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Radar target identification is performed using time-domain
bispectral features. The classification performance is compared
with the performance of other classifiers that use either the
of the unknown
target. The classification algorithms developed here are based on

impulse response or freq domain r

L

the spectral or the bispectral energy of the received backscatter
signal. Classification results are obtained using simulated radar
returns derived from measured scattering data from real radar
targets. The performance of classifiers in the presence of additive
Gaussian (colored or white), exponential noise, and Weibull noise
are considered, along with cases where the azimuth position of the
target is unknown. Finally, the effect on classification performance

from extr point scatterers is investigated.
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. INTRODUCTION

Considered here is the formulation and
performance of features extracted from the bispectrum
of radar signals for classification of unknown radar
targets. The performance of the bispectrum features
is compared with that of classifiers that arc not based
on bispectral processing of the measured radar data.
The radar signals used in this study are compact
range measurements of scale model aircraft. Several
observation scenarios are simulated by altering
the measured data in accordance with the type of
disturbances that are likely to occur in a real radar
system.

There are two reasons for considering bispectral
features for the classification of radar targets. First,
the bispectrum suppresses additive disturbances
that are described by symmetric probability density
functions. Second, bispectral processing can exploit
the inter-relations that may be present in the data
[1]. In particular, the bispectrum of a set of data
recovers implicit relationships between the spectral
components that cannot be recovered using spectral
analysis. Specifically, the bispectrum can be used to
detect mulitiple interactions between scatterers [1-5].

The classifiers used in this study are nonparametric
in the sense that no prior information about the
underlying distribution of radar measurements and
the probability of occurrence of each target is needed.
These classifiers either measure the “distance”
between the signal of the unknown target and that of
the catalog or compare the energy of the unknown
signal with that of the catalog. Even though these
classifiers are suboptimal, their performance provides
significant information about the quality of the features
used and the robustness of these features under
different data conditions. The conditions investigated
in this study include classification of noisy signals
where the additive noise is modeled as Gaussian,
exponential, or Weibull, and include classification
of signals corrupted with scattering from extraneous
scatterers.

The bispectrum of radar signals is considered in
Section II, where an interpretation of the bispectral
features is presented. Section III is concerned with the
type of classifiers used in this study. The performance
evaluations of these classifiers using real radar data is
presented in Section I'V. Finally, Section V addresses
the problem of identifying radar targets in the presence
of extraneous scatterers.

II. TIME-DOMAIN BISPECTRAL FEATURES

The bispectrum is defined as the Fourier transform
of the third-order cumulant of the data [1-5].
Cumulants represent the triple correlation of the data
sequence and are usually a function of time, so that the
bispectrum is a function of frequency. In radar signal
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processing, however, the data are often observed as a
function of frequency. The third-order cumulant is then
defined as

R(fif)=E{H (NH( +H(+)} @)

where {H(f)} is the complex-valued coherent
backscatter response of the radar target at frequency
f,and E{ } denotes the expectation. The bispectrum is
obtained, as a function of time, as

B(t,n) =) Y R(fi.pyexp{—jnfi + uf2)}.
hon @)

The term “bispectrum” is somewhat misleading in this
application, as it is a function of time, not frequency.
However, we use this term because it has become
standard terminology [6-9]. The bispectrum, in our
case, can be expressed as a function of range (r1,72)
using the radar range relationship ¢ = 2r/c, where

¢ denotes the speed of light. If the data H(f) is
deterministic then the expectation in the third-order
cumulant is replaced by a summation.

The bispectrum can be explicitly defined in terms
of the time components of the data, thus providing
some intuition to bispectral processing. For the radar
signal processing problem, the spectral components
simply denote the impulse response of the target as
seen by the radar, and the bispectrum is defined as

B(n,12) = (h(t)h(r2)h{t1 + 12)) €)

where (-) denote the ensemble average.

The above definition of the bispectrum has been
used to detect implicit dependencies between different
responses in the target impulse response [1]. These
dependencies can be related to multiple interactions
between scattering subcomponents along the target.
Therefore, a peak in the bispectrum at (z;,¢;) indicates
that implicit coupling is detected between the time
response at ¢; and the time response at time 7; (see
[1] for additional details).

We are concerned here with the classification
aspect of bispectral features of radar targets as
defined above. Note that neither the spectrum nor the
impulse response can recover the information made
available through bispectral processing. Therefore,
the key to a radar target recognition system based
on time-domain scattering features is to use both the
impulse response and the bispectrum features in a
single pattern recognition machine. The focus here,
however, is on the feasibility of classification using
bispectral features as compared with using other target
features.

Il TYPES OF CLASSIFIERS USED

Assume we have stepped-frequency measurements
of a set of M radar targets. Each frequency set is
denoted H;(f), and is collected at stepped frequencies

f :fO,f0+Af,'-~,fO+(K—1)Af- These M sets of K data
points form the catalog measurements. An unknown
target measurement is obtained by computing a catalog
vector with extraneous scattering terms

Hu(fi) = Hi(f) +n(fi)  0<k<K-1 (4

for some i € {1,...,M}, where n(f;) represents the
complex additive noise term. From H;(f;) at H,(fx)
we can compute the impulse response #;(k) and A, (k)
(where k is the time index) using the discrete Fourier
transform. We can also compute the bispectrum
B;(t1,12) and B, (1,22) using the method described

in [5]. It is these latter terms which are used for
classification.

The classifiers simulated here do not requirc any
prior information about the statistical properties of
the measured data. These classifiers either measure
the Euclidean distance between the unknown and the
catalog or measure the cross correlation between the
two. For computational efficiency, these classificrs
assume that the unknown target zero-time response
is fixed and known with respect to that of the catalog.

This study considers three classifiers as described
below. The classifiers used can be summarized as
follows.

A. Classification Using Cross Correlation

The goal of this algorithm is to identify that catalog
element (i) whose bispectral response B;(t;,f;) most
closely matches the bispectral response derived from
the backscatter measurements of an unknown target
B,(t1,t2). That is one wishes to minimize

miin{ /! [ [(B,-(tl,tz) — B,(t1,12))%dty dtz}

=mlin{//Biz(tl,tz)dtldtz+//Bg(ll,t2)dtld[2

—/ Bi(t1,12) Bu(t1,t2) dty dtg}. S)]
Since the first two terms in (5) are fixed, this entails
maximizing
/ / B,‘(ﬁ,tz)Bu(l‘l,[z)dll d[z (6)
nJn

and since the target zero-phase reference is assumed to
be known, this is equivalent to maximizing
T (0,0)

f{l f;Z Bi(t1,0)Bu (11, ) dt:1d 1,

/2 1/2
[frl frz [ B (1, £2)2 dtldtz] [fh I,Z |Bi(t1, )| dndt,
™)

where I;,(0,0), for i = 1,2,...,M is the normalized
cross correlation of the catalog target bispectral
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responsc and the test target response u. Using Fourier
transform identities and Parseval’s Theorem, we find
that this cross correlation can be written (for the
discrete frequency case)

12FFT{Ri(f1, f2)Ri (f1, f2)}
172
{Z;, Zfz |Ri(f1:f2)|2] [zﬁ Zfz |Ru(f1,fz)l2]

I (0,0) =

172"

@
The test target is classified to catalog c if

..(0,0) = max{[,(0,0)} i=1..,M. (9

This classifier is reasonably computationally efficient
and uses all bispectral information available.

B. Nearest Neighbor Rule

This nearest neighbor (NN) classifier is used to
identify an unknown target based on the backscatter
data without employing any signal processing.

Given that the measured backscatter is H, =
[H.(fo),---» Hi(fx-1)] (where K is the number of
frequencies used) then choose target (f) such that

(H. - H)'(H, - H)) = min{(H. — H)"(H, - H))}

j=1...M  (10)

where M is the number of targets.

C. Cross Correlation of Impulse Responses

The cross-correlation classifier identifies an
unknown target based on its time-domain response
h,(k) where k is a time index. A target (i) is chosen
such that

o S hu(l)h(6) }
v [ Voo P s, T (BT
j=1,..,M. (1)

This is equivalent to maximizing the cross correlation
between the unknown target impulse response and the
catalog impulse response.

IV. CLASSIFICATION PERFORMANCE OF NOISY
RADAR SIGNALS

A comparison between the performance of the
cross-correlation classifier using the bispectrum and
the performance of other optimal and suboptimal
classifiers is given below. The comparison includes
classification in additive white Gaussian noise, additive
colored Gaussian noise, and additive non-Gaussian
noise. Classification with azimuth ambiguity is also
investigated. Also a test where the azimuth of the
catalog target differs from the azimuth of the unknown
by 10° is presented.
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The probabilities of target misclassification at
different signal-to-noise ratios are estimated using
Monte-Carlo simulations. It is assumed that the targets
have equal a priori probabilities of occurrence. Thus,
N test samples are drawn randomly and then used
to determine whether the classifier gives the correct
decisions for these samples or not.

The data base used in the classification examples
has been frequently used in radar target identification
studies [10]. The data base consists of experimental
measurements in the frequency band from 1-12 GHz
of scale models of commercial aircraft. The scaled
data corresponds to measurements of the radar
cross section (RCS) of full scale aircraft in the
HF/VHF frequency band (8-58 MHz). Details of these
measurements can be found in [10].

Decision statistics for each target are computed at
a fixed noise level, and total statistics of classification
error for all targets are obtained. One hundred
experiments were performed for each test target (for a
total of 500 experiments). For this experiment, a 95%
confidence interval for a misclassification probability
of 30% is 4%. The entire test is repeated at different
noise levels. Finally the misclassification (error)
percentage is plotted versus the signal-to-noise ratio.
The performance of the cross-correlation classifier
using bispectral features is dependent on the bispectral
estimation procedure (or the estimation of triple
correlation, see [5].

The amount of segmentation used in computing
the triple correlation has a significant effect on the
performance of the classifier. The triple correlation
lag used and the number of data points also
influence the performance of the classifier. Finally,
removing the average from both the unknown and
the catalog improves the classifier performance. It
was experimentally found that segmenting the data
into 5 records of 21 samples each with a correlation
lag 10 (see [5]) gave nearly the best classification
performance over the cases considered, so these values
were used in the examples shown below.

Fig. 1 shows the classification performance for five
commercial aircraft with complete azimith information
using additive white Gaussian noise. The catalog
consists of scattering data for five commercial aircraft
at 0°, 10°, and 20° azimuth, and 0° elevation. The
performance of the NN algorithm is optimal for this
case. The bispectrum classifier is outperformed by
the impulse response classifier, by a small margin.
This performance figure shows that bispectral features
can be used in radar target identification but not as
effectively as using the target frequency response.
Increasing the number of data samples and employing
an optimized classification scheme may improve the
performance of the bispectrum classifier and reduces
its sensitivity to the triple correlation estimation
procedure.
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Fig. 1. Classification performance of five commercial aircraft with
known azimuth and additive white Gaussian noise.
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Fig. 2. Classification performance of five commercial aircraft with

known azimuth and additive colored Gaussian noise generated by
AR filter.

Figs. 2 and 3 show the classification performance
when additive colored noise generated by passing white
Gaussian noise through an autoregressive (AR) or
moving average (MA) filter, respectively. The AR filter
coefficients {ai}}io are [0.5,0.6,0.7,0.8,0.7,0.6,0.5,0,0,
0.5,0.6,0.7,0.8,0.7,0.6,0.5] (see [9] for the
autocorrelation of the noise generated using this filter),
and the MA filter has coefficients [1,0.8]. The target
azimuth is assumed to be completely known.

The NN rule (which is suboptimal in this case)
applied to the frequency-domain data outperforms
the time-domain classifiers. Also, the performance
of the bispectrum classifier is comparable with the
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Fig. 3. Classification performance of five commercial aircraft with

known azimuth and additive colored Gaussian noise generated by
MA filter.

performance of the impulse response classifier. The
degradation of the time-domain classifiers compared
with the NN rule is slightly lower than the additive
white noise case, which may suggest a comparable
performance of all classifiers under other colored noise
conditions.

Fig. 4 shows the classification performance when
additive non-Gaussian noise is used (the square root
of a Weibull distributed random variable added to
both the in-phase and quadrature components of
the data). The azimuth is assumed to be completely
known. The performance of the bispectrum classifier
is improved but still outperformed by other classifiers,
which may indicate a significant role for the bispectrum
in classification of unknown targets in a non-Gaussian
noise environment.

Figs. 5 and 6 show the classification performance
when the azimuth is only known to within +10°
(Fig. 5) and +20° (Fig. 6). Although the NN rulc is not
optimal in this case, it outperforms the time-domain
classifiers. Further, the performance of the bispectrum
classifier degrades compared with the impulse
response classifier when the azimuth ambiguity range
increases. In fact, if the target is assumed to be known
within +30° (not shown in the Figures) then the
performance of the bispectrum classifier degrades
significantly compared with the impulse response
classifier.

These figures show that the bispectrum is sensitive
to changes in target azimuth position. This sensitivity
may be explained by the fact that changing the azimuth
may introduce additional multiple interactions and
delete others. Although these interactions do appear
in the impulse response, they appear more strongly in
the bispectrum [1].
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Fig. 5. Classification performance of five commercial aircraft with

known azimuth within £10° and additive white Gaussian noise.

Fig. 7 shows the classification performance when
the classifier is misinformed about the target azimuth
position with an error of £10°. That is, a target at
azimuth A4° is cross correlated with the catalog targets
at azimuth 4° 4 10°. This type of mismatch in design
specifications affects the classification performance of
all classifiers including the bispectrum classifier.

It is clear from Fig. 7 that time-domain
classification techniques outperform the NN classifier
in this case. Although the bispectrum classifier is
sensitive to changes in target azimuth, Fig. 7 shows
that the bispectrum classifier is slightly less affected by
inaccurate a priori azimuth information than is the NN
classifier.
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Fig. 6. Classification performance of five commercial aircraft with
known azimuth within £20° and additive white Gaussian noise.
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when inaccurate azimuth information (within £10°) is given to
classifier with additive white Gaussian noise.

V. CLASSIFICATION OF RESPONSES CONTAINING
EXTRANEOUS SCATTERERS

In this section, we discuss the effect of adding
extraneous scatterers to the unknown target frequency
response (scatterers not included in the catalog) on
the performance of the classifiers under investigation.
This type of classification problem may occur when
clutter (in the form of point scatterers with or without
interactions) is detected, or when the catalog target
model is inaccurate or incomplete. The effect of this
type of disturbance is simulated as additive point
scatterers with variable scattering magnitude and
located at different positions with respect to the target.
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TABLE 1
Classification Error Rate When Single Extraneous Point Target is
Placed at —2 ns (Within Nose Area)

TABLE IV
Classification Error Rate When Two Extraneous Point Targets are
Placed at —2 ns and 0 ns, Respectively

SER (dB] | Frequency Response | Impulse Response | Bispectrum SER [dB] | Frequency Response | Impulse Response | Bispectrum
1 0 0 0 -2 0 0 0
-4 20 0 20 -8 0 20 20
-9 40 20 40 -12 40 40 40
-12 40 20 40 -14 40 60 40
-15 60 40 40 -16 60 40 60

TABLE 11
Classification Error Rate When Single Extraneous Point Target is
Placed at 0 ns (Within Wing Area)

TABLE V
Classification Error Rate When Two Extraneous Point Targets are
Placed at —2 ns and 1.2 ns, Respectively

SER [dB] | Frequency Respounse | Impulse Response | Bispectrum SER [dB] | Frequency Response | Impulse Response | Bispectrum
1 0 0 0 -2 0 Q 0
-4 0 0 0 -8 40 20 20
-9 0 20 20 -12 60 20 20
-12 20 60 20 -14 80 40 40
-15 40 60 40 -16 80 40 40
TABLE III

Classification Error Rate When Single Extraneous Point Target is
Placed at 1.2 ns (Within Tail Area)

TABLE VI
Classification Error Rate When Two Extraneous Point Targets are
Placed at 0 ns and 1.2 ns, Respectively

SER [dB] | Frequency Response | Impulse Response | Bispectrum
1 0 0 0
-4 0 0 0
-9 40 40 0
-12 40 40 0
-15 60 40 20

The ratio of scattering from the target plus extraneous
scatterers to scattering from the extraneous scatterers
only is denoted by the SER (signal-to-extraneous signal
ratio).

Tables I-X show classification results obtained for
different scenarios of extraneous scatterers added at
different positions with respect to the target. The error
rates shown in these tables represent the percentage
of misclassification when scattering from extraneous
point scatterers (these scatterers are described in the
captions) is added to the frequency response of all five
targets.

Scattering from the unknown targets is assumed
noise-free because the purpose of these experiments is
to test the performance of the bispectrum classifier
when backscattered signals include uncataloged
responses. Therefore, five experiments are conducted
for each position of the extrancous scatterer, thus the
error is a multiple of 20%. The extraneous scatterers
used to generate the results in Tables VII and IX
include an interaction whose response appears at
—0.8 ns, and those used to generate the results in
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SER [dB] | Frequency Response | Impulse Response | Bispectrum
-2 0 0 0
-8 0 20 20
-12 40 60 40
-14 40 80 40
-16 40 80 40

TABLE VII
Classification Error Rate When Three Extraneous Point Targets
are Placed at —2 ns, 0 ns, and 1.2 ns, Respectively

SER [dB] | Frequency Response | Impulse Response | Bispectrum
-4 0 0 0
-10 60 20 20
-13 60 20 20
-16 80 10 60
-18 80 60 60

Tables VIII and X include an interaction whose
response appears at 0 ns.

The following can be concluded from these
experimental outcomes.

1) Classification with NN rule is the most
sensitive to the presence of extraneous uncataloged
scatterers. Changing the location of the scatterers
does not increase or decrease the sensitivity of the NN
algorithm.
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TABLE VIII
Classification Error Rate When Three Extraneous Point Targets
are Placed at —3 ns, 2 ns, and 3 ns, Respectively

SER [dB] | Frequency Response | Impulse Response | Bispectrum
-4 0 ¢ 0
-10 20 20 20
-13 20 40 20
-16 40 60 40
-18 60 60 40

TABLE IX
Classification Error Rate When Three Extraneous Point Targets
are Placed at —2 ns, 0 ns, and 1.2 ns, Respectively, With Partial
Azimuth Information (Within 20°)

SER (dB] | Frequency Response | Impulse Response | Bispectrum
-4 0 0 0
-10 20 30 20
-13 40 60 40
-16 60 60 60
-18 60 60 80

TABLE X
Classification Error Rate When Three Extraneous Point Targets
are Placed at —3 ns, 2 ns, and 3 ns, Respectively, With Partial
Azimuth Information (Within 20°)

SER [dB] | Frequency Response | Impulse Response | Bispectrum
-4 0 10 0
-10 40 20 4]
-13 60 30 20
-16 60 40 40
-18 60 40 40

2) Classification with impulse response is less
sensitive to extraneous scatterers than the NN classifier
but unaffected by changing the position of extraneous
scatterers.

3) Classification with the bispectrum is less
sensitive to the presence of extraneous scatterers than
the NN classifier. The bispectrum classifier is even less
sensitive to uncataloged scatterers if the responses
from such extraneous scatterers do not coincide with
the response of the unknown target. This makes sense
as the presence of extrancous scatterers produces
additional peaks in the impulse response, but it takes
three extraneous scatterers with interaction to produce
a peak in the bispectral response of the unknown
target.

The bispectrum classifier outperforms other
methods when the number of extraneous scatterers
is in the order of the number of scattering centers
along the target (up to 5 extraneous scatterers for the
target models used in this study). In general target

JOUNY ET AL.. RADAR TARGET IDENTIFICATION USING THE BISPECTRUM: A COMPARATIVE STUDY

—m o= — — = — ——  Nearest Neighbor

- D - D —  Impulse Response (crosscorr.)
- - X U, >< —  Birange Profile (cross-corr.)
-2l -8, ~15. -2, -9, ~6. -3,
= SO0 0= - 0= 00 N
Sl -»g
T
g TR 3
21 t3
. *+
. g
- .\.
3@‘ X 3
51 =
22,
ne-g‘ e
g b
N T

e B % % W
Signal-To—Extroneous Scatterers [dB]

Fig. 8. Comparison between classification using measured data
(using NN), impulse response, bispectral response as SER changes
with complete azimuth information (three extraneous scatterers
used).

classification degrades as the number of extraneous
scatterers increases. When the number of extraneous
objects exceeds the number of target scattering
components then the bispectrum-based classifier is
outperformed by the impulse response classifier.

Figs. 8 and 9 show a comparison between
classification results (plotted as probability of
misclassification versus SER). It is clear from these
figures that classification using the bispectrum
features outperforms classification using the RCS
measurements (using NN) even when the azimuth
of the unknown target is partially known (or known
within a certain azimuth range).

The extraneous signatures used in these figures
are three point scatterers where the location of
the response due to each scatterer is random and
uniformly distributed over [-T/2,T /2], where T =
1/Af, (where Af is the frequency increment of the
measured data). The locations of the responses of
the extraneous scatterers are independent identically
distributed. Two hundred experiments for each of the
five targets are simulated for each SER ratio.

Fig. 10 shows classification results obtaincd when
the frequency response of nine extraneous scatterers is
added to the frequency responses of the five aircraft.
The location of the response due to each scatterer is
random and uniformly distributed over [-T'/2,T/2}.
Figs. 8 and 10 show that classification using the
impulse response outperforms classification using
the bispectrum by about 3 dB when the number of
extraneous scatterers is increased from three to nine.

This result can be explained as follows. By adding
the responses of nine extraneous scatterers to the
data, the likelihood of having a bispectral peak due
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VI. CONCLUSIONS

Target classification using bispectral features is
performed and compared with classification using
spectral responses and time-domain responses. The
results in this paper show that bispectral processing of
radar signatures may enhance the target identification
process under conditions such as additive colored
noise, additive non-Gaussian noise and scattering from
extraneous scatterers. Even though the classifiers used
in this study are suboptimal, it is evident that bispectral
features of unknown radar targets may be less sensitive
to scattering from extrancous scatterers, so long as
the number of extraneous scatterers is small relative
to the number of target scatterers. The presence of
large number of extrancous scatterers degrades the
performance of the bispectrum classifier in comparison
with the performance of the impulse response
classifier. Furthermore, it appears that classification
using bispectral features is outperformed by other
known classifiers when the radar measurement
environment is characterized by additive Gaussian
noise. The results of this investigation are intended
to help identify circumstances under which bispectral
processing of radar signals may enhance target
recognition.
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