2 — n)/2 x n? selection matrix ', selects
the entries of vec P corresponding to the elements below the
diagonal of P.

The alternative parameterization is based on a square root
factorization of the emitter covariance matrix as presented in
the previous section. Let P = LL* in (12) be the Cholesky
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factorization of the emitter covariance matrix; thus, L is a
lower triangular matrix with real elements on the diagonal.
When we have prior knowledge of the rank of P, p, L is
chosen to be n X p, and the corresponding parameter vector
n; has n? — (n — p)? = 2np — p* entries. In a similar fashion
as above, the following notation is introduced:

7, = vechL = [Ql vee f"} 44)

Tyveck
where Qy.is a (2np — p? +p)/2 x (2np — p?) selection matrix
selecting the entries of vec L corresponding to the elements
on and below the diagonal of L, whereas the (2np — p? —

p)/2x (2np — p*) selection matrix T'; selects the entries of
vec L corresponding to the elements below the diagonal of L.
In order to compare the estimation accuracies corresponding
to the two parameterizations introduced above, the Jacobi
matrix relating them must be derived. Let

_ OvechP [QPZz:zEQT GREET] )
dvecP NT 8vecP T
~ DvechL Doty @ Togeetli

When examining the blocks in the matrix above, observe that
P=LLY +LLT
P=LL" -LLY.

(46)
@4

First, consider the (1,1) block of (45). Using (46), we obtain

dvecP _ dvec(LLT + LLT)
dvecL dvecL
dvecL avec(L )
Lol + (I "7 4
= )c‘) ec L +IeL) dvecL “8)

where ® denotes the Kronecker matrix product. Introduce the
permutation matrix ™" such that for any m X n matrix A

vec(AT) = 2™ vec A. (49)
Making use of this notation along with (48) results in
dvecP - _
—=(L®I IoL)Z™. 50
dvecL (Lel)+(IsL) 0
Similarly, for the other blocks in (45), we obtain
dvecP - 8
Y (el + (Ial)=™ G
dvecL
dvecP . -
—— =—(L®l IoL)X™ 52)
Fveck (Lel)+(IsL) (52)
Ovec?  Ler-(Tei)s™. (53)
dvecL
A compact matrix expression for J may thus be written as
Jvech P R T 2 T
= et = Re{Q:(L®D)Q] + Q,(I®L)S" Q[ }
(54
where (-)¢ denotes the complex conjugate and
Qp Ql
— . = . . 55
Qp {_j Fp Ql __jr\l ( )

Since the two estimators described in the previous sec-
tion are asymptotically statistically efficient under appropriate

model assumptions, their asymptotic covariance mairices are
given by the corresponding CRB’s. This fact is used here when
comparing the performances of the estimators. As proved in
Theorem 2, the ML signal parameter estimators obtained in
the two parameterizations under discussion are asymptotically
identical. In other words their associated CRB matrices coin-
cide. In view of this fact, the following discussion focuses on
the CRB matrices corresponding to the P and o parameters.

The ML asymptotic covariance of the estimated signal
covariance matrix parameters is given by the corresponding
CRB and is denoted by CRB,, when the full parameterization
is used (i.e., P is parameterized by vechP) and by CRB; for
the low-rank parameterization (when P is parameterized by
vech L). Note that we have the following relationship:

CRB, = JCRB,J” (56)

where CRB,, denotes the asymptotic CRB on the signal
covariance matrix elements (i.e., vech P), cortesponding to the
low-rank square-root parameterization of P. This allows us to
transform CRB; to a lower bound on the estimation accuracy
of the emitter covariance matrix elements. In what follows we
compare CRB,, with CRB,.
We begin by deriving a closed-form expression for
CRB;. To evaluate CRB; consider the parameter vector
= [07 %7 o?). The elements of the inverse CRB,
that is, the Fisher information matrix, are given by the Bangs’
formula [17] (for N = 1)

R _ _,0R
F=Tr{R1—R7! }
’ { a"h 67]]
= vec R"l/zaRR_*/2 vec R_l/za—RR_*/2
d R\"
:< v\éi: ) (R—c/2®R—1/2)*
R™? R—I/Q)M
n;
8vecR\"™ dvecR
= RT@R™ . (57
( on; >( ) a")j )

Thus, a matrix expression for the information matrix is given

by :
OvecR\™ dvecR
F= R TeoR™ .
on om

The result below provides matrix expressions for the deriva-
tives of vec R with respect to the three components of the
parameter vector n? = [87 nf o?].

Theorem 3: The derivatives of the array output covariance
matrix are given by

(5%

R
8";; = (AP°®I)D + (I® AP)S™"D¢  (59)
dvecR n

s (A°® A)TQ; +3"QL)I (60)

4

OvecR

or = veel (61)

where D = %%?A— and ¥ =1 —‘diag(vec I).
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Proof: See Appendix A. O
The matrix expressions for the blocks of F' are obtained by
using (58) and (59)-(61). Note from (A.2) that an expression
for CRB,, is readily obtained in the same fashion as above but
letting J = I in (60). Note that a similar expression for CRB,,
can be found in [16].
An expression for the inverse of CRB,; is obtained by
applying block matrix inversion formulas:

CRB; ! =F; — Fi4F,;' Fy
_ (‘F’la2 - HOFQ_QIFQGQ)(Eaz - F19F9_91F902)*
Fy2p2 — FpagFog' Foye

(62)

where Fjy;, Fjg, etc., denote the blocks of F.

Observe from (60) and (62) that the bound on the square
root parameters may be related to the bound on the full pa-
rameterization through CRB; ! = JTCRB,'J. This, together
with (56), gives us the relation

CRB, = J(J'CRB,'J)~1J7 . (63)
Note that (63) can also be derived from standard parameter
transformation results in the CRB theory (see, e.g., [15]). We
previously obtained (63) as a byproduct of the calculations in
(56)—(63). The main purpose of the latter calculations has been
to provided an explicit formula for CRB,, (as well as CRBy).

When a full-rank square-root parameterization is used, the
bounds are, of course, identical: CRB, = CRB,. However,
when a low-rank square-root parameterization is applied, we
generally have CRB,, < CRB,, as illustrated in the next section
by means of numerical examples. This is in contrast to the
bound on the signal parameters, which is not affected by the
parameterization of P (as proved in the previous section).

The accuracy with which the noise variance is estimated is
also affected by the choice of ML estimator. The following
result relates the two estimators discussed.

Theorem 4: Let 52(6) be the noise variance estimate ob-
tained when no constraints are imposed on the emitter covari-
ance matrix, (6), and let 62 (&) be the noise variance estimate
obtained when using the square-root parameterization of the
emitter covariance matrix, (16). The asymptotic variances of
these two estimates are given by

2

52(0) :WZ‘—T) (64)
2 ‘ ’
52(&) WZ?E (65)

Proof: The unconstrained ML estimator is considered in
[5], where the result (64) is proved. For the constrained case,
consider the model in (15) and the fact that the corresponding
ML estimation problem can be decoupled as described in
(16)—(18). Noting that the rank of A, is p and applying the
result in [5] leads directly to (65). |

STD 10 T T *1
ML e

ML COHERENT - - -
SENSOR ELEMENTS: 4
107} SNR: -20dB E

50 100 150
ANGLE SEPARATION

Fig. 1. Bounds on the standard deviation of the signal power estimate versus
angle separation.

The ratio of the variances in (64) and, respectively, (65)
may be as high as two if p < n and m has its lowest value
allowed by the parameter identifiability requirements.

V. NUMERICAL EXAMPLES

In order to illustrate the potential gain in estimation accuracy
of the proposed coherent ML estimator we present some cases
where the asymptotic covariance is numerically evaluated. In
the examples below, the CRB for the emitter signal covariance
matrix, P, is computed for the two parameterizations under
consideration. We will focus on the power estimate of one of
the signals. In all cases, the power of this signal of interest
is set to one. The bounds are displayed for one snapshot and
must be normalized when more snapshots are available.

In the following, a uniform linear array with half wave
length spacing is used. The array response vectors have norm
vm and the response of the first element is set to 1. All
signals arriving at the array are coherent (p = 1), and they are
related by the vector L. In most cases, two incident signals
are considered—one signal of interest and one multipath—in
which case, L = [l pe?®]T. Unless otherwise stated, p = 1
and ¢ = 0.

In Fig. 1, the directions of the signals are symmetric about
the array broadside. The standard deviation of the estimated
power of one of the signals is displayed versus the angle
separation in degrees. Four sensors are used (3 dB beamwidth
at array broadside is ~25°) and the signal to noise ratio
(SNR) is —20 dB at one sensor. We observe that the relative
difference between the estimators is greatest when the array
response vectors are well separated. When the angle separation
approaches 180°, note that the array response vectors approach
each other for this array configuration.

In the following four cases (Figs. 2-5), we choose a scenario
in which the incident signal paths are well separated (+20°);
for m > 4, this is more than a beamwidth separation. Unless
otherwise stated, the number of sensor elements is four and
the SNR is —20 dB. In turn, the dependence of the bounds
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Fig. 2. Bounds on the standard deviation of the signal power estimate versus
SNR.
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Fig. 3. Bounds on the standard deviation of the signal power estimate versus
number of sensors.

on SNR, number of sensors, relative phase of the signals, and
signal to interference ratio is investigated.

Fig. 2 illustrates the standard deviation as a function of
SNR. Note that the bounds deviate from each other only in
cases with low SNR.

The standard deviation of the power estimate as a function
of the number of sensor elements is displayed in Fig. 3.
Observe that the bounds approach each other as the number
of sensor elements increases (note of course that an increase
of m yields a decrease in the array beamwidth).

In Fig. 4, we show the dependence of the bounds on the
relative phase of the two signal paths, ¢. The two bounds
are displayed for three different array sizes, m = 4, m = §,
and m = 12. The difference between the bounds is generally
modest. It is only in cases with small array aperture that the
relative phase significantly affects the accuracy.

In the next case, the power, p?, of the “interfering” multipath
is allowed to vary. The bounds in Fig. 5 are computed as a
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Fig. 5. Bounds on the standard deviation of the signal power estimate versus
signal to interference ratio (SIR).

function of the relative power between the signal of interest
and the interferer. Note that the relative difference between the
bounds significantly decreases when the interference power
decreases.

In the following case, we study the effect of an increased
number of multipaths. The array is composed of eight sensors
(~15° 3 dB beamwidth) and the SNR relative to the first path
is —20 dB. In one case, two incident signals are arriving from
4:20°; these results are indicated with n = 2 in Fig. 6. In the
other case, the number of multipaths is increased to four. Their
incident angles are —20°, 20°, —60°, and 60°. These results
are indicated with n = 4 in Fig. 6.

The signal of interest (with power one and relative phase
zero) arrives from —20°. The relative phases of all the
multipaths are uncorrelated and random. In the second case,
the powers are also random (but with a fixed total SIR). The
bounds change slightly depending on the realizations of the
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Fig. 6. Bounds on the standard deviation of the signal power estimate versus

the relative power between the signal of interest and the power of all the
other paths.

mulitpath phases and powers, thus the results are averaged
over 50 independent realizations.

The bounds decrease for the case of two paths as expected.
Note however that the relative difference between the bounds
is quite small when comparing the two cases, n = 2 and
n = 4. This is despite the fact that the relative difference
in the number of unknown parameters is large for the two
cases,ie, n =2giving2+1+3=6and2+1+4 =7
unknowns respectively for the two estimators and n = 4 giving
44147=12and 44 1 + 16 = 21 unknowns, respectively,
for the two estimators.

Remarks: Based on the numerical examples presented and
several other cases not presented herein, we attempt to draw
some conclusions. ‘

1) In the examples, the bound on the estimation accuracy of
one of the elements of P is studied. It is our experience
that the behavior of the bounds for the other elements
of P is much the same.

2) One may expect that the relative difference between
the bounds is greatest when » is much larger than p.
However, the difference (n — p) seems to have little
impact on the relative difference of the bounds. Rather,
the relative difference depends greatly on the number of
sensors (i.e., beamwidth) and the signal to interference
and noise ratio (SINR). The relative difference increases
with decreasing aperture and decreasing SINR. Thus, the
power of the multipaths is more critical than the number
of multipaths (the identifiability condition must of course
be satisfied).

3) The bounds are very similar when the angle separation
(in beamwidths) of the signal paths is small. The bounds
also approach each other as the SNR (and the SIR)
increases.

4) One should note that the examples are chosen to illus-
trate cases where the difference is relatively large in
the bounds. In most cases, the bounds do not differ
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significantly and we expect the two estimators to provide
comparable estimation accuracy. In spite of this fact, we
still recommend use of the constrained ML estimator of
P derived in this paper, for reasons detailed in the next
section.

VI. CONCLUSIONS

The maximum likelihood estimator is formulated for the
case of stochastic coherent signals impinging on an antenna
array. This assumes that prior knowledge of the rank of the
emitter signal covariance matrix is obtained, for example,
by some detection procedure. It is shown that the ordinary
ML signal parameter estimator, which does not use a priori
knowledge about the rank of the emitter covariance matrix;
is a large-sample realization of the ML signal parameter
estimator exploiting the fact that P is a positive (semi)definite
matrix of rank p. The implication of this result, and the
main contribution of this paper, is that the knowledge of the
rank of the signal covariance matrix does not have to be
incorporated in the ML estimation procedure of the signal
parameters for large samples. Rather, the signal parameters
may be estimated by solving the much simpler unconstrained
problem.

Once the signal parameters are estimated, large-sample
closed-form solutions to the ML estimation problem for o2
and P, under the condition that P is positive semidefinite
and its rank is p, are given. The asymptotic properties of these
constrained ML estimates are examined. Although the variance
of these parameters is lower than that of the correspond-
ing unconstrained ML estimates, the difference is in general
small. However, we recommend the use of the former since
computing the two aforementioned estimates involve very
similar computational burdens, and in some applications, a
small difference between the constrained and unconstrained P
estimates, making the latter indefinite, may lead to a significant
deterioration of the signal waveform estimates.

APPENDIX
DERIVATIVES OF THE ARRAY OUTPUT COVARIANCE MATRIX

The three different components of the parameter vector will
be considered one at a time. First, consider

OvecR  Ovec(APA*) dvecP
= =(A°® A (A.1)
om on, ( ) om
dvecP
= (A° —J. A2
(A ®A)(3?vechPJ (A2)
Note that
dvecP
dvechP
dvecP  dvecP\ . [OvecP  dvecP\
— — — ~ ~ ].-‘
[(8vecP +JavecP>Q” (8vecP HavecP) ”]
dvecP . dvecP .
= _ — A3
dvecP 7P ]3vecP P (A-3)
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The derivatives of P and P are given by

dvec P = (1437 - dis(ve 0)QT = (@ +3™)QL
dvecP P
(A.4)
3VeCP p = (I - X" — diag(vec I))I‘g = (¥ - E"")Tg
8 vec P
(A.5)
which yields
dvecP % nn T
= 7Ql+ 3 Qp . (A.6)
Next, consider
dvecR 0A oA”
g * AP—
60k = vec (80k PA ) + vec ( ET )
A*
— (AP D) avec (1o AP) R
a0y,
AC
(AP e I)8vecA +g AP)E’”“M%“
k
(A7)

The matrix expression corresponding to (A.7) may be written
as

dvecR
ol

where the mn x n matrix D contains the derivatives of the

= (AP°QI)D + (I® AP)S™"D° (A.8)

array steering vectors D = a‘SCA.
Finally, note that
dvecR  Oveco’l
= g = vecl (A9)
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