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A Comparison of Numerator Estimators for ARMA 
Spectra 

RANDOLPH L. MOSES AND A. A. (LOUIS) BEEX 

Abstract-This correspondence investigates the problems of estimat- 
ing the numerator spectrum corresponding to an ARMA time series 
model once the denominator spectrum (i.e., the AR coefficients) has 
been estimated. A general form for an estimator of the numerator 
spectral (NS) coefficients is developed first. Six NS estimators from the 
recent literature are then compared by fitting them into this general 
framework and extracting their particular characteristics. It is shown 
that some methods are special cases of other methods, and that several 
of these methods are asymptotically equivalent. 

I. INTRODUCTION 
An important  engineering  problem  is  to  determine a model  for a 

stochastic  time  series  from a  finite set of measurements {x( 1), x(2), 
. . . , x ( n ) )  . One  popular  model  is  the  autoregressive  moving  aver- 
age  (ARMA)  model  given by 

P 4 

x(k) + C ajx(k - i) = C bje(k - j )  (1.1) 

where { E ( k ) )  is zero  mean,  unit  variance  white  noise.  The  associ- 
ated power  spectral  density  function  for { x ( k ) }  is given by 

i = l  j = O  

where 

C(Z) = B(z) B*(l/z*) 

- c - ~ z - '  + * . * + co + C ~ Z  + . . + c q z q .  (1.3) - 

We  shall  refer  to  the ck coefficients as  the coefficients of the nu- 
merator  spectrum (NS). 

The  ARMA  modeling  problem is to  estimate  the ai (AR) and bk 
(MA) coefficients from  the  measurements.  One  popular  class of 
algorithms  entails first estimating  the  AR coefficients, then  using 
the AR estimates  along  with  the  given  data  measurements  to  esti- 
mate the NS  coefficients.  If necessary  for a given  application,  the 
MA coefficients are  recovered  from  the NS coefficients by perform- 
ing  a spectral  factorization  via  (1.3). 

This  correspondence  focuses on the  estimation of the NS coef- 
ficients. Several methods  for  estimating  the NS coefficients have 
been  reported [1]-[7]. They  are generally  derived in different ways, 
and  as a  result  it has been difficult to  compare  or  contrast  these 
methods.  This  correspondence  makes  such a comparison by first 
developing a general  form  for  estimators of NS coefficients. We 
then  compare  six NS estimators by showing  how  they fit into  this 
general form. 

11. THE  GENERAL  NUMERATOR  SPECTRUM ESTIMATOR 
A. Exact  Properties 

To motivate  the  general  form of the NS estimator, we  first as- 
sume  that  the  exact  autocorrelation  sequence  and  the  exact  AR  coef- 
ficients for  an  ARMA ( p ,  q)  data  sequence  are  given. Define the 
( p  + 1) X 1 vector of  AR  coefficients as 

a = [aoa,a2 . * . ap] ', a. = 1. (2.1) 
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From  (1.1)  we  can define the  forward  ,prediction  error  process 
{ f ( k ) l  by 

From  (1.2)  and  (2.2) it can  be  seen  that C(z) is  the  power  spectral 
density function  corresponding  to { f ( k ) }  , so the ck coefficients are 
just  the  autocovariances of { f ( k ) )  

ck = E C f h  + k ) f * ( m ) ) .  (2.3) 
Substituting  (2.2)  into (2.3) twice yields 

D D  

where { p ( k ) )  is  the  autocovariance  sequence associated with {x@)) ,  
1.e., 

p(k)  = E{x(k + a) n*(n) ) .  
The Yule-Walker equations  for  an  ARMA ( p ,  q )  process imply 
that Cy=, aip(k - i + j )  = 0 f o r j  > q - k ,  so ck can  alternatively 
be found by 

Equations  (2.4)  and  (2.5)  are not  new and  can  be  found in [l] and 
[2] among  other  places. 

A more  compact way to  write  (2.4) and (2.5) is 

for  (2.5). 

B. A General  Estimator  and Its Properties 

Equation  (2.6)  motivates a form  for a numerator  estimator when 
only  estimates of a and p ( k )  are  available. An estimate'of ck is 
obtained by replacing the  exact  quantities in (2.6) by the  estimated 
ones.  For  generality, a windowing  sequence ' .ik is also incorpo- 
rated, giving 

where  we  use  the " A " to  denote  estimates  based  on  the n data x(  l ) ,  

{%}  to  be  nonnegative definite (NND).  Equation  (2.9) represents 
the genera1 form of an NS estimator. 

From  the  properties of li, $k ,  and Rk in (2.9), we can  answer 
several questions  about  the  numerator  estimator,  such  as: 

1) what is  the  asymptotic  bias  and  variance of the  numerator 
estimate? 

. . .  , x(n) .  The  windowing  sequence {'.iki)k) may be used to  force 

0096-3518/86/1200-1668$01.00 0 1986  IEEE 



IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-34,  NO. 6, DECEMBER 1986 1669 

2)  is { t k }  an  NND  sequence? 
3) is R k  of the  form  (2.7)  or  (2.8)? 
Each of these  characteristics is discussed  below. 
I )  Asymptotic Bias and Variance: It  is not  difficult to  show  that 

if$ + Rk, a, + ak, and $k --* wk,  as n + m, where ' '-+'' denotes 
convergence  is  with  probability  1,  then 

WP 1 WP ' WP 1 wp I 

WP I 
e k  + wkck. 

The  convergence  assumptions  on Rk, dk, and $k are nearly always 
satisfied. Thus,  the t k  estimates  are  asymptotically  biased (by a 
known  amount W k ) ,  and  the  variances  of  the  estimates  approach 
zero. If w k  = 1, then  the  estimates  are  asymptotically  unbiased and 
consistent. 

2 )  Nonnegative  Estimates: To  obtain  unbiased tk estimates, it 
is  preferable  to  choose = 1,  or  at least have $k --t 1.  However, 
for this choice of Gk, { a }  is,  in  general, not an  NND  sequence 
(which implies  that a spectral  factorization of C(z) will  not  yield  a 
B(z) that satisfies B(eJw) = B*(e-'@)). However,  one  can  guarantee 
NND  estimates fo;f finite n (not  just asymp!otically) with  a  special 
choice of $k and Rk in  (2.9).  Consider  an Rk of the form 

(2. lo) 

where J is some  normalizing  constant  independent of k ,  and  where 

x(s - 1) * * . x(s - p )  1 

LXCt) x(t - 1) . * . x(t - p )  _I 
with the  convention  that x(k)  = 0 for k < 1 and k > n. In  this 
case,  (2.9)  can  be  written  as 

P 

j i ,  = iso dif(k - i) (2.12) 

(2.13) 

Equations  (2.13)  and  (2.12)  can  be  interpreted  as first passing  the 
data x(k) through  the filter 

a(,) = 1 + dlz-' + * . + dpz,,-P 

to  produce A, then  forming Q as  an  autocovariance  estimate of A. 
This  estimator  produces  NND t k  estimates  for  any  NND window 
sequence,  as  shown in the  following  theorem. 

fieorem: If Rk is  given by (2.10)  and if { $ k } p =  --m is supported 
on lkl 5 q and  is  NND,  then { t k } p =  -m is  NND  for any  AR esti- 
mate d. 

Proofi From  (2.13)  we  can  write 

= * Ok 

where  the  sequences  are defined for - m < k < to. Since { O k }  is 
a constant  times  the  convolution  of { f m }  with { f-,J (where fk = 
0 f o r k  < s or k > t ) ,  it  is an  NND  sequence.  It  follows that tk is 
NND.  This  is  true  because  the  Fourier  transforms of { $ a }  and { e,} 
are both nonnegative  and  real, so their  convolution is nonnegative 
and real.  The  latter is the  Fourier  transform of . Ok, so this 
sequence is NND. 

The  major  purpose of the  windowing  sequence { Gk} is  to  ensure 
that { t k }  is NND.  Two  possible  window  sequences  are  the  trian- 
gular  window 

Ikl $ k k =  1 --, L 2 4 + 1, lkl 2 
L 

(2.14) 

and  the  exponential  window 

I@, = a'k', 0 < a 5 1, Ikl 5 q (2.15) 

with $k = 0 for Ikj > q. Since  (2.14)  for L = q + 1 is an  NND 
sequence  supported  on Ikl 5 q ,  it guarantees  NND It,} sequences 
for  estimates of  NS  coefficients in  the  form of (2.13).  Similarly, 
by choosing 01 very  close  to  zero,  an  NND { & }  estimate  can  be 
obtained using  (2.15).  In  either  case, a severe  bias is imposed  on 
the  estimates.  However,  since  the  zeros of c(z) are  continuous 
functions  of L or a ,  one  can  reduce  the  bias  and  still  ensure  NND 
estimates.  This  is  accomplished by starting  with  an  NND  estimate 
of C(z), then  increasing L or a until  the  bias  is sufficiently  reduced 
or  until  the  estimate  becomes  negative  for  some  frequencies. Of 
course, L or a will be  dcta  dependent in this  case. 

3) On the  Model for R,: In designing a numerator  estimator, R, 
can be  an  estimate of either  (2.7)  or  (2.8).  Two  points  should  be 
considered.  First, if (2.8) i s  used,  the  implicit  assumption  made  is 
that 

(2.16) 

Whether  or  not  (2.16)  holds  depends  on  the  particular  estimates 
used for the  AR colfficients  and  autocorrelations.  When  (2.16)  does 
hold, f k  estimates  using  (2.8)  are  equivalent  to  those  using  (2.7); 
however,  (2.8)-based  estimates  require  fewer  computations  to im- 
plement.  When  (2.16)  does not hold,  the  use of (2.8) implicitly 
incorporates an  erroneous  assumption.  It may be  argued  that by 
using (2.7j  in t k ,  errors  in  (2.16)  resulting  from  the  AR  estimation 
can  be  to  some  extent  compensated in the  NS  estimation; no com- 
pensation occurs if (2.8) is used.  Thus, we might  expect  the spec- 
tral estimates  to  be  more  accurate if (2.7) is  used (even if the t k  
parameter  estimates  are  worse  due tp the  compensation effect). 

Second, if (2.7)  is used for  the Rk, NND  estimates of {ek}  can 
be obtained (cf.,  theorem  1). If (2.8)  is  used,  there is no known 
method of ensuring  NND { t k }  estimates  (except  in  special  cases, 
e.g., when (2.7)  and  (2.8)  are  equivalent). 

111. A COMPARISON OF SIX NUMERATOR ESTIMATORS 

This  section  considers  six  methods  for  estimating  the NS coef- 
ficients once  the AR  coefficients have  been  estimated [ 11-[4], [6], 
[7]. By fitting each method in  the  form  of  (2.9),  we  can  extract 
some of its properties (such as  those  discussed  in  the  previous  sec- 
tion),  and  we  can  modify  it  to effect certain  desired  characteristics. 

All equations  for t k  below  are  for 0 5 k 5 q only.  The t k  coef- 
ficients for  negative k are  found by t - k  = e:. Moreover,  it is as- 
sumed that & = 0 for jkl > q .  

Method I :  The 4 coefficients  in  method  1 are  estimated  as [l] 
" D  

where Bb is  the  standard  biased  autocorrelation  estimator 
. n - k  

Method  1 directly fits the  form  (2.9) with 9, = 1 and  with [fi,li,, 
= Bb(k - iA -t j ) .  This method does  not  guarantee  NND  estimates; 
however, Rk can  be  written  as 

(3.3) 

so method  1  will give  NND  estimates if an  NND {Gk) sequence is 
used. Rk makes efficient use of the  data  as  all  possible  data  lags 
appear in the  sum in (3.3).  However, Cb(k) is  a biased  autocorre- 
lation estimate fork # 0. If the  standard  unbiased  estimate is  used 
[replacing l / n  by l/(n - k)  in  (3.2)], Rk can no longer  be written 
as  in  (2.  lo), so NND  estimates  cannot  be  guaranteed. 

Method 2: Method 2 is proposed  in [2]. Here,  the t k  sequence 
is found by 

D a - k  

(3.4) 
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This method is  identical  to method 1  except  that & is  patterned 
after  (2.8) instead  of (2.7).  Method  2  does not  in general  guarantee 
NND  estimates  even  when  an  NND  window is used,  because Rk 
cannot  be  factored in the  form  l/JXE,X, + k , r  + k .  

Method 3: The  estimate  for method 3  is  proposed in [3],  and is 
given by 

rb(k) k > 0 
(3.7) 

By substituting  (3.6)  and  (3.7)  into  (3.5)  and rearranging terms, it 
can  be  shown  that  is a special  case of method  2  obtained by setting 
q = p there  (see [SI for  details).  Thus,  all  comments  concerning 
method 2 apply here  as  well. 

Method 4: Method  4  was  proposed  in  [4].  First,  the  forward  and 
backward  prediction  error  sequences  are  formed;  the  forward  se- 
quence is given by (2.12) and the  backward  sequence by 

b(k) = ,x &,x*(k + i), k = 1,  2, . . . , n - p .  (3.8) 
P 

i = 0  

The t k  estimates  are  then  formed by 
n - k  n - k - p  

m = l  

where Gk is some  NND  weighting  function  (the  full  triangular win- 
dow  is  suggested  in  [4]).  It is straightforward  to  show  that  (3.9) 
fits in the  general  estimator  form  with 

where  is given by (2.11)  and 

p s  - PI x(s - p + 1) . . . x(s)  1 

L.0 - P) x(t - p + 1) * * . x(t)  _I 
If an  NND window sequence is used,  this  estimate is guaranteed 
to  be  NND. 

Except  for  the first and  last  few  terms of the  two  sums in (3.9), 
they are equivalent to  each  other.  Thus,  the few data products  which 
do not appear in both  sums  are implicitly weighted by one-half of 
all  the  other  data  products.  Each  element of Rk in (3.10) is asymp- 
totically equivalent  to  (3.3), so method 4 is asymptotically  equiv- 
alent to method 1.  Unlike  method  1,  however, method 4 can guar- 
antee  NND & estimates  while  at  the  same  time  using  unbiased 
autocorrelation  estimates. 

Method 5: Method 5 is the  smoothed  periodogram  (SPj method 
of numerator  estimation  [5].  This  method was  recently proposed  as 
an  ARMA  numerator  estimation  scheme  [6].  The  SP method en- 
tails first finding the  forward  and  backward  prediction  error  se- 
quences defined  in (2.12)  and  (3.8),  and  then  partitioning  them  to 
define the  subsequences 

fi(kj = f [ p  + k + (i - 1)D],  1 5 k 5 + 1 ,  1 5 i 5 K 

(3.12) 

bi(k) = b(k + (i - 1)D),  1 i k 5 q + 1 ,  1 5 i 5 K 

(3.13) 

where D is the  shift in time  between  successive  subsequences, and 
K is the  largest  integer  such  that p + q + 1 + (K - l )D 5 n. The 
SP numerator  estimate is formed by evaluating  the  periodogram 
estimates  associated with each {A(@} and { b , ( k ) }  subsequence, 
and by then  averaging  these  periodograms.  As in  method 4,  the  SP 
method  implicitly forms tk by [8] 

1 q + l - k  + - x bi (k  + m) b*(m) 1 . (3.14) 

Equation  (3.14) is the  same as (3.9) when D = 1. For D > 1, 
more data  lags  are included  in the  (3.9)  estimate;  there  are  no  data 
lags between the  subsequence in (3.14).  This  omission of data  lags 
results in a higher  asymptotic  variance of the tk estimates  for 
method 5 when  D > 1.  Methods  4  and 5 are  otherwise  identical. 

Method 6: Method  6  [7] is  a numerator  estimator  that  does not 
exactly fit the  general  form of (2.9) but  very  nearly fits it.  In this 
method, tk can  be  written  as 

K i = 1  m = l  

(3.15) 

where 

The  second  numerator  and  the  denominator  terms in (3.!5) are 
identical except  that Roo had k more  data  products  than Rkk. For 
n >> k ,  this difference becomes  negligible,  and these two  terms 
nearly cancel. If the  two  terms  exactly  canceled,  then  (3.15) would 
be identical to method 4 with  only forward  prediction  errors used 
there.  Since  these  last two terms  cancel  asymptotically, method 6 
is asymptotically equivalent  to  method  4  (or  to method 1) with  no 
windowing.  On  the  other  hand,  NND  estimates  cannot  be  guaran- 
teed for method 6  because of these  two  terms  that  do  not exactly 
cancel  for finite n. 

IV. SUMMARY 
We  have presented  a  general estimator  form  for  the  numerator 

spectral coefficients associated with the  ARMA model. This  gen- 
eral  form is useful in pointing  out  the  asymptotic  bias,  whether  or 
not NND  estimates  are  ensured,  and  whether  or not  an  implicit 
assumption  about  Yule-Walker  equations is made.  Six  numerator 
spectrum coefficient estimators were  then compared by writing them 
in this  general  form. It was shown  that 

method 3 is a  special case of  method 2 with q = p ;  
method 5 with D = 1  is  equivalent  to method 4; 
method 5 with  D > 1 is inferior  to method 4  because  the 

estimates  have  larger  asymptotic  variances; 
methods  2,  3,  and 6 cannot  in  general  guarantee  NND  esti- 

mates (methods  1, 4, and 5 can);  and 
all  six estimates  are asymptotically  biased  only by the (known) 

window sequence { 6Jk)  and  their variances are  asymptotically  equal 
to  zero. 
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Modifications to the McClellan, Parks,  and Rabiner 
Computer Program for Designing Higher Order 

Differentiating FIR Filters 

CRAIG  A.  RAHENKAMP AND B.  V. K.  VIJAYA  KUMAR 

Abstract-Simple modifications to the McClellan, Parks, and Rabi- 
ner linear phase finite impulse response (FIR) filter design program are 
suggested to allow the design of an nth-order differentiating FIR  filter 
of arbitrary length for any n. Two illustrative examples are also pro: 
vided. 

I. INTRODUCTION 
This  correspondence  presents  simple modifications that  can  be 

made to  the  popular  McClellan,  Parks,  and  Rabiner  FIR filter de- 
sign Fortran  program [l] to  extend its capabilities.  The  algorithm 
in the  original  program  uses  the  Remez  exchange method 521 to 
design filters  with minimum  weighted  Chebyshev  error  in  approx- 
imating the  desired  frequency  response.  The  purpose of this  cor- 
respondence is to  document modifications to  the  program  that will 
allow  it to  approximate higher order differentiating FIR filters  in 
addition  to  those filter designs  which  it  already  supports. 

The  linear  phase  FIR filter design  program  EQFIR,  appearing in 
IEEE  collection of digital  signal  processing  programs [ 1, chapter 
51 written by McClellan,  Parks,  and  Rabiner, is used  as  the  basis 
for  this  work.  The  program,  as  it  was  originally  presented,  could 
not  meet our needs [3] for  accurately  designing  2nd-order  through 
10th-order FIR  differentiators  of various  lengths. By introducing a 
new variable  into  the  program  to  represent  the  order of the differ- 
entiator,  and by keeping  track of all  the  symmetries  involved,  the 
program  presented in [ 11 was  quickly  and easily  modified to  design 
higher  order  (order  greater  than  one) differentiating  FIR  filters. 

11. PROGRAM CHANGES 
All of the first group of changes,  those required to  be  made  to 

the  main  routine of the  FIR  design  program,  occur within the first 
50 executable  lines of code.  The  second  group of changes  appear 
in two  functions  that  follow  the main program. 
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One new parameter is required in  the  program to represent  the 
order of the differentiator-IORD. When  designing  FIR filters other 
than  differentiators  with this  program,  IORD  is  set  to 1 .  By replac- 
ing the first READ statement in the  program  with  the  following  two 
lines: 

READ  (INPUT,110) NFILT,JTYPE,NBANDS,LGRID,IORD 
IF(IORD.LE.0)  IORD=l 

the  IORD  parameter is correctly  entered. As a consequence,  the 
following FORMAT statement in the  original program: 

110  FORMAT(4IS) 

must be replaced by  the  following  statement: 

110  FORMAT(SI5). 

The  symmetries of the filter must  next  be  properly  established.  This 
requires  modification  of the  parameter  NEG.  NEG is assumed  to 
be  zero  for  any  even  symmetric filter (e.g., a multipass-band/stop- 
band filter) and 1 for  any  odd  symmetric filter. This  requires  that 
NEG = 0 for  any differentiator  of even-order  and  NEG = 1 for 
any odd-order differentiator. Following  the  lines  below  which  pres- 
ently  set NEG, 

NEG= 1 
IF(JTYPE.EQ.1)  NEG=O 

the  following  lines must be  inserted: 

IF(JTYPE.NE.2)GOTO  126 
NEG=IORD/2 
NEG=IORD-22NEG 

and  the  line  that  follows modified by a jump  label: 

126 NODD=NFILTIZ 

To prevent divide by zero  errors,  the  variable  DELF  must  be  prop- 
erly initialized.  This  is  accomplished by modifying  the  line  that 
reads 

IF(NEG.EQ.0) GO TO 135 

in  the  portion of the  code  that  sets  up  the  dense  grid  to read as 
below: 

IF(JTYPE.EQ.1) GO TO 135 

The  following  two  changes  must  be  made in the  section  that  cal- 
culates  the  desired  magnitude  response so that  the  variable  IORD 
is  passed to  the  magnitude  response  function.  The  line 

DES(J)=EFF(TEMP,FX,WTX,LBAND,JTYPE) 

must be changed  to 

DES(J)=EFF(TEMP,FX.WTX,LBAND,JTYPE,IORD) 

and  the  line 

DES(J-l)=EFF(FUP,FX,WTX,LBAND,JTYPE) 

must be  changed  to  the  following: 

DES(J- l)=EFF(FUP,FX,WTX,LBAND,JTYPE,IORD) 

Finally, a  modification  is made  to  the  output  section of the main 
routine. This modification occurs much further  down in the code- 
close to the  end of the main routine.  The  change‘is  made  to allow 
,the  output  to reflect the  input  parameter  IORD. By modifying  the 
lines  that read 


