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Abstract—This paper introduces a modified TLS-Proay method .

that incorporates data decimation. The use of data decimation
results in the reduction in the computational complexity be-
cause one high-order estimation is replaced by several low-order
estimations. We present an analysis of pole variance statistics
for this modified TLS-Prony method. This analysis provides a
quantitative comparison of the parameter estimation accuracy
as a function of decimation factors. We show that by using
decimation, one can obtain comparable statistical performance
results at a fraction of the computational cost, when compared
with the conventional TLS-Prony algorithm.

I. INTRODUCTION

popular high-resolution estimation technique is the use

of backward linear prediction coupled with singular
value decomposition (SVD) and total least squares [ 1], which,
here, is called the TLS-Prony technique. This technique has
been shown to provide good parameter estimates of damped
exponential signals in noise for various types of data [1],
[2]. However, for large data lengths, the TLS-Prory method
can be computationally expensive. The reason for this is that
the TLS-Prony method involves computing the singular value
decomposition (SVD) of a data matrix of size (m,n), where
m is related to data length and n to prediction order. For
best accuracy of the parameter estimates, n ~ . Thus, this
data matrix becomes quite large for longer data lengths. To
overcome this problem, it is sometimes possible to decimate
the data before applying the TLS-Prony technique; the result
is often a large reduction in computations. In this paper, we
consider the statistical and computational propert:es of the
TLS-Prony algorithm when used in conjunction with data
decimation.

Data decimation has been considered before in the context
of spectral estimation [3], [4]. This technique entails using
only part of the measured data. Decimation of correlation
sequences was also considered in [5]; this technique effectively
uses all the measured data but is somewhat restrictive in
that it applies only to correlation-based parameter zstimation
techniques. These works do not present a quantitative analysis
of statistical properties of the resulting parameter estimates.
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In this paper, we develop a data decimation technique
based on the TLS-Prony algorithm [1]. We also present a
theoretical statistical analysis of the accuracy of the TLS-Prony
parameter estimates when decimation and any linear FIR filter
are used. Based on this analysis, we present a quantitative
comparison of estimation accuracy for various types of data
decimation schemes. In particular, we compare the decimated
and nondecimated procedures in terms of estimation accuracy.
Our analysis demonstrates that the performance of the deci-
mated TLS-Prony procedure is comparable to the performance
of the nondecimated TLS-Prony procedure for undamped
exponential modes. We also develop a complexity analysis and
show that the decimated algorithm is computationally more
efficient than the nondecimated algorithm. Both the statistical
performance and the decrease in computational complexity are
verified by Monte-Carlo simulations.

In particular, we apply the statistical analysis to consider
two specific cases of interest. First, the signals of interest may
be bandlimited and occupy a relatively small region of the
unambiguous frequency range f € [—1, 1]. In this case, one
is interested in analyzing a subset of the whole frequency
range. For example, this technique was used to investigate
radar signatures of aircraft [2], [6]. We consider whether or
not decimation can improve the performance of estimation in
this case.

A second case of interest is when the signal occupies
most or all of the unambiguous frequency range. In this
case, we filter the data to isolate a number of subbands
and then use a decimation version of TLS-Prony to estimate
the poles in each of the subbands. This idea is similar
in principle to beamspace prefiltering in array processing
[7]1-[11]. By focusing on particular bands one at a time,
estimation techniques can be used with lower model orders
since there are typically fewer modes within each of the bands.
Thus, a single wideband estimation procedure is replaced by
several lower order estimations. This has the advantages of
being much less numerically intensive and of being amenable
to parallel implementation [10].

An outline of this paper is as follows. In Section II, we
develop the modified TLS-Prony procedure. In Section III,
we derive the first-order approximation of the statistics of the
estimated parameters. In Section IV, we develop a procedure
and a complexity analysis for performing full spectrum es-
timation. We also discuss filter design and performance loss
in the estimation. Section V presents some simulation studies
using decimation. Finally, Section VI concludes the paper.
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I1. DECIMATION ESTIMATION PROCEDUR::

A. Data Model

Assume we have N “snapshots” of data vectors y(t), each
of length m:

y(8) = o) y1(t) - ym1(®)]T t=1,2,...,N. (1)

Each data vector is modeled as a noisy exponentia sequence

n
Y(t) =) zmt)p! +eg(t) ¢=0,1,...,m--1. ()
i=1
There are n distinct exponential modes in the data; the n
poles {p;}?_; do not vary from snapshot to snapstot, but the
amplitudes x;(t) may vary. Here, it is assumed that {e, ()}
are uncorrelated zero mean complex white Gaussian noise
sequences with variance ¢. Equation (2) may be compactly
written as

y(t) = Ax(t) + e(t), €

T
where e(t) = [eg(t) e1(t) em-1(t)] ", z(t) =
[zo(t) 1(t) mn-l(t)]T, and A is the m x n Vander-
monde matrix derived from n signal poles

1 1 1
PLo P2t P
A=| 9 B - P @)
P1 - P;n_l !

B. Parameter Estimation

Consider the m x 1 data vector y(t) as given by (1). In
general, we first filter the data set y(t) before decimating to
minimize effects of aliasing (we discuss filtering i1 detail in
Section IV). Here, we consider an /th-order FIR filter of the
form

y'(t) = Ky(t) )
where
ki ki k2 - ko 0 0 .o 07
0 k ko - ki k 0 -~ 0
0o ... 0 ki ki_1 ki k O
0 ... 0 0 &k - ke ki ko. (m—1)xm
6)

and where the sequence {kc}f;o is the FIR filter impulse
response. The resulting filtered sequence is of lenzth m — {
and does not include what would be the first | transient
points. This filter plays the same role as beamformers used for
array processing problems to isolate particular beanwidths of
interest (e.g., see [9], [11]).

From y;(t), we now define a set of decimated secuences as
y;u(t)zy;d-i-u(t) q=0717""m:i_ |~

v=0,1,...,d—1 0
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where m/, = |™7l|. The index “u” gives the start sample
in the decimation; thus, the sequences {y/*(¢)} (for fixed
t) represent a set of interleaved sequences decimated from
4/'(t). These sequences are sometimes referred to as “polyphase
components” (e.g., see [12]). From (2) and (7), we see that
each sequence {y;“(t)} is a noisy exponential sequence of
the form

Yp(t) = ) () (@h)T + el (t) (8)
i=1
where
pi = (pi)*
() = zi(Op{ K (p) ©)

and where K(z) is the FIR filter polynomial given by

K(z)=ko+kiz 4+ koz™ 24 +kz"'. (10

Note that {€}/*(t) } is the corresponding filtered and decimated
noise sequence.

The effects of the FIR filtering in the new model are to
scale the amplitude coefficients and to color the noise. In
general, we will choose K to be a bandpass filter. By careful
choice of the FIR filter, we can significantly reduce the mode
amplitude coefficients outside of some band of interest; in this
case, we can assume the number of the “significant” modes in
the filtered data is n’, which is less than n. In this case, we
have the following model:

Yg(t) = ) (O (p)T + (1)

=1

n

where

n

PR OIALEREL O

t=n'41

eg'(t) = (12)
The noise eg*(t) in (11) contains both the noise e;*(t) and the
n—n' residual mode signals; thus, it is colored Gaussian noise
and has nonzero mean since the n —n’ modes outside the band
of interest are still present even though they are attenuated. The
effect of the nonzero mean is to introduce some bias in the
parameter estimates, as we will see in the following sections.

The extra interleaved data sets can be discarded to reduce
computational burden in parameter estimation, i.e., u in (7)
can take on only the value 0. From a Nyquist theory point
of view, discarding the interleaved data should provide no
loss in performance if an ideal low-pass filter can be imple-
mented. However, for real applications, we will lose some
performance due to the use of nonideal filters. We can keep
all the interleaved data to compensate the nonideal filtering.
Nevertheless, the performance improvement is not significant.
Since our primary concern is computational efficiency, we will
thus focus on keeping only one of the interleaved data sets in
the paper. Note that discarding of all but one data set can be
easily incorporated into the matrix K by keeping only every
dth row.

We now have N decimated multisnapshot sequences. As
a result, the TLS-Prony algorithm can be applied to the data
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in (8) to give estimates {p]} and {:;;-\O(t)}. We thus have
decimated multisnapshot backward linear prediction equations
given by

1

b!

[yzo Y/D] |: (13)

where

B =6 b b 1" (14)
and (15), which appears at the bottom of the page Here, L
is the order of prediction, and b’ is the coefficient vector of
the polynomial B’(z) given by

B'(2) =14+ bz +byz? + - + b 25 (16)
The choice of L affects the accuracy of the coefficients b;, as
we address in later sections.

The TLS-Prony method considers the effect of noise per-
turbation of both Y'° and %’°, and the TLS solution attempts
to minimize the effect of these perturbations on the prediction
coefficient vector b’ (see [1] for details). This is accomplished
by obtaining an SVD of the matrix [y’o : Y’O] and truncating
all but the first n' singular values to arrive at an estimate
[y’o : Y’U] [1]. This TLS procedure ignores some structure
in the noise elements, and this results in suboptimal statis-
tical performance (as compared with the Cramér-F.ao bound
(CRB)). In order to take advantage of the noise structure in the
data matrix, one can use a constrained TLS solution technique
such as the one in [13]. However, the constrained techniques
are computationally intensive. Furthermore, the unconstrained
TLS technique gives nearly optimal statistical performance
with proper selection of algorithm parameters (see Section V)
at substantially reduced computational cost. Since a primary
interest in the paper is computational reduction, we proceed
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Inserting[y"® : Y] in (13) gives the modified linear

prediction equation

YO} ~ —y0 (17)
from which the linear prediction coefficient vector estimate %
is found as

~ e~
b = Y0 y/O (18)
where * denotes the Moore-Penrose pseudoinverse. Finally,
the estimates for the decimated poles are found by

pA; = zeroj(f?\’(z)), i=12,...

,L. (19)

It is not, in general, possible to recover p; from IZ because the
mapping p; — p¢ is not one to one. However, the mapping
can be made one to one by suitably restricting the domain of
pi. For example, if it is known a priori that /p; € (-Z.3),
then p; may be uniquely recovered from pg» by

~\4
)"
In order to meet the domain restriction requirement without a
priori information, one can choose a suitable FIR filter K, as
discussed in Section IV.

Once the poles are found, the corresponding amplitude co-
efficients can be estimated from the decimated pole estimates
and decimated data using (11) and (9). Using the decimated
pole estimates and decimated data is more computationally
efficient since there will be shorter data lengths and fewer pole
estimates. For this case, (11) leads to the following equation
for the amplitude coefficients:

p; = 20)

using the basic TLS procedure. AKX =Y, (21)
[ wll) va(1) Y2a(1) yra(1)
Ya(1) Y24(1) Y3a(1) Yersnya(l)
Yt —41)aD) Y —ra() W g -1ya(1) Ypmt,—a(1)
%0(2) Y4(2) Y2a4(2) Y1.4(2)
y4(2) Y24(2) Y34(2) Yer1)a(2)
[yIO Y'O] - : : : (15)
ym;_(L+1)d(2) yfng—Ld@) y:n;—(L—l)d(Z) y;n;_d(Z)
O 0 ) Vil V)
yal(N) Yaa(N) Yiu(N) YpenaN)
-y;n:i—(L+1)d(N) y;ngde(N) y;n&—(L—l)d(N) y:n;—d(N) J
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where
1 1 1
OO R

A, =| p Ph P
E(m‘;—u E(ni;—l) E;(rn';—:)
=1 2 L

K, = ding ('K (51), 3'K(5), - FL'K(GD))
rz1(1)  74(2) z,(N)

L |E(1) (2 Fa(N)

g B B
ZL(1) 2p(2) Zr(N)

0 =[y01) y°2) ¥y (V)] 22)

The amplitude coefficients can be found from a least squares
solution to (21)

~ P Ry SN P

X=K (A’LA’L) ALY, 23)
where * denotes complex conjugate transpose. We note that
(23) is not used in practice to solve (22) because more
numerically sound procedures (such as QR deccmposition
[14]) can be used; however, this equation is usefal for the
statistical analysis presented below. -

Because only n’ singular values of Y’0 are nonzero, there
are, at most, n’ pole estimates that can correspord to true
data modes. Therefore, only the n’ poles that have the largest
energy are retained [15]. We then reestimate the amplitude
coefficients of these n’ poles by /_eliminating all tut the n'
“high-energy pole” columns of A’y and then recomputing
the least squares solution for X. We note that the second

2295

in the TLS-Prony algorithm. The expression is given in the
following theorem.

Theorem 4.1: Assume we are given FIR filtered data
{y2(t)} as defined in (7) and (11). Let

I e e, —~ T
Pr=[p pp - py]
be the n' highest energy TLS-Prony pole estimates found from

(19) and (23). Then, the first-order approximation (as ¢ — 0)
of the pdf of P’ is given by

(24)

P ~N(P' +P,%) (25)
where the estimate bias and covariance are given by
P =FGs°t P,
%= aF'G's"’*zQ(F'G's'O*)'. 26)

Here, PO is defined in (62), and X0 is a block diagonal
matrix given by

20 = diag(B'KOKO‘B'*, B'K°K® B,

. ,B’KOKO*B’*) Q7

N(m},—L)xN(m!,~L)"
The expressions for K° and B’ are given by

K'=[KM)T KQ+d)T K(1+m' —d)T|"
(28)
where K(a) is the ath row of K, and (29), which appears at

the bottom of the page. We also have

amplitude coefficient estimation can be done by using the QR , i 1 1 1
decomposition from the first amplitude coefficient estimation. F= dmg(ﬁ" T ,>» (30)
By doing so, we save computation in the second amplitude vz "
coefficient estimation. Because the noise eZ*(t) in (11) is not
in general white, an unweighted least solution to (21) may not 1
lead to amplitude coefficient estimates with smallest variance. 2p;
VPR A 5 | B Y
TII. STATISTICAL ANALYSIS Lpi('L—l)
A major contribution of this paper is the derivat.on of the
statistical properties of the TLS-Prony pole estimate:: obtained , 1o L
using decimation. Below, we derive a general expr:ssion for P1 Py P
the first order approximation of the probability d:stribution ¢ = P2 Pz P2 (32)
function (pdf) of the estimates of {p}} under the as:sumptions : : S
that there is a filter as described by (5). This expression applies P P2 plk
to different decimation values; therefore, it can b: used to
determine the relative statistical accuracy for variois choices and S’° defined as the noise-free version of Y’0.
1 b b by 0 0 0
0 1 & b, b, 0 0
B=|: oo SR S 9)
0 0 1 b} b, b, 0
0 0 0 1 blL—2 ’L—l b;: (my—L)x(m})
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Proof: See the Appendix. O
Equation (26) provides the biases and covariances for dec-
imated pole estimates given a particular set of poles and
decimation factor. If the nondecimated pole estimates {p;}
are recovered from the decimated pole estimates | pg} using
(20), the biases and variances for the nondecimated poles
can be derived in terms of the biases and variances for the
decimated poles using a first-order approximation of (20).
Defining p} = p} — p, we have the following derivation:

~ ~d
ol +pi = (P)
= (pi +:)°
= p{ +dp{ " pit

(higher order terms) 33
and note that p; = p¢. Thus
_ 7
Therefore, we have
A . Bias(p))
Bias(p:) £ E[pi] — p:i = F
Var(;) 2 E((i - E[R) (P — E[5i])"]
_ Var(pZ)
= Wl—). 35)

The variances of the nondecimated poles can now be compared
with their respective CRB’s [16], provided that the estimated
bias is negligible. The CRB results in [16] can be directly
compared with the variances of the estimated poles using
the TLS-Prony method to examine its performance in both
nondecimated and decimated circumstances. This comparison
is shown in Section V for a number of examples.

IV. FULL SPECTRUM ESTIMATION
USING FILTERING AND DECIMATION

Using the decimation scheme that has been developed, any
poles or modes not in the band of interest need to be filtered
out so that they are not aliased into the band of interest by the
decimation operation. Even if there are no poles outside the
band of interest, a filter can be still applied to reduce the out-of-
band noise that will be aliased into the band of interest by the
decimation operation. However, the imperfections of an FIR
filter, nonideal stopband rejection, and data length reduction
by transient response effects will cause loss in performance, as
shown in Section V. In general, nonideal stopband rejection
increases bias in the estimation (because the leakage of the
stopband poles, and thus the first term in (12), will be larger),
and data length reduction due to transient effects of the FIR
filter causes a variance increase.

In this section, we develop a procedure to obtain full
spectrum mode estimates by use of bandwidth segmentation.
This is similar to beamspace prefiltering in array processing
[7]1-[11]. We then present a design procedure for the needed
FIR filters. Finally, we present operation counts for both the
decimated and nondecimated estimation procedures.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 9, SEPTEMBER 1994

A. Procedure

To examine the use of filtering and decimation, assume we
are interested in estimating modes in the complete spectrum
(that is, poles that may lie anywhere in the complex plane), and
we wish to use a decimation factor of d. We estimate poles in
each region of Fig. 1(a) using a decimation based TLS-Prony
procedure. First, we modulate the data to center the band of
interest about f = 0 as follows:

Yg(t) — yg(t)e ™72/t

where fo is the modulating frequency for one of the subbands
of interest fo = 0,3,2, ..., 421 We then low-pass filter the
modulated data to isolate the frequency band f € [—2;, 2]
(this region corresponds to A and B in Fig. 1(a) for d = 6).
Finally, we apply the decimated TLS-Prony algorithm of
Section II. The resulting pole estimates pj, as given by (20),
lie in f € [—%, %] as shown in Fig. 1(b). The corresponding
pole estimates in nondecimated frequency space are given by
(20) with modulation as follows:

1
]’)\j = (p?) dejQWfO.
J

A problem that can result from the above procedure is
that poles near the endpoints of the subband region may be
incorrectly estimated near the opposite endpoint. This results
from the discontinuity of the mapping in (37) for ép; = 7.
It can be seen from Fig. 1(b) that small errors in estimates
near A and B result in large differences in Fig. 1(a). To avoid
this problem, we use ¢ > d overlapped estimations, each of
size % (note that this changes the modulating frequencies to be
fo=10,1,2 . e=1) This is shown in Fig. 1(c) for ¢ = 2d.
For each region, we retain only those pole estimates that are in
the half of the overlap region that is closer to the center of the
band of interest. For example, in Fig. 1(c) for the subband [A,
B], we retain poles only in the region [C, D]. This corresponds
to retaining pole estimates whose angles satisfy

17 [_ﬂ, ﬂ]
[ C

(36)

(37

(38)

in the decimated frequency space. In this way, we reduce the
effects of the discontinuity of the mapping in (20) for Lp;
near 7. The overlap method also helps to provide immunity
to effects of a nonideal low-pass filter, as is discussed in the
next subsection.

B. Filter Design and Performance Loss

As discussed before, the use of finite-length FIR filters
results in performance loss. We wish to design a filter such
that this performance loss is minimized. Because the stopband
of the filter is set by the decimation factor d to be [—;, ],
there remain three free design parameters: the order of the
FIR filter (1), the number of overlapped estimations (c), and
the flatness of the passband. Note that the passband is defined
as [—3-, -], which is the region in which we actually retain
the pole estimates.

Each of the parameters has its own effect in the estimation
performance. Larger filter lengths result in a variance increase
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Fig. 1. Spectral effect due to decimating by six.

because of the data length reduction associated with discarding
the transient response of the filter output. Shorter filer lengths
result in increased bias of the pole estimates due o aliasing
of imperfectly attenuated modes in the stopband region. The
number of overlapped estimations primarily inflences the
computational aspect. A larger c results in more conputations;
nevertheless, a larger c allows for a larger filter trans tion band,
thus allowing us to design for a better filter stopband. Note that
we can tolerate some nonflatness since we can compensate for
this effect in the amplitude coefficient estimation. F owever, a
nonflat passband increases the variance of the poles near the
minima of the passband since the filter reduces the power of
these poles more than other poles in the passband.

After filtering and decimating the data, the stop-band signal
poles are aliased into the band of interest. If tie energy
of the filtered stop-band signal modes is small ielative to
the in-band Gaussian noise, the estimation bias raused by
the stop-band signal poles will be negligible in ¢ >mparison
with the estimation variance. This implies that for high SNR
signals, we need more stop-band rejection in orde: to avoid
the bias problem. One should choose a filter length sufficient
to attenuate out-of-band modes to be below the noise floor.

With the above constraints in mind, we design th: filters as
follows. First, based on SNR, we determine the necded stop-

©

05

band rejection to ensure that the leakage of the out-of-band
signal poles is small relative to the in-band noise. Then, we
choose the filter order ! and the number of the overlapped
estimations ¢ to give the desired stop-band rejection with
a small transition band. Note that we want ! and c to be
as small as possible. For instance, in the example given
below, we estimated according to the SNR that a 20 dB stop-
band rejection results in acceptably low bias. We find that
an equiripple FIR filter using ¢ = 2d = 12 and I = 20
gives the approximated stop-band rejection. An equiripple
filter is used since pass-band flatness is less important than
transition bandwidth because we can compensate for pass-band
ripple during the amplitude coefficient estimation. Although
this procedure is somewhat ad hoc, it seems reasonable and
works well in the example below and in other experiments
investigated by the authors. Other filter designs have been
developed (e.g., see [17]-[19]), and the filter design problem
continues to be an active research area.

C. Operation Counts

The main goal of applying the decimation procedure is a
reduction in computations. In this section, we compare the
computations of a full TLS-Prony estimation applied to a
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nondecimated sequence to those of TLS-Prony estimations
applied to a set of band-pass filtered and decimated sequences.
We include the computations associated with overlapping as
well as those associated with the filtering operation for this
comparison.

In the operation counts that follow, we assume that only
one of the interleaved sets of decimated data is used in
the decimation-based TLS-Prony algorithm (as in (13)). In
addition, we assume L = 33 is used for the prediction order
because this prediction order gives near optimal accuracy (see
[15], [20], and Section V). We compute operatior. accounts
for the SVD operation, the QR decomposition, the polynomial
root finding operation, and the filtering operation; these were
found to account for over 90% of the total operations in our
computer simulations.

SVD Operation Counts: For a real matrix that has dimen-
sion R x C', the approximate floating point operation (flop)
count associated with the “economical” SVD computation (in
which only the first C' left singular vectors are computed) is
given by 1cSVP ~ 14RC? 4 8C3 [14). For a complex matrix,
the count is about a factor of 2 larger. In our case, the matrix
[3}7 i’\’] has dimension R x C = (2(';(;1) N) X (Q"I;;l) + l).
Therefore, for the nondecimated case (d = 1 and [ = 0), we
get an SVD flop count of

£SVD  ~ 28<§mN> (1;- + 1)2 + 16(—';1 + 1)3 (39)

and for the decimated case with ¢ overlap regions, we obtain

£SYD

2(m —1) m—1  \?
SV ~c(28( = N>( TRy

w6(m=t 1)
wo( "t 1) )

QR Decomposition Operation Counts: For a real matrix,
the approximate flop count associated with the QR decom-
position is given by fc?® ~ 2RC? — 2C? [14]. For complex
matrices, the count is a factor of 4 larger. In our case, RxC =
(=51) x (=7%). We thus obtain, for the nondecimated and
decimated cases, respectively

(40)

e mdec @ - % 1)
and
QR 8(m —1)>  8(m—1)°
feg,. ~ c( o BRIYE ) (42)
Polynomial Root Finding Operation Counts: For a real

polynomial of order x, the approximate flop count associated
with the root finding operation is given by fc™°* &~ 23 [14].
For complex data, the count is about a factor of 10 larger; in
our case Kk = ("5;’). Therefore, we have

root ~ @ 3

Chondec ~ 81 m (43)

and

13
oot & C(__ZOO(m ) ) (44)

81d3
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Magnitude response of the 20th order FIR filter
100 T T T v T T T

PR

[ ~
101k Stop frequency J
102¢
PR /\
2 F
£ L
@
g 107 ¢
Z E
- F
= L
104 ¢
10-5 E
Cutoff|frequency 3
106 . . .
0 .1 0.2 03 04 0.5 0.6 0.7 0.8 09 1

Normalized frequency

Fig. 2. Frequency response of the 20th-order equiripple FIR filter.

Filtering Operation Counts: For the decimated case, we
must also include the operation count associated with the
filtering operation. From (5) and (6), the approximate flop
count associated with the matrix multiplication induced by
this filter is thus given by

filter . T — l
fChea” = c( Y

I+ 1)) x 6. (45)
The factor of 6 arises because there are six flops (four
multiplies and two adds) per complex multiplication.

V. EXAMPLES AND SIMULATION STUDIES

Examples using the statistical analysis results are presented
here that demonstrate the advantages of using decimation.
Simulations are also presented for full spectrum data sets to
demonstrate the estimation ability of the modified TLS-Prony
method developed in Section IV.

A. Single Undamped Mode

In this example, we assume one snapshot of data of length
m = 140. We assume a single exponential located on the
unit circle and an SNR of 5 dB. We compare estimates of
this exponential using no decimation and using decimation
by d = 6. Using the filter design procedure outlined above,
we obtain an FIR filter whose frequency response is shown
in Fig. 2. Here, we used ¢ = 2d overlapped estimations
and an equiripple FIR filter of order [ = 20. Note that we
could decrease the order of the FIR filter to achieve the same
stopband rejection, but in doing so, we will obtain a less-flat
passband, which results in increased variance. Note also that in
this case, we do not have out-of-band signal poles; therefore,
there will be no bias in the pole estimates (to a first order).

Fig. 3 shows the theoretical variance of the estimated pole
versus prediction order for various decimation factors as
compared with the CRB. From this figure, we can see that
the minimum variance occurs at a lower prediction order for
higher d. The minimum occurs for a prediction order equal
to about one third of the decimated data length (ie,.L =
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normalized pole variance
(=)
T
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Fig. 3. 10log,, (CRB/Var(p)) for various d and prediction orders for a
single undamped mode.

ﬁ:i), which is consistent with results for nondecirated data
[15], [20]. This shows that the best performance for the
decimated cases occurs at lower prediction order; than for
the nondecimated case, thus reducing the computat onal load.

We note, however, that since the data has to e filtered
prior to decimation, the curves for the decimated ca:es peak at
about 1.5 dB lower than for the nondecimated case {or various
decimation factors. The performance loss is due to tl e fact that
the transient response portion of the filter output (20 points for
this case) needs to be discarded. Note that for a ficed-length
FIR filter, this performance degradation becomes sm:ller as the
data length is increased since the percent differenc: between
the original and filtered data lengths decreases.

B. Two Undamped Modes

In a second example, we make the same assumptions above,
except that there are two equal energy exponentials located on
the unit circle one Fourier bin apart (ie., Af = ;- = ﬁ).
The total SNR is assumed to be 8 dB in this case in order to
maintain 5 dB SNR/pole. Fig. 4 shows the theoretic: variance
of the estimates for one of the poles (the variance of the other
pole is similar). We can see that the characteristics are much
the same as in the one pole case, the difference being higher
variances due to the presence of each pole’s neighhor.

C. Monte-Carlo Simulation of an Undamped Ten-M »de Case

We now present a set of simulations for a general ten
undamped mode case. In these simulations, we have N =
1 snapshots and n = 10 poles present in the data. The
amplitude coefficients all have unit magnitude; the phases of
the amplitude coefficients are chosen randomly. W:: consider
two data lengths m = 140 and m = 560 data points. Fig. 5
shows the locations of the ten poles; each is indicited by an
“z.” Five-hundred independent Monte-Carlo simulations are
performed by adding noise to the data such that the total
SNR is 20 dB (10 dB/pole). Estimates for the poles are
obtained using the TLS-Prony algorithm without decimation
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“crs”

normalized pole variance
&

prediction order

Fig. 4. 10log,, (CRB/Var(p;)) for various d and prediction orders for
two undamped modes.
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Fig. 5. True pole locations for an undamped ten-mode case.

(i.e., d = 1) and with decimation using a decimation factor
of d = 6.

For the decimation results, the FIR filter is the same
as the one used in the previous examples, with frequency
response shown in Fig. 2 (thus, ¢ = 12 and [ = 20). The
prediction order is L = ["‘3—;’ ; the numbers of singular
values retained in the simulations are 10 for d = 1 and the
number of poles in each subestimation section for d = 6
({2,3,2,0,1,1,2,2,0,1,3,3} for this case). The prediction
orders used correspond to one third of the effective data lengths
in the two cases as was suggested by Examples 1 and 2.
Prior to the calculation of the amplitude coefficients, poles
with magnitude larger than 1.15 are eliminated to avoid poor
conditioning in the least squares solution of the amplitude
coefficients.

Performance Comparison: Tables I-III summarize the per-
formance of the various methods for this example.
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TABLE I
THEORETICAL AND SIMULATION VARIANCES AND
MSE’s For THE UNDAMPED TEN POLES m = 140
Dara PoIiNT CASE (ALL VALUES ARE IN DECIBELS)

pole d=1 d=6
number | CRB | Theory | Sim. | Sim. MSE | Theory | Sim. | Theory MSE | Sim. MSE
1 -63.4| -61.8 |-61.5 -61.5 -60.5 |-60.6 -60.3 -60.4
2 -63.0 | -60.7 |-60.9 -60.8 -59.7 | -38.9 -59.5 -58.7
3 -63.0 | -60.7 |-61.0 -60.9 -60.4 | -58.7 -59.9 -58.0
4 -63.6 | -614 |-61.2 -61.2 -60.9 |-61.0 -60.9 -60.9
5 -63.4 | -623 |-623 -62.2 -60.6 | -60.4 -60.1 -59.9
6 -63.4 | -62.3 |-62.2 -62.2 -60.7 | -60.5 -60.4 -60.3
7 -63.5 | -61.4 |-61.1 -61.1 -61.0 |-60.8 -60.9 -60.7
8 -55.1 | -51.4 |-51.0 -50.9 -47.3 | -48.4 -47.0 -48.1
9 -55.1 | -51.4 |-51.3 -51.1 -46.8 |-47.9 -46.5 -47.4
10 -63.4| -61.8 |-61.6 -61.6 -59.6 |-59.6 -59.5 -59.6
TABLE II

THEORETICAL AND SIMULATION BIASES
FOR THE POLES (m = 140, UNIT=10"3)

pole
number Theory Sim.
1 0.078-0.1791 | 0.088-0.196i
2 0.166-0.033i | 0.255-0.037i

3 0.330+0.072i | 0.449+0.188i

4 0.042+4-0.085i | 0.005+0.100i

5 -0.082-0.314i | -0.074-0.324i

6 0.086+0.205i | 0.018+0.184i

7 0.076-0.077i | 0.067-0.1361
8 1.251-0.171i | 0.847-0.693i
9 -1.121-0.470 | -1.134-0.625i

10 -0.095+4-0.142i | -0.047+0.021i

We first consider Table I, which shows the m = 140
data point case. From Table I, we see that the Monte-Carlo
variances for the d = 1 case were 1.2 to 4.1 dB away from their
CRB’s. Note that the Monte-Carlo variances are within 0.5 dB
of those predicted by the theory, which substantiates the theory
(the differences are due to the fact that theory is only a first-
order analysis). Note also that the estimates have negligible
bias, which is shown by the fact that the pole variances are
very close to their MSE’s.

The Monte-Carlo variances for the d = 6 case were 2.6 to
7.2 dB away from their CRB’s. This represents an average 1.7
dB loss for the entire d = 6 system versus the nondecimated
system. The main cause of the performance loss is the 20
data point loss due to the transient response of the FIR
filter outputs. Note that the Monte-Carlo variances are within
1.7 dB of statistical theory. By comparing the simulation
variances and MSE’s, we see that some of pole estimates are
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TABLE III
THEORETICAL AND SIMULATION VARIANCES AND MSE’S FOR THE POLES FOR
THE 560 DATA POINT CASE (ALL VALUES ARE IN DECIBELS)

pole d=1 d=6
number | CRB | Theory | Sim. | Sim. MSE | Theory | Sim. | Theory MSE | Sim. MSE
1 -81.6 -79.9 |-79.6 -79.6 -79.7 | -79.8 -719.7 -79.8
2 -81.6 | -79.6 |-79.7 -79.7 -79.4 | -79.4 -79.4 -79.3
3 -81.6 | -79.6 |-79.7 -79.7 <793 | -79.4 -79.3 -79.4
4 -81.7| -79.9 |-79.7 -79.6 -79.7 | -79.7 -78.9 -79.0
5 -81.6 | -79.8 |-79.8 -79.8 -79.5 | -79.2 -79.4 -79.1
6 -81.6 | -79.8 |-79.7 -79.7 -79.4 | -794 -79.1 -78.9
7 -8L.7| -79.9 |-79.9 -79.8 -79.7 | -794 -79.6 -79.3
8 81.6 79.9 | -80.0 -80.0 -79.6 1 -79.4 -719.0 -79.0
9 -81.6 | -80.0 |-80.0 -80.0 -79.5 | -794 -719.5 -79.4
10 -81.71 -80.0 {-80.1 -80.1 -79.3 | -79.7 -79.3 -79.7

slightly biased. When decimation is used, Theorem 4.1 gives
an analytical expression for the bias; theoretical biases are
compared to biases obtained from Monte-Carlo simulations
with good agreement in most cases. This is shown in Table IL

If the data length is increased to m = 560 points, the
theoretical and simulation results show even better agreement,
as is shown in Table III. In this case, the overall loss using
decimation is less than 0.4 dB, compared with the nondeci-
mated case. In addition, the simulation variances are within
0.4 dB of the theoretically derived variances, and the bias of
the pole estimates is significantly reduced.

Operation Count Comparison: The d = 1 and d = 6
estimation procedures are now compared on the basis of their
computational costs. We only compare the results for m = 140
data points. Using MATLAB, the “economical” version of
the SVD operation, the left division operation (using QR
decomposition to solve least squares problems) and the root-
finding operations required an average of 16.5 Mflops for each
of the Monte-Carlo simulations for the d = 1 case. Each of
the 12 d = 6 SVD’s, QR decompositions, polynomial root
findings, and filtering operations required an average of 53.7
Kflops, resulting in a total of 644.4 Kflops for each Monte-
Carlo simulation. The computational savings for the SVD’s,
QR decompositions, polynomial root findings, and filtering
operations in this example using decimation was, thus, a
factor of about 25.6. This compares with a savings factor
of 24.0, which is predicted by (39)-(45) for this scenario.
The average total flop counts (including all operations) for
the nondecimated and decimated Monte-Carlo simulations
were 17.4 Mflops and 698 Kflops, respectively, to give a
savings factor of 24.9. Note that the four computational cost
components we have detailed make up about 92% of the total
computations. With higher decimation factors, the savings are
even more substantial.

VI. CONCLUSION

In this paper, we have developed a TLS-Prony estimation
algorithm that incorporates data decimation. We also have
developed a statistical analysis for estimated poles of this al-
gorithm. We have shown through examples using this analysis
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that decimation provides a minimum variance for estimated
poles that occurs at a prediction order that is smaller than the
optimal prediction order for nondecimated data by & factor of
d, thus allowing for computational savings. We have shown
that this benefit is obtained at the expense of pol¢ variance
performance due to the filtering that is required; this expense
becomes smaller for longer data lengths. We have a so shown
how the modified TLS-Prony method can be used on full
spectrum data one band at a time to realize the computational
savings in a more general signal framework.

With this decimation procedure, we are now abl: to make
a well-quantified tradeoff of accuracy for computa ion when
using the TLS-Prony estimation procedure.

APPENDIX
PROOF OF THEOREM

From (13), we can make the following substitutions:
(s +50) (b +5) = - (s +57) (46)

where s is_the noise-free version of y'°, Y0 = 30 4 8,
40 = s+, and & = b’ +'. We can see that the > terms are
small perturbations for the high SNR case, which is assumed.
Multiplying out (46) and retaining only the first-order ~ terms
gives!

S + S04 + S0 = —5'0 — 5. @7

Now note that S"06" = —s'0 since they are the noiseless terms.
Equation (47) thus becomes

Y = —(5° + 5%). (48)

Multiplying both sides through by $°S°" and noting that
57080% 610 = G0 we obtain
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Let Y0 = S0+ W0 and /® = ¢'°+ w'®, where W° and w'°
are the appropriate noise matrices (i.e., of the form given in
(13) and composed of the noise sequences in (12)). Thus, we
can see that 5’0 and s’0 are perturbations caused by W0, w/0,
and the SVD truncation. By using perturbation analysis [21]
on the matrices [s"° $°], [y Y"], and [37’3 W] it can be
shown that to first-order approximation

§O*[50 g0] =80 W W) (50)
Thus, (49) can be written as
50 = —§°5"0%¢ (51)

where € = w'® + WO,

Observing the data model and the formulation of the 5’0
matrix, we can write S as (52), which appears at the bottom
of the page, or

° = HG. (53)
Equation (51) thus becomes

HG'Y = ~HG'$"" . (54)

Now, note by definition that the true and estimated Lth—
order charactenstxc c polynomials are B(z) = 1+ b1z + byz’

-+ bz andB’()=1+bz+b22+ +bLz,
rcspectwely Hence, B(p.) = 0, and B’ and (pl) =0.

We can use a first-order Taylor expansion to find an expres-
sion for the error in the estimated pole locations. For each 5;
we obtain (55), which apears at the top of the next page, or,
to first order

~ 1 ~
(Fh=pt)=~7bk o2 - pF. 6

Thus, for all of the n’ true poles, we obtain

S5 = —505°% (5 + 50). (49) P -P =_FG¥. 7
! Note that the approximation is valid since the matrices [y/} : Y70 | Since H is full rank (this can be seen by noting that each
and [s° : $'0] have the same rank. block of rows is simply a Vandermonde matrix derived from
z1(1) z2(1) Tn(1) 1
xl(l)p‘f z2(1)ps Tar ()Pl
m(l)p'“‘““)" za(1)py D T (1)p
.771(2) $2(2) In! (2)
21(2)pf z2(2)ps T (2)P
§° = : (L+1)d : L+1)d : L+1)d ¢ : (52)
a1 (2)p” za(2)py Y T (2)py Y
z1(N) z2(N) Tn (N)
z1(N)pf z2(N)p§ T (N )pi,
Loy y (N (]
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0-7(7)
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=B(p)) + %E’(zﬂz:p; (17: - pﬁ) + (higher order terms)
= E'\’(pi) - B'(p)+ ;]@(z)|z=p£ (12 - pﬁ) + (higher order terms)
N1+ bip) + B 4+ Bl — (14 B0, + bp 4+ by piE)
+ (b’ + 2b2p1 -+ LE’ '(L 1)) (p pl)

b' - b 1

»—bh 2p] ~

~ ot | % e I | (A

515 -4 Ly
=[p; PP pﬂ@—ﬂ+m@—@ (55)

distinct poles times a diagonal matrix of the nonzem amplitude

coefficients), we can multiply (54) by (H*H) ' H* to get
G = -GS¢ (58)
and by substituting (58) into (57), we obtain
P -P =FG5 (59)
We now note that [w® W™][}] can be written as
B'e(1)
wo W) [ bl, } _ B’e/:0(2)
| B'eO(N)
[ BUEO(" (1) + e(1)
_ B'K"(s (:2)+8(2)) (60)
LB/KO(s7(N) + ()
where
s7(t)
n n n T
=1 Y mt) Y mtm DRI i
i=ni+1 i=n'+1 i=ni41
(61)

and where B’ and K° are given by (28) and (29). Recall that
{e(t)} are zero mean Gaussian, and thus, ¢ is multivariate
Gaussian with mean

Eld = ©2)

where P'0. is in the form of (60), without the ¢(t)’s, and
covariance matrix

| (i wely ) (wr werls])]

(63)

Cov(e)
ox?

€

where 30 is given by (27).

Equations (59), (62,): and (63) imply that the mean and
covariance matrix of P’ are given by (26).

REFERENCES
{1] M. A Rahman and K.-B. Yu, “Total least squares approach for frequency
estamatin using linear prediction,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-35, no. 10, pp. 1440-1454, Oct. 1987.
W. M. Steedly and R. L. Moses, “High resolution exponential modeling
of fully polarized radar returns,” IEEE Trans. Aerospace .Electron. Syst.,
vol. AES-27, no. 3, pp. 459-469, May 1991.
B. Liu and F. Mintzer, “Caculation of narrow-band spectra by direct dec-
imation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-26,
no. 6, pp. 529-534, Dec. 1978.
M. P. Quirk and B. Liu, “Improving resolution for autoregressive
spectral estimation by decimation,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-31, no. 3, pp. 630637, June 1983.
M. J. Villalba and B. K. Walker, “Spectrum manipulation for improved
resolution,” /EEE Trans. Acoust., Speech, Signal Processing, vol. 37,
no. 6, pp. 820-831, June 1989.
C. J. Ying, R. L. Moses, and R. L. Dilsavor, “Perturbation analysis for
pole estimates of damped exponential signals,” Tech. Rep., Ohio State
Univ., Dept. of Elect. Eng., ElectroSci. Lab., Aug. 1991.
G. Xu, 8. D. Silverstein, R. H. Roy, and T. Kailath, “Parallel implemen-
tation and performance analysis of beamspace ESPRIT,” in Proc. Int.
Conf. Acoust., Speech, Signal Processing (Toronto), May 14-17, 1991,
pp. 1497-1500.
M. D. Zoltowski, G. M. Kautz, and S. D. Silverstein, “Develop-
ment, performance analysis, and experimental evaluation of beamspace
r00t-MUSIC,” in Proc. Int. Conf. Acoust., Speech, Signal Processing
(Toronto), May 14-17, 1991, pp. 3049-3052.
M. Zoltowski, G. Kautz, and S. Silverstein, “Beamspace root-MUSIC,”
IEEE Trans. Signal Processing, vol. 41, no. 1, pp. 344-364, Jan. 1993.
S. D. Silverstein, W. E. Engeler, and J. A. Taridif, “Parallel architectures
for multirate superresolution spectrum analyzers,” IEEE Trans. Circuits
Syst., vol. 38, no. 4, pp. 449-453, Apr. 1991.
H. Lee and M. Wengrovitz, “Improved high -resolution direction-finding
through use of homogeneous constraints,” in Proc. Fourth ASSP Work-
shop Spect. Est. Modeling, 1988, pp. 152-157.
P. Vaidynathan, Mulrirate Systems and Filter Banks.
NIJ: Prentice Hall, 1993.
T. Abatzoglou, J. Mendel, and G. Harada, “The constrained total least
squares technique and its applications to harmonic superresolution,”
IEEE Trans. Signal Processing, vol. 39, no. 5, pp. 1070-1087, May
1991.
G. H. Golub and C. F. VanLoan, Matrix Computations.
MD: Johns Hopkins, 1989, 2nd ed.
W. M. Steedly, C. J. Ying, and R. L. Moses, “Statistical analysis of
TLS-based Prony techniques,” Automatica (Special Issue on Statistical
Signal Processing and Control), vol. 30, no. 1, pp. 115-129, Jan. 1994.

2

3]

(4]

[5

=

[6

g

(8]

[10]

(11]

[12] Englewood Cliffs,

[13]
[14] Baltimore,

[15]



STEEDLY et al.: MODIFIED TLS-PRONY METHOD

[16]) W. M. Steedly and R. L. Moses, “The Cramér-Rao bound for pole and
amplitude estimates of damped exponential signals in noise,” in Proc.
Int. Conf. Acoust., Speech, Signal Processing (Toronto), May 14-17,
1991, pp. 3569-3572.

X. Xu and K. Buckley, “Statistical performance compariscn of MUSIC
in element-space and bean-space,” in Proc. Int. Conf. Accust., Speech,
Signal Processing, May 1989, pp. 2124-2127.

S. Anderson, “Optimal dimension- reduction for sensor array signal
processing,” in Conf. Rec. 25th Asilomar IEEE Conf. S gnals, Syst.,
Comput.. Nov. 4-6, 1991, pp. 918-922.

P. Stoica and A. Nehorai, “Comparative performance stud;" of element-
space and beam-space MUSIC estimators,” Circuits, Syst. Signal Pro-
cessing, vol. 10, pp. 285-292, 1991.

Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parame-
ters of exponentially damped/undamped sinusoids in noise,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-38, no. 5, p. 814-824,
May 1990.

, “A perturbation property of the TLS-LP method,” IEEE Trans.

{17

(18]

[19]

[20]

[21]

Acoust., Speech, Signal Processing, vol. 38, no. 11, pp. 2004-2005,
Nov. 1990.

William M. Steedly (S’86-M’93) -eceived the
B.S. degree in electrical engineerin;; from Vir-
ginia Polytechnic Institute and State University,
Blacksburg, in 1988 and the M.S. and Ph.D.
degrees in electrical engineering frora The Ohio
State University, Columbus, in 198¢ and 1992,
respectively.

During the 1988-1989 academic year, he was
an Ohio State University Fellow. During the
1989-1992 academic years, he was an Air Force
Laboratory Graduate Fellow in the De.partment of
Electrical Engineering of The Ohio State University. He spent the summer
of 1990 at Wright Labs, Wright Patterson AFB, OH. He is currently a
member of the Technical Staff of The Analytic Sciences Corpora ion (TASC),
Reston, VA. His primary research interests are in digital signa: processing,
including parametric modeling techniques and their application to radar
signal processing.

Dr. Steedly is a member of Eta Kappa Nu, Tau Beta Pi, Phi Kappa Phi,
and Sigma Xi

2303

Ching-Hui J. Ying (S’91) was born in Keelung,
Taiwan, on August 3, 1967. He received the diploma
in electronic engineering from National Taipei In-
stitute of Techology, Taiwan, in 1987 and the M.S.
degree in electrical engineering from The Ohio State
University (OSU), Columbus, in 1992, respectively.
He is currently pursuing the Ph.D. degree in elec-
trical engineering at OSU.

Since 1991, he has worked as a Graduate Re-
search Associate with The Ohio State University
ElectroScience Laboratory. His current research in-
volves parametric modeling and neural networks. Other research interests
include time series analysis, model order determination, perturbation theory,
and system identification.

Randolph L. Moses (S’78-M’85-SM’90) received
the B.S., M.S,, and Ph.D. degrees in electrical engi-
neering from Virginia Polytechnic Institute and State
University in 1979, 1980, and 1984, respectively.

During the summer of 1983, he was a SCEEE
Summer Faculty Research Fellow at Rome Air De-
velopment Center, Rome, NY. From 1984 to 1985,
he was with the Eindhoven University of Tech-
nology, Eindhoven, The Netherlands, as a NATO
Post-doctoral Fellow. Since 1985, he has been with
the Department of Electrical Engineering, The Ohio
State University, and is currently an Associate Professor there. His research
interests are in digital signal processing and include parametric time series
analysis, radar signal processing, system identification, and model reduction.

Dr. Moses is a member of Eta Kappa Nu, Tau Beta Pi, Phi Kappa Phi,
and Sigma Xi.



