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Bispectra of modulated stationary signals

LI Jouny and R.L. Moses

Indexing terms: Random processes, Spectral analysis, Statistics for
communications

Complex modulation affects the bispectral signatures of a random
process and complicates the interpretation of the bispectrum. The
impact of complex modulation on bispectral signature analysis
and on the detection performance of multitone signals is
examined.

Introduction: Bispectral analysis has recently been a topic of exten-
sive research. The applications of the bispectrum include detection
of quadratic phase coupling, signal reconstruction, ARMA model-
ling of non-Gaussian signals, detection of signals in noise, and
tests for deviation from normality and nonlinearity [1, 3, 4]. These
applications are based on the assumption that the signal under
consideration is third order stationary and cycloergodic.

The bispectrum provides valuable information about coupling
between the spectral components of third order stationary random
processes. This feature has been used in radar signature analysis
[5, 6} for identifying scattering mechanisms, and target identifica-
tion. However, radar signals are susceptible to modulation, a fea-
ture that has complicated the interpretation of the bispectral
signatures of radar targets and affected the process of target iden-
tification [5, 6]. The purpose of this Letter is to alert the readers
who are employing bispectral analysis in practical applications to
the effects of complex modulation on the identification of phase
coupling and the detection of multitone signals.

Detection of phase coupling: The third order cumulant of a time
series {x(k)} is defined as [1, 2]

R*(k;m,n) = E{z*(k)z(k +m)z(k + n)} (1)
A random signal is ‘third-order stationary’ when [1]
R*(k;m,n) = R*(k+jim,n) VY j,m,n

If the signal is third order stationary we drop the first argument of
the third order cumulant as follows:

R*(m,n) = E{z*(k)z(k + m)z(k +n)} (2)

If {x(k)} is third order stationary then its bispectrum is defined as

(1]
B (wy,ws) = Z Z R®(m, n)e~Ilermtuan)  (3)

m=-00nN=—0C
Notice that the third order cumulant preserves phase information.
Therefore, modulating a third order stationary signal {x(k)} by
e*jo% results in a time dependent third order cumulant. Conse-
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quently, whereas the bispectrum of {x(k)} is defined as given in
eqn. 3, the bispectrum of {x(k)et’*"*} may not be defined. Also,
using the same argument, if the bispectrum of a random process
{x(k)} is not defined then due to modulation the bispectrum of
{x(k)eti*k} may be well defined.

The effect of complex modulation can be further explained by
considering another definition of the bispectrum. Assuming that
{x(k)} & {X(w)} (where <> denotes a Fourier transform pair) the
bispectrum is defined as [1]

B (w1,w) = B{X(w) X (w2) X" (w1 +w2)}  (4)

This definition of the bispectrum is a consequence of stationarity
and it indicates that a nonzero bispectral response exists at the fre-
quency pair (®,, ®,) if the random frequency responses X(w,),
X(®,), and X*(w, + ©,) are correlated. It is important to note that
the third frequency is the sum of the first two. If a peak is detected
in the bispectrum at (w,, ®,), modulating the signal {x(k)} by
e'#/ook} will in general eliminate the bispectral peak at (®,, ®,). The
reason is that modulating the signal translates the spectral peak at
®, + ®, to W, + ®, + ®, and not to w, + ®, + 2w,. Therefore, the
detection of bicorrelations using the bispectrum is dependent on
whether the signal is modulated, and on the modulating frequency
as well. The above observation suggests that bispectral analysis
may be used to detect bicorrelation between three spectral compo-
nents that are not necessarily harmonically related.

Example: Assume that the time series {x(k)} is defined as
I(k) — Ale—]‘(MkJr‘ﬁl)+A26*J'(/\2k+®2)+A36*j()\3k+¢1+¢2)
(5)
where ¢, ¢, are independent and uniformly distributed over [0,

2m). It can be shown that {x(k)} is wide-sense (second order) sta-
tionary. Also, the third order cumulant of {x(k)} is

R®(k;m,n) = AAz A [E*J((/\J*AZ*M)/C*)\ﬂL*Mm)

4
+ e—j(()\g—-)\l-—Ag)k—/\gm—hn)]
(6)

The bispectrum of {x(k)}, however, is not defined because A, #
A+ A,. Modulating the signal x(k) by e¥**! where Ay = A; — A, —
A, introduces a bispectral response at (A, + Ag, A, + Ag).

In the previous example and throughout this Letter we assume
that the phase angles are coupled such that ¢, + ¢, = ¢;. The case
where N, + M¢, = Po, where M, N, and P are integers is not
addressed in this Letter.

Detection of multitone signals: A detection scheme based on the
bispectrum of multitone signals with random phase and implicit
phase couplings is proposed in [3]. The detector uses the bispec-
trum to extract phase coupling information and thus improve the
detection performance of multitone signals over conventional
energy detectors. The improvement in detection performance,
however, is on the basis that phase coupling occurs at frequencies
,, 0,, and w, where ®, = @, + ®,. A more general multitone sig-
nal detection scheme that recovers phase coupling even when w, #
®, + w, can be devised by modulating the received signal. The
decision criterion for detection of coupled multitone signals,
derived in [3], is
2 2 N NoE
2 0 oks

;RI+N0G> T+ = (7
where G is a function of the amplitudes of the coupled sinusoidal
tones (G = 0 indicates ‘no coupling’ where the detector reduces to
an energy detector), E, represents the energy of the multitone sig-
nal, | denotes the a priori probability of occurrence of the multi-
tone signal, N, is the variance of the additive noise and R, is
dependent on the received signal. Clearly, the detection decision is
directly dependent on the amplitude of the coupled tones G.

To examine the significance of modulation in the detection of
phase coupled multitone signals consider the following example.
Let

2(k) = I wiktdr) 4 o~ilwa2kid) 4 g5 —I ((witw2)itbrtez)

+e—j(w3k+01) +e—](w4k+92) + 10.06~j(u5k+01+62)
(8)

where ¢, ¢,, 0, 8, are independent and uniformly distributed over
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[0, 2x] and s # ®; + ®,. If detection is performed without modu-
lating {x(k)} then the contribution of phase coupling information
(extracted by the bispectrum) is proportional to 0.005/N,, where
Ny2 represents the noise spectral density [3]. Modulating {x(k)}
by eti@s-03-00k) will increase the likelihood of the multitone signal
by a factor proportional to 10.0/N, without affecting its energy.
Fig. 1 shows the probability of detection against the probability of
a false alarm (receiver operating characteristics, ROC) for a bis-
pectral based detector of x(k) and of x(k)e!/(®@s-®-®9%)  Hence, in
this example, modulating the received signal increased its proba-
bility of detection.
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Fig. 1 Probablility of detection against probablility of false alarm
(ROC) for bispectrum based d s of modulated and dulated
signals

Top curve  : modulated

Bottom curve : unmodulated

Conclusion: The detection of coupling between spectral compo-
nents of a random process may be enhanced via complex modula-
tion prior to bispectral analysis. Complex modulation may also
improve the performance of bispectral based multitone detection
systems.
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Burstiness of interrupted Bernoulli process

M.E. Woodward

Indexing terms: Asynchronous transfer mode, Markov processes,
Stochastic processes

The author first rectifies an error that has been propagating
through the literature concerning the squared coefficient of
variation of an interrupted Bernoulli process; secondly, the author
shows that under the practical constraint that the mean length of
the idle period of an interrupted Bernoulli process is finite, the
squared coefficient of variation (and hence the burstiness) has a
finite maximum value. The relationship between the transition
probabilities of the Markov chain to give this maximum is
derived.

Introduction: The interrupted Bernoulli process (IBP) is used
extensively to model the arrival of cells in asynchronous transfer
mode (ATM) systems (see for example [1-3]). Specifically, the IBP
is a doubly stochastic Bernoulli process, governed by a two state,
discrete-time Markov chain, the two states commonly labelled
‘active’ and ‘idle’. The transition probability matrix has the fol-
lowing form:
active  idle

active ( p 1 —p) )
idle 1—-¢q q
When used to model cell arrivals in an ATM system, with the
process in the idle state no cells can arrive. The process either
remains in the idle state with probability g, or switches to the
active state with probability 1-¢ in the next slot. In the active state
a cell can arrive with probability o, or no cell arrives with proba-

bility 1-oc. The process either remains active with probability p, or
switches to idle with probability 1-p in the next slot.

Squared coefficient of variation: [1] is one of the most widely refer-
enced works on the IBP. Here, the generating function of the cell
interarrival time A4(z), has been calculated as follows:
A) = zalp+2(1—p—q)] )
(1-a)p+q—-1)22—lg+pl-a)z+1
The squared coefficient of variation (SCV), denoted by C?, is gen-
erally accepted as a measure of burstiness. This is given in [1] as

1-p)3—-9q) (1-gq)7?
02=1+a<(7—2 +a?——" (3
(2-p-9? 2-p-09? ®
The SCV of a random variable can be calculated from its generat-
ing function by

2 _ A"+ 4'd)
T AP
Here, A’(1) and A’(1) are, respectively, the first and second deriva-
tives of A(z) evaluated at z = 1. Carrying out this calculation using
eqn. 2 for A(z) results in the following:
1_20=pP-a)2-p-9)+(1-9p+4) )
(2-p—09?
This is obviously very different from eqn. 3 which is a quadratic in
o. The latter can be shown to be erroneous using a simple check,
as follows. With p = 1, ¢ = 0, the idle state becomes transient, and
the IBP collapses to a simple Bernoulli process with parameter o.
The cell interarrival time distribution then becomes geometric with
parameter a. It is well known that the SCV of such a distribution
is 1-a (see [4]). Thus, setting p = 1, ¢ = 0 in eqns. 3 and 5, the
right hand side of both should reduce to 1-c. It is easy to verify
that eqn. 5 gives the correct result, but eqn. 3 does not, suggesting
the latter is erroneous.

C 1 4)

c? =

Burstiness of IBP: Using eqn. 5, the following limiting values
result for C:

p—=0 g—0 (oL Py
po1 ¢g—=0 C?o1-a
p—0 ¢g—1 c? 51
p—=1 ¢g—1 C? 5
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