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cal results using Monte-Carlo simulations studies. We also compare the variance results to

the corresponding Cramér-Rao bounds for several cases.
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I. Introduction

The problem of estimating model parameters of noisy exponential signals is an active
area of research. This problem has applications in a number of areas, including speech pro-
cessing, deconvolution, radar and sonar signal processing, array processing, and spectrum
estimation. A number of authors have considered various aspects of this problem (Schmidt,
1979; Kumaresan and Tufts, 1982b; Roy et al., 1986; Bresler and Macovski, 1986; Rahman
and Yu, 1987; Stoica and Nehorai, 1989; Hua and Sarkar, 1990a; Abatzoglou and Lam,
1991, just to name a few), and a large number of algorithms have been developed and
analyzed (Henderson, 1981; Kaveh and Barabell, 1986; Rao, 1988; Hua and Sarkar, 1988;
Stoica and Nehorai, 1989; Stoica et al., 1989; Ottersten et al., 1991; Stoica and Nehorali,
1991).

One popular class of algorithms for estimating parameters from noisy exponential se-
quences are the subspace-based approaches. These include the MUSIC algorithm and its
enhancements (Schmidt, 1979; Stoica and Nehorai, 1989; Stoica and Nehorai, 1991), sub-
space rotation methods such as ESPRIT (Roy et al., 1986; Roy and Kailath, 1989; Zoltowski
and Stavrinides, 1989; Ottersten et al., 1991; Stoica and Nehorai, 1991), iterative maximum
likelihood methods (Bresler and Macovski, 1986; Kumaresan et al., 1986; Ziskind and Wax,
1988), minimum norm methods (Kaveh and Barabell, 1986; Dowling and DeGroat, 1991),
and total least squares (TLS) methods (Golub and Van Loan, 1980; Kumaresan and Tufts,
1982a; Rahman and Yu, 1987; Abatzoglou and Lam, 1991). These methods have proven
attractive because they exhibit good statistical performance at a modest computational
cost. This has been well-established by a large number of numerical studies.

More recently, there has been interest in quantitatively evaluating these methods. To
this end, a number of researchers have analyzed the statistical properties of such algo-
rithms (Henderson, 1981; Kaveh and Barabell, 1986; Rao, 1988; Hua and Sarkar, 1988;
Stoica and Nehorai, 1989; Stoica et al., 1989; Hua and Sarkar, 1990a; Ottersten et al., 1991;
Stoica and Nehorai, 1991). Henderson (1981) presents a geometric study of the pole estima-
tion problem, and analyzes the statistical properties of the prediction coefficients when the
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results relating to pole angle (frequency) estimates from arrays when the exponential sig-
nals are undamped, e.g., (Kaveh and Barabell, 1986; Rao, 1988; Stoica and Nehorai, 1989;
Stoica et al., 1989; Ottersten et al., 1991; Stoica and Nehorai, 1991; Clergeot et al., 1989).
A related perturbation analysis of SVD-based methods is presented in (Vaccaro et al., 1988;
Kot et al., 1987; Li and Vaccaro, 1990; Tufts et al., 1991) and applied to both frequency es-
timation and threshold analysis for exponential modes. Hua and Sarkar (1988) present an
angle-only analysis for the least squares Prony method for the poles of undamped expo-
nentials. Less has appeared which considers the statistical properties of the parameters
for damped exponentials. Porat and Friedlander consider the related problem of ARMA
system identification using SVD-based approaches in (Porat and Friedlander, 1987). Hua
and Sarkar (1990a) present an analysis for the pole estimates of damped exponential signals
using their matrix pencil method, but have not presented the statistical properties of the
amplitude coefficients.

This paper presents an extension of the above works to treat a general exponential
case. We introduce a complete statistical derivation for the poles and amplitude coefficients
estimated using a TLS-Prony scheme where signals consist of arbitrary damped exponential
terms in noise. We provide complete statistics for the individual pole parameters for an
exponential model in which the poles may lie on, inside, or outside the unit circle. In
addition, we derive the statistical properties of the amplitude coefficients associated with
these exponential modes.

The results of this paper provide a sound basis for performance analyses of the TLS-
Prony estimation method. We extend previous works by considering the general damped
case, as well as by including amplitude coefficient parameters in addition to pole parameters.
These results provide the tools to analyze various situations and evaluate the potential
success of applying the TLS-Prony estimation algorithm.

The TLS-Prony estimation procedure is a multi-snapshot extension of the algorithm
presented in (Kumaresan and Tufts, 1982a; Rahman and Yu, 1987). The advantage of sin-
gular value decomposition (SVD) in noise cleaning of the Toeplitz data matrix is well-known.

The multiple snapshot incorporation is a straightforward one in which more than one set



of amplitude coeflicients corresponds to the set of poles. The procedure is discussed in
Section II.

The statistical derivation for this procedure is based on a first order perturbation anal-
ysis; thus the analysis assumes high SNR. We derive the complete covariance matrix of the
estimated parameters for this case. The parameters include the magnitudes and angles of
the poles, and the magnitudes and angles of the amplitude coefficients.

Using these expressions, several general properties of the parameter covariance matrix
are derived for the high SNR case. We show that the angle and magnitude parameters are
uncorrelated for both the poles and the amplitude coefficients. We also show that if the
relative magnitude of the pole or amplitude coefficient estimate is considered (i.e. g, where
a is the true magnitude), then the corresponding angle and relative magnitude variances
are equal.

This paper also examines pole estimation accuracy as functions of pole magnitude, data
length, and pole separation using the variance expressions. We compare these variance
results to the corresponding Cramér-Rao bounds and verify the theoretical results using
Monte-Carlo simulations. The effects on poles inside and outside the unit circle using
backward or forward linear prediction in the TLS-Prony estimation scheme are also detailed.

An outline of this paper is as follows. Section II presents the data model. Section ITI
presents the statistics of the model parameters and their properties. Section IV presents

some examples using the statistical expressions. Finally, Section V concludes the paper.

II. Estimation Procedure Review
A. Data Model

Assume we have N “snapshots” of data vectors y(t), each of length m:

T
= w n® - g | =128 )

Each data vector is modeled as a noisy exponential sequence

Yo(t) =D zi(t)p! +e4(t) ¢=0,1,...,m—1. (2)
=1



There are n distinct exponential modes in the data; the n poles {p;}; do not vary from
snapshot to snapshot, but the amplitudes z;(t) may vary. Here, it is assumed that {e,(t)}
are uncorrelated zero mean complex white Gaussian noise sequences with variance o. Equa-

tion (2) may be compactly written as

y(t) = Az(t) + (1), (3)
T T
where e(t) = | eo(t) e1(t) -+ em_1(t) ] , z(t) = [ z1(t) wa(t) -+ an(t) | ;and A
is the m x n Vandermonde matrix derived from n signal poles
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B. Parameter Estimation

The multi-snapshot backward linear prediction equations are given by:
1
[ y Y ] ~ 0, (5)

where

b=[b1 by - bL]T (6)



and where

Yyo(1) y1(1) y2(1) - yr(D)
y1(1) y2 (1) y3(1) - yra(1)

Yoz (1) Ym-r2(1)  Ymoz-y(1) -+ Ym-1(1)
Yo(2) y1(2) y2(2) o yn(2)
y1(2) y2(2) y3(2) o yrya(2)

[ y Y ] _ . . . (7)

Ym—(L+1) (2) ym—L(2) Ym—(L—-1) (2) e Ym—1 (2)
Yo(N) y1(N) y2(N) o+ yr(N)
y1(N) y2(IN) y3 (V) - yr41(N)

L ym—(L+1)(N) Ym—L(N) ym—(L—l)(N) o Ym-1(N) ]

Here L is the order of prediction and b is the coefficient vector of the polynomial B(z) given
by
B(2) =1+ biz' + bo2® + -+ br20. (8)

For the noiseless case, L can be any integer greater than or equal to the model order
n; however, in the presence of noise choosing L > n results in more accurate parameter
estimates (see Section II). Note that all of the N snapshots are used simultaneously to
estimate a single set of prediction coefficients (and therefore, a single set of poles).

The TLS-Prony method considers the effect of noise perturbation of both Y and y, and
the TLS solution attempts to minimize the effect of these perturbations on the prediction
coefficient vector b (see (Kumaresan and Tufts, 1982a; Rahman and Yu, 1987) for details).

This is accomplished by obtaining an SVD of the matrix [ y Y ] and truncating all but
the first n singular values to arrive at an estimate [ 7 Y ] (Kumaresan and Tufts, 1982a;

Rahman and Yu, 1987). Inserting[ g : Y ] in Equation (5) gives the modified linear pre-

diction equation

A~

Yo=—y (9)



from which the linear prediction coefficient vector estimate b is found as
b=-Y*7, (10)

where T denotes the Moore-Penrose pseudoinverse. A numerically robust solution for b can
be found directly from the SVD of [ 7 o Y ], as is shown in (Rahman and Yu, 1987).

Finally, the estimates for the poles are found by

ﬁj = zero; (E(z)) , j=12,...,L. (11)

Once the L poles are determined from Equation (11), one must separate the n “true”
poles from the remaining L — n “extraneous” or “noise” poles. A popular approach is
to choose n poles based on their location with respect to the unit circle. For example,
one can choose the n poles closest to the unit circle if it is known that the poles are
undamped (Stoica and Séderdtrom, 1991) or the n poles with smallest moduli if it is known
that the poles are damped (Kumaresan and Tufts, 1982b). However, these methods do
not apply when the true poles may lie both inside and outside the unit circle. In this
case we can classify poles as true or extraneous based on the energy of the corresponding
mode. We have found this method to be more reliable than other procedures for the
case when the true modes lie both inside and outside the unit circle. This arises, for
example, in the radar scattering problem where measurements are made over a small relative
bandwidth, and the exponential modes in the data can be decaying or growing over that
band (Sacchini et al., 1992; Sacchini, 1992).

In this energy criterion method, the L sets of amplitude coefficients can be found using
the pole estimates, and Equation (3) leads to the following least squares equation for the

amplitude coefficients,
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or

ApXp =Y, (13)

A least squares solution to Equation (13) can be computed as

~ o~ =1 ~

Xp=(A1AL)  ApYa = A}V, (14)
where * denotes complex conjugate transpose. (However, in practice, more numerically
robust procedures, such as a QR decomposition, should be used to solve Equation (13).)
Because only n singular values of [ 7 v ] are nonzero, there are at most n pole estimates

which can correspond to data modes. Therefore, only the n poles which have the largest

energy are retained. This is done by computing the L mode energies as

N m—1
Bi=Y [m@F Y B i=12...,L (15)
t=1 q=0

and retaining those n poles whose corresponding energies are highest. We then reestimate
the amplitude coefficients of these n poles. This is done using Equation (14), except that
Ap is replaced by 121\, where A is the Vandermonde matrix composed only of the n columns
of Ap corresponding to the n selected poles. We note that the above procedure produces

consistent estimates as ¢ — 0, as is shown in the Appendix.

III. Statistical Analysis

In this section we present a first order statistics of the complete set of parameter esti-
mates obtained in the TLS-Prony method. Assume the data is given as in Equation (2).
Let w; and «; be the angle and magnitude, respectively, of each pole p;, thus p; = a;e/*:.
Similarly let y(t) and B(t) be the angle and magnitude vectors, respectively, of each vector

of amplitude coefficients z(t),

T
10 = [ 00 »O - o |
T
, (10
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where

T
z(t)=| Br(t)edn®  By(t)ed2) ... B (t)eirm(®) (17)
Define following parameter vectors:
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- T
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- T
0 = |67 of | . (18)

The following theorem gives the first order approximation of the probability density func-
tion (pdf) of 6.

Theorem 1: Let 6 denote the TLS-Prony estimate of 8 which is given by the n highest en-
ergy mode estimates found in Equations (11) and (14). Then to a first order approximation

(as 0 — 0), the pdf of 6 is given by the unbiased Normal distribution

gNN(9729)7 (19)
where
Mg =
[ Ty ULnTs~t 1) -+ TU(LN) U(1, N)T5~1(N) V(1) V(1)T,
T MUY TN WU )T ) - =T, (UL N) T WTA,N)T H(N) T MV T3 )V ()T !
U(N,1) UN,)T5~ (1) - U(N,N) U(N, N)T5 1 (N) V(N) V(N)T,
—T; (N)U(N,1) T3 (N)U (N, )T~ (1) -+ =T; (N)U (N, N) T3 (NYU (N, N)Tz 2 (N) =T; (N)V (N) T5* (N)V (N)To ™
V() VT ) e TR V*(N)Ty 1 () z 27,71
T (1) TV ()T~ 1(1) - —T5VH(N) TV (N)T5~1(N) —TlZ T YZT, !
(20)

where - and ~ in Equation (20) are real and imaginary part operators, respectively, and
where U(t,r), V(t), and Z are n X n complex matrices which depend on 6, L, and m. The
specific formulas for these entries can be found in the Appendix. Tj(t) and T, are diagonal

matrices given by

) 1 1 1
o) = divg (g o 5)




T, = diag<i,i,...,i). (21)

a1’ ag ay,

Proof: See the Appendix. O

Several properties of the covariance can be derived from the structure of 3y. Some of
these properties are presented in the following corollaries.

Corollary 1: From Yy in Equation (20), Cov ('ﬂ(t),@(t)) =0, and Cov (©;,a;) = 0.

Proof: Consider the blocks of ¥y containing the covariances of interest, which are given
by (,Nf(t,t)Tﬂ_l(t) and ZT, . From Equation (66) in the Appendix, it can be seen that
U(t,t) and Z are Hermitian. If follows that the diagonal elements of U (¢,t) and Z are zero.
Since T(t) and T, are real, diagonal matrices, the diagonal elements of U (t,t)Tp*(t) and
ZT,~! are also zero, which gives the desired result. O

Note that when ¢ # r, U(t,r) is not Hermitian, so the diagonal elements of U(t,r) are
not zero. Thus it is not in general the case that the magnitude of z;(t) and the angle of
xj(t) are uncorrelated for ¢ # j.

Note that from Equation (20) the angle variances are equal to the magnitude variances
except for the transformation matrices Ts(t) and T,. These transformation matrices can
be eliminated by rescaling some of the parameters in 8. The required rescaling is obtained
by using the relative magnitudes of the poles and amplitude coefficients as the estimated

parameters instead of their absolute magnitudes. That is, define the estimate 51 to be as

in Equation (18), but with @; and Bi(t) replaced by the relative magnitudes % and g’g;
We then note that the Jacobian transformation from 6 to 6; is given by
J =diag (In,T5(1), 1, T5(2), . . ., In, Tp(N ), Iny ) - (22)

Corollary 2: X, = cov (51) is given by Equation (20) with all T3(t) and Ti, matrices
replaced by identity matrices. It follows that the covariances of parameter angles are equal
to the covariances of the corresponding relative magnitudes.

Proof: Immediate from the fact that ¥y, = JXgJ with J defined in Equation (22). O

We can also consider a reparameterization of 8 in which real and imaginary parts of
the amplitude coefficients and poles are considered as parameters. Let us denote such a

reparameterization as 62, with corresponding covariance matrix which would give g, .



Corollary 3: Let v denote a complex parameter, which is either a pole p; or an amplitude
coefficient #;(t). Then var(Re{r}) = var(Im{r}) and Re{r} is uncorrelated with Im{v}.

Proof: The result can be obtained by applying the Jacobian variable transformation
from polar to rectangular coordinates to ¥g. This transformation is straightforward, but
tedious, and not presented here. O

Corollary 4: Yy is independent of the absolute phase references of the amplitude coef-
ficients within each snapshot, ¢(t), and independent of the absolute phase reference of the
poles, ¢.

Proof: The result follows by examining the expressions for T3(t) and Ty, in Equation (21),
U(t,r), V(t), and Z in the Appendix, and noting that they remain unchanged if T, (¢) is

replaced by e/?®)T,(t) and p; is replaced by e/?p;. O

IV. Examples

In this section we present a set of examples which illustrate the performance of the TLS-
Prony method. We first compare the first order statistics presented above to the CRB for a
number of cases. The CRB for this data model is presented in (Steedly and Moses, 1991).

We then compare the first order statistics to those obtained using Monte-Carlo simulation.

A. Ezample 1: Single Ezponential Mode

In this example we consider a single pole model with one snapshot of data (and thus
one amplitude coefficient). The experiment entails moving the pole along the positive real
axis from 0.1 to 10, z.e. 0.1 < p < 10 (the results are independent of the pole angle
by Corollary 4, so an angle of zero is chosen). For each pole location , we calculate the
parameter variances using Equation (20) for data sets of lengths 2, 5, 10, 20, 50, and 100.
For comparative purposes, the amplitude coefficient associated with the pole is chosen to
be a positive real number such that the mode energy (z2 E;’;ﬁl p?!) is unity for each pole
location and data length. The noise power is also kept constant at 0 = 1. The model order

L is chosen to be one third of the data length m, which has been shown to be near optimal

for a number of cases (see (Hua and Sarkar, 1990a; Steedly et al., 1992), and A.3 below).
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1. Pole Variances

The first order theoretical variances for the estimated pole angle and pole magnitude
appear as the dashed lines in Figures 1 and 2, respectively; the corresponding CRBs appear
as the solid lines in these figures. From Figure 1 we see that the pole angle variances are
close to the CRBs when the pole is inside the unit circle. When the pole is outside the unit
circle, the variances become much higher than the CRBs (except for the m = 2 case). For
larger data lengths the disparity with the CRB is much more pronounced. This is because
backward linear prediction is used in our TLS-Prony estimation method. With backward
linear prediction, extraneous poles lie outside the unit circle, thus making estimation of
poles outside the unit circle more difficult (Kumaresan, 1983). The use of forward linear
prediction would give corresponding results for poles inside the unit circle. Similar observa-
tions apply to the pole magnitude variances (see Figure 2). The pole magnitude variances
can be normalized to give relative error of the pole magnitude, .e. var(%). If this is done,
one obtains exactly the same curves as in Figure 1 (¢f. Corollary 2).

From these two figures we also see that inside the unit circle the variances for pole angle
are higher than the variances for pole magnitude and vice-versa outside the unit circle. This
is because the angular uncertainty becomes greater as a pole moves closer to the origin. As
expected, the pole angle variance approaches infinity as the pole approaches the origin.

From Figures 1 and 2 we see that the pole angle and magnitude variances are asymp-
totically (as m — oco) lowest when the pole is on the unit circle, and that on the unit circle
the variances are decreasing by 1/m? (m is the data length). This is consistent with the
well-known 1/m? variance decrease, since the amplitude coefficient is adjusted in this ex-
periment to keep the mode energy constant (if the amplitude coefficient is left unchanged,
the variance decrease is 1/m3).

When the pole is not on the unit circle, the variances do not decrease to zero as m — oo.
Recall that we keep the total mode energy constant. For a decaying or growing exponential
mode, adding data points while keeping the energy constant results in adding data points
with smaller and smaller amplitude. As a result, the parameter estimate variances do not

continue to decrease.
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2. Amplitude Coefficient Variances

The variances for the amplitude coeflficient angle and magnitude appear in Figures 3
and 4. As before, each curve is a plot of variance versus pole radius for various data lengths
m. There are several points to note in these figures. First, when the pole is inside the
unit circle, increasing the number of data points provides no significant decrease in the
variances. The first data point with no noise added is precisely the amplitude coefficient.
When the pole is inside the unit circle, this amplitude does not change much as a function
of data length, and consequently its variance does not change much. However, when the
pole is outside the unit circle, the amplitude coefficient decreases rapidly toward zero as
data length increases. Thus, outside the unit circle the estimate of the amplitude cannot
be expected to vary much around zero and the magnitude variances become low. Also,
variance of the estimated angle becomes quite large because of high angular uncertainty for

points near zero.

3. Prediction Order Considerations

In the above figures we used a prediction order L equal to one-third the data length. We
next consider the effect of prediction order on the variances of the TLS-Prony parameter
estimates. We consider a single exponential mode whose pole is on the unit circle. We
choose 0 = 1 and choose the amplitude coefficient so that the mode energy is unity, as
before.

Figures 5, 6, and 7 show the variances of the pole angle, amplitude coefficient mag-
nitude, and amplitude coefficient angle. The solid lines represent the CRBs (which are,
of course, independent of TLS prediction order), and the dotted lines represent the TLS-
Prony variances. Figure 5 has been presented in earlier works (Hua and Sarkar, 1990a;
Clergeot et al., 1989; Kot et al., 1987), but the amplitude coefficient was not considered
there. Since the pole is on the unit circle, the pole magnitude results are identical to
the pole angle results (¢f. Corollary 2, with a3 = 1). From these figures we can see
that the best prediction order choice is approximately m/3; this agrees with the results
in (Hua and Sarkar, 1990a; Clergeot et al., 1989; Kot et al., 1987).

12



B. Ezample 2: Two Undamped Ezponential Modes

(wo+Aw/2) (wo—Aw/2)

In this example we consider two poles at arel and ase’ with a1 =
ag = 1. Variances are computed for various data lengths (m = 5, 10, 20, 50, and 100) and
angle separations Aw. The variance results are independent of wg so wg = 0 is used. Again,
L =m/3, o0 =1, one snapshot of data is used (N = 1), and each amplitude is chosen such
that the corresponding mode energy is unity.

Figure 8 shows the variances for the pole angle estimate (of either pole) as a function
of pole separation and data length. The solid lines again show corresponding CRB results.
The variances for the pole magnitudes are equal to the pole angle variances because these
poles are located on the unit circle. We see that the TLS-Prony algorithm performs well

with respect to the CRB. In fact, for the curves shown, the TLS-Prony variance curves are

always within 2dB of the corresponding CRB curves.

C. FEzample 3: Monte-Carlo Stmulation of Ten Mode Case

In this example, we have chosen ten exponential modes to represent a general case. The
true pole location of each mode is denoted with an “x” in Figure 9(a). For this case we have
m = 100 data points, L = 33, and ¢ = 0.001. The amplitude coefficients are chosen so that
each mode energy is unity; this corresponds to an SNR of 10dB per mode; the total SNR
(signal power/noise power) is 20dB. The modes were chosen as a representative sampling
of various situations.

Figure 9 presents a comparison between the TLS-Prony estimate theoretical variances
and variance estimates obtained using Monte-Carlo simulations. The theoretical variances
are shown as two-standard deviation concentration ellipses around each pole. These ellipses
(they are actually circles, by Corollary 3) give 87% confidence intervals in the complex plane
for pole pole estimates. The dots in Figure 9 are pole estimates corresponding to the ten
highest energy poles from each of 100 Monte-Carlo simulations. The details of the pole
estimation accuracy are summarized in Table 1. Note that the Monte-Carlo variances are
close to those predicted by theory for most of the poles, in particular for those closer to

the unit circle. For poles well inside the unit circle, there is some bias present which is not
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predicted by a first order approximation; in addition, the predicted variance is smaller than
the actual variance. As poles move outside the unit circle to the radius of the extraneous
poles, some deterioration occurs in terms of misidentifying pole estimates as “true” or
« ” o . . . . .
extraneous”. Note the rapid increase in variance of a pole estimate as its radius increases,

by comparing the variance for pole 2, 8, 4, and 1.

V. Conclusions

We have presented a statistical analysis for estimated poles of the TLS-Prony algorithm.
This analysis includes complete expressions for the covariance matrix of the parameters
of an exponential model which contains one set of poles and multiple sets of amplitude
coefficients. The poles of this model may lie anywhere in the complex plane. Using these
expressions, several useful properties of the covariance matrix were established. These
include independence of the two parameters for each amplitude coefficient and pole, whether
one considers a polar, a relative magnitude polar, or a rectangular real and imaginary part
parameterization. It was also established that the variances of these pairs are equal for the
relative magnitude polar and rectangular real and imaginary part parameterizations.

The results of this paper provide a sound basis for performance analyses of the TLS-
Prony estimation method. We have extended previous works to include the general damped
undamped case, as well as to include amplitude coefficient parameters in addition to pole
parameters. The results can be used to analyze various situations and evaluate the potential
success of applying the TLS-Prony estimation algorithm, as the corollaries and examples in

the paper demonstrate.
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Appendix: Proof of Theorem 1

From Equation (10) we note that

>

b=b—-b = —-Ytj+Sts
= —Vt(s+35)+5ts

= _ (17+ _ S+) s— VT3 (23)

where
5] s8]

Here, [ s S ] is the noise free version of [ 7 Yy ], and b is the Lth order linear
prediction coefficient vector associated with the poles of the noiseless model. Note that
b gives the n true poles and L — n extraneous poles (c¢f. (Kumaresan, 1983)). In order

to evaluate the expression in Equation (23) we use the following identity for any matrix

M (Wedin, 1973)
— o~ ~ o~~~ —~
M* - Mt =-M*MM*t + (M*M) M*Py + PE M* (MM*)T, (25)

where M = ]/\/I\—M, PAJ;I =I,—MMT, PJJI/‘:,* =1, —]/V[\*]/\/I\*Jr, and I, is the g X g identity

matrix. Using the fact that Pers = 0 and a first order approximation, we then obtain

b = —Y*Sh— Py S5 TSt -V
~ —StSh— P#S*S*TSts — SYs. (26)

The above approximation is valid since the matrices [ 7 o Y ] and [ s S ] have the

same rank. Let
[y:Y]=[s:S]+[w:W], (27)

where [ w W ] is defined as the noise-only part of [ y Y ] (see Equations (2)

and (7)). By using the perturbation analysis in (Hua and Sarkar, 1990b) on the matrices
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[s : S],[y : Y],a.nd[g : }7],itcanbeshownthattoaﬁrstorderapproxi—

mation
S+[§:§]=S+[w:W]- (28)
The above equation also implies that S*G*t = rgrt, Thus, Equation (26) can be written

(to a first order approximation) as
b=—-STWb— P&W*S*T8+ts — Stw. (29)

From Equation (29), we note that b — 0 as 0 — 0 since the elements of W and w are un-
correlated, zero mean, complex white Gaussian random variables. Therefore, the resulting
L pole estimates are consistent as ¢ — 0. Similarly it can be shown that the L sets of
the amplitude coefficients are also consistent as ¢ — 0. Note that the “true” amplitude
coefficients of the extraneous modes are zero; thus it follows that choosing the n highest
energy poles as the true poles is consistent as ¢ — 0.

Note that SP‘SJ'; = 0. Multiplying both sides of Equation (29) through by S, we obtain
Sb=—S8S"e, (30)

where € = w + Wh.
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From Equation (2), we can write S as

[ 131(1) 1:2(1) v J:n(l) ]
z1(1)p z2(1)p2 20 (1)pn
e (Dpy~E mp(py TV ()T Y
z1(2) z2(2) .. zn(2)
T1 (2)p1 T2 (2)172 e T (2)Pn
S = : : : G, (31)
x1 (2)p;"—(L+1) oo (2)p;n—(L+1) . Zn(2)p;n_(L+1)
z1(N) z2(N) 2 (N)
1 (N)p1 z2(N)p2 2 (N)pn
i a:1(N)pT—(L+1) w2(N)p12n—(L+1) o (N (D ]
or
where G is given by
p1 p3 --- pk
2 L
G=|" .y (33)
L pn P pE |

Equation (30) thus becomes
HGb=—HGS"e. (34)

Now note from Equation (8) that the true and estimated Lth order characteristic poly-
nomials are B(z) = 1+ bzt + boz? +--- 4+ brz" and E(z) =1 +3121 —|—3222 + .- +3L2L,
respectively. Note that B (p;) = 0 and B (p;) = 0.

We can use a first order Taylor expansion to find an expression for the error in the
estimated pole locations. We follow the technique in (Stoica et al., 1989). For each p; we

obtain
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— B (ps) + aﬁé(z)ll_pi (p; — pi) + (higher order terms)
z
= B (pi) — B (pi) + gﬁ(zﬂz:pi (pi — pi) + (higher order terms)
z
~ 1 +31pi +ngl2 + - +ZLPZ'L — (1 + bipi + bgp? +e prz'L)

+ (31 + 2bop; + -+ + LZLPiL_l) (Pi — pi)

[ B — b | 1
I 1| 52—t 2p; -
~ | pi p? .- pF . +[bl by - bL] ) (P — pi)
_EL—bL_ _LpZ-L_l_
= |p P - pf <E— b) +ni (i — pi) - (35)

Thus, to a first-order approximation

~ 1 ~
F-p)==2|p ot ok ]R (36)
1
where 7; is given by
1
2p;
"7i=[b1 by - bL] S (37)
| Lpi 7t
In matrix form we thus obtain
~ A —~ ~
P=P—-P=—-FGQGb, (38)
where
. T
P = [ p1 P2 Dn
T
P = [Pl p2 Pn ]
1 1 1
P o= ae(L 1 1) -
m 72 Tn

Since the n poles are distinct, H is of full column rank. Hence, we can multiply Equa-
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tion (34) by (H*H)™! H* to get
Gb= —GSte, (40)

and by substituting Equation (40) into Equation (38) we obtain
P =FGSte. (41)
We now note that to a first order approximation, Pis given by
P = agoé“—aee
— (6\4 + &) ® ej(w+$) —« @ejw

= (a4+a)0e“® 1+ o+ (hot))—a®e®

(@a+a@) @ +a®@e” 0 jv—a®e¥

Q

_ -1 ~ i~
= T, (Taa +jw), (42)

where ® denotes the Hadamard product, and

) T
ejw = ejwl ejw2 e ej‘-‘-’n
T
o = D1 Wy -+ Wp
- T
& = &1 &2 e &n
/11 1
T, = diag (—, — —) (43)
P1 P2 Pn

and where @; = &; — w; and &; = @; — ;. From Equations (41) and (42) we obtain:

w = Im{T,FGSTe}

a = Re{TngpFGs+e}. (44)

Recall that the elements of W and w are uncorrelated, zero mean, complex white Gaus-

sian random variables. Thus, € is multivariate Gaussian with zero mean and covariance

sect-sl([« - w]()(e - wlED oo

22

matrix



D is defined as a (m — L) N x mN block diagonal matrix given by

D =diag(B,B,...,B), (46)
where B is given by
1 b by -+ b O 0 e 0
0 1 b -+ br1 b O - 0
B=|: ", " - . (47)
o «--- 0 1 by <o b br, 0
o .-~ 0 0 1 -+ br_o br_1 bp

L 4 (m—L)x(m)

We also have

slel=e ([ - w BN ([ IR0

Using these results, along with the following relationships (proven in Stoica and Nehorai

(1989))

Re{u}Re{vT} = % [Re{uvT} + Re{uv*}]
Im{u}Im{v’} = —% [Re{uvT} — Re{uv*}}
Re{u}Im{v’} = % [Im{uvT} — Im{uv*}} , (49)

we obtain the following covariances for the pole parameters:

E [@&T} = gRe {TpFGS+DD*S*+G*F*T;}
E [aaT] = %Im {TpFGSJ’DD*S*J’G*F*T;T;_l}
E [&&T} = %Re {Ta_lTpFGSJ’DD*S*J’G*F*T;T;_1} ‘ (50)

To obtain the covariances for the amplitude coefficient parameters we use Equation (14),
which provides the amplitude coefficient estimates for each snapshot in terms of the esti-

mated poles. We now note the following

XE2X_-X = Aty,— A*s,
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= At (S,+N,) — A*S,

= (A% - A7) S+ AN, (51)

where
X = [ z(1) z(2) - z(N) ] : (52)
and where S, is the noise free version of Y, and N, = [ e(l) e(2) --- e(N) is the

corresponding noise.
We apply the identity in Equation (25) to the first term of Equation (51). Since the n

poles are distinct, A and A are full rank. Also, since m > n and S, € Range(A4), we have
(At — AT)S, = —AT AA*S,. (53)

From Equations (51) and (53) we obtain the following first order approximation

X = —AYAA*S,+ ATN,
= —AYAX + ATN,

~ —ATAX + ATN,. (54)

Note that X is a matrix in which each column is composed of the amplitude coefficient

variations for each snapshot:

X = [ (1) F2) - F(N) ] : (55)
Following the same procedure as in Equation (42), a first order approximation of Z(t) is
given by

(1)~ T7H() (Tp0BE®) + 53 (D)) (56)
where

T
70 = 5@ B0 - 50 ]

T

) = | AW B - B
T.(t) = diag( LIRS SR ) (57)

z1(t) z2(t)" Tz (t)
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and where 7;(t) = ¥;(t) — 7vi(t) and Bl(t) = B,(t) — Bi(t). From Equations (54), (55), and

(56) we obtain

7(t)

0!

Im {Tz(t)A+ (—Ex(t) + e(t))}
Re {Tﬁtl(t)Tm(t)ﬁ (—Em(t) + e(t))} .

(58)

Before computing covariances for the parameters in Equation (58), we need to perform

some manipulations to Az (t), since the random variable A does not appear at the rightmost

position. We proceed with a first order approximation as follows

Az(t)

Q

0
P1—p1

pi — i

p1
2p1p1

m—2~

i (m - 1)P1 P1
CAT,diag (p1, p2,

CAT, *(t)T, P

CAT;*(H)T,FGS

0
D2 — p2
p5 —p3
~12n—1 _pgn 1
0
D2
2pap2
(m—1)py
ey D) @(t)

-I-67

where C is a diagonal matrix given by

2Py

0

~

Pn — Pn
pe — Pl

m—1
n

_]__p

0

Pn
2pnpn

C =diag(0,1,...,m—1).

Equation (58) can now be approximated by

y(t)

B(t)

Q
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tm { T, (t) A* (~CAT; ()T, FGS e+ e(t)) |

Re {Tﬂ_l(t)Tz(t)AJ’ (—CAT;I(t)TpFGs+e + e(t))} ,

(m—1)p;}

z(t)

2~
Pn |

(59)

(60)

(61)



Since

Blee*(t)] = B [([ w W ] [2]) e*(t)] = oD(1), (62)

where D(t) are each given by the tth column block of D (¢f. see Equation (46)), we also

sleral = o[([o w][ o]0

Ele®)e(t) = 0. (63)

have

Using these results and Equations (49) and (61) we obtain the following covariances for

the amplitude coefficient parameters

Eh(t)?T(T)] - %Re{Tz(t)A"' (C’AT;l(t)TpFGS+DD*S+*G*F*T;T;_1(r)A*C’*
—~CAT, T, () FGSTD(r) — D*(t)ST"G*F*T; T ' (r)A*C”
+Inbyy) ATTE(r) }

E[f?(t)ﬁT(r)] - %Im{Tx(t)A"' (CAT;1(t)TpFGS+DD*S+*G*F*T;T;—1(r)A*C*

—CAT; () T,FGSTD(r) — D*(t)ST"G*F*T;T; ' (r)A*C*

L) AT ()T ()}

E [B(1)5" ()] %Re {17 T () AT (CAT ()T, FGSDD* S G F*T3T ™ (r) A*C”
—CAT, (Y T,FGSTD(r) — D*(t) ST G*F*T;T; ' (r)A*C*

+Indyy) ATT ()T () } (64)

Using Equations (44), (49), and (61) we can also compute the cross-covariances between

the poles and the amplitude coefficients as follows

B [7()a"] = %Re {T.(t) AT (~CAT; ()T, FGS* DD* + D*(1)) $T°G*F*T; |

E[7(1)a"] = glm {T.(t) AT (~CAT, ()T, FGS*DD* + D*(t)) $T'G* F*T;T, '}

E [E(t)aT ] = —%Im {Tﬂ_l(t)TI(t)fﬁ (-CAT;l(t)TpFG5+DD* + D*(t)) 5+*G*F*T;}
E[Bma"]| = %Re {17 T () At (~CAT ()T, FGST DD* + D*(1)) 7" G* F*T; T}

(65)
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Equations (50), (64), and (65) completely specify ¥4 as given in Equation (20) using

the following substitutions

Ult,r) = R(HZR'(r) - R(t)Q(r) — Q*(t)R*(r) + gTz(t)A+A+*T§(T)5t,T
V(t) = —R(t)Z+Q*(t)

Z = JLFGS'DD'S™ G'F'I;
Q) = ngFGS+D(t)A+*T;(t)

R(t) = T,(t)ATCAT (). (66)

Furthermore, since € and e(t) are zero mean, Equations (44) and (61) imply that the
parameter estimates are unbiased, ¢.e. to a first order approximation F [é\} = 0. This

completes the proof. O
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Table 1: Theoretical and simulation variances for the poles of a general ten mode case.

Pole Theoretical variance | Simulation variance | Pole
number (dB) (dB) radius
1 -24.2 -22.4 1.115
2 -42.7 -43.4 1.05
3 -35.7 -35.2 0.8
4 -25.8 -22.4 1.12
5 -57.1 -56.9 1.0
6 -57.0 -56.1 1.0
7 -25.8 -21.5 0.6
8 -29.4 -29.1 1.115
9 -39.1 -32.2 0.9
10 -30.1 -26.7 0.7




pole angle variances

104

103 +

102 +

101

100

101

102

103

10

105

106

— CRB i
fffff TLS-Prony Theory

101

Figure 1:

100

pole radius

Pole angle variances for single pole data (n = 1).

101



pole magnitude variances

104 —
108
102
101
100
101
102
103

104 CRB

105

10-6 L L

————— TLS-Prony Theory |

101 100

pole radius

Figure 2: Pole magnitude variances for single pole data (n =1).

101



amplitude coefficient angle variances

104

108

102

101

100

101} :
102} 1

103} 1

104+ — CRB i
fffff TLS-Prony Theory

105 1

10-6 L L
101 100 101

pole radius

Figure 3: Amplitude coefficient angle variances for single pole data (n=1).



104 T

—  CRB

L TLS-Prony Theory |

102 - :
10t - 1

100 - m=2 5

101+

102

103}

10

amplitude coefficient magnitude variances

m=50 | |!
5 e
10 m=100 | |\

10-6 R \ N
101 100 101

pole radius

Figure 4: Amplitude coefficient magnitude variances for single pole data (n=1).



pole angle variances

101

- — CRB ]
I S TLS-Prony Theory ]
100 E B
- s |
101 .- m=10 &
L m=20 -
102, ”E
S T mes0
103 R I m=100 E
10-4 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
prediction order
Figure 5: Pole angle variances for various prediction orders.



100

- — CRB
rm=ss TLS-Prony Theory

T
|

. / |
L — , ! i
. m=10 ! !
,
/’ ! 1

101

amplitude coefficient magnitude variances

10-2 I I I I I I I I I

prediction order

Figure 6: Amplitude coefficient magnitude variances for various prediction orders.



102

L — CRB ]

b b TLS-Prony Theory 1
g 1
Q |
kS I a
] , ' /
> L ! [
Q \ !
g ’J m=100
g o / / m=50 1
5 L / i
] -y m=10 m=20 .
() [ Ny [ 4
o] \ » ,’
=] = ! . ; g

m=5

100 I I I I I I I I I
0 10 20 30 40 50 60 70 80 20 100

prediction order

Figure 7: Amplitude coefficient angle variances for various prediction orders.



1015 LI B B LI B B T T T

— CRB
fffff TLS-Prony Theory |

1012}

100 | 1

106

103 +

pole angle variances

100 +

103 m=100 o ___

10-6 T | T | |
100 101 102 103

angle between poles (degrees)

Figure 8: Angle variances as a function of pole separation for two poles on the unit circle.



15

0.5

x4

x1

x8

-1 -0.5 0 0.5 1

(a)

15

theoretical bounding circles and Monte-Carlo estimates.

15

Figure 9: A general ten mode case: (a) true pole locations and (b) two standard deviation

15



