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Estimated spectral densities max often take on negative values in
some frequency bands, and hence need be corrected to become
positive for all frequencies. The Letier describes 8 most natural
approach 1o enforcing the positiveness condition on an estimated
spectral density, which is shown to Jead to a semi-infinute
optimisation problem. In the numerical example reporied. the
latter problem is solved by using the Matlab Optimization
Toolbox.

Problem statement: Let {r,),." denote the estimated covariances
of a discrete time stationary signal. The corresponding estimated
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spectral density is given by
n

flay= 3 Fwst (1)

k=~n
Hereafter, @ denotes the (angular) frequency variable. As $(w) is
an even periodic function of w, with period 2m, it suffices to con-
sider eqn. [ for w € [0, =]. Estimated spectral densities having the
above form are ubiquitous in signal processing applications. They
are encountered both in nonparametric applications (e.g. based on
the Blackman-Tukey approach) and in parametric spectral estima-~
tion applications (e.g. by using an MA or ARMA model).

Several commonly-used methods for spectral estimation do not
guarantee that $(w) = 0 for all w in [0, =], and hence they may
yield estimates with negative values at some frequencies. As such a
situation is not acceptable for most applications, several research-
ers have proposed methods for enforcing the positiveness condi-
tion on an estimated §(w) (see, for example, [1-5]). Some of these
methods are simple to apply, but rather ad-hoc [3-5]. Others are
optimal, albeit in a limited sense, but they are somewhat intricate
from an algorithmic standpoint [1, 2]. This Letter shows that a
most general approach to enforcing the positiveness condition on
$(w) naturally leads to a semi-infinite optimisation problem, the
solution of which can be obtained for instance by using the Mat-
lab Optimization Toolbox.

S(w) = fle™)

Proposed solution: Let

pw)=[1 cosw...cosnw]l (2)
p=1[ro 27 ...27,]7 (3)

By making use of this notation, ¢(w) can be written as
3(w) = 5T o(w) (4)

Whenever §(w) is not positive for all w € [0, n], a vector p which
gives a valid spectral density

Mw) = plo(w) >0 w € [0.7] (3)
is to be determined such that ¢(w) is ‘close to’ (ﬁ(m). A natural for-
mulation of this problem is as follows:
D Y A - .
mm-—/ W (w)[0(w) — 6(w)]? du
P T Jo
subject to  ¢(w) >0 for w € [0,7] (6)
In eqn. 6, W(w) is a weighting function that can be used to
emphasise certain frequency bands.

A straightforward calculation shows that eqn. 6 can be re-writ-
ten in the following more convenient form:

min(p — p)TQ(p - p)

subject to pT(w) >0 for we 07} (7)
where

1/ . s
Q=1 [ Wlp)e () do ®)

For simplicity, in the following we consider the common choice
B{w) = 1. For this case Q is readily derived:

1 0

1/2
Q= ) (©)

0 1/2
Matrix @ above differs only slightly from the choice @ = 1 consid-
ered in [1]. Of course, other choices of W{(w) in eqn. 8§ may lead 1o
completely different @ matrices.

Next, we note that eqn. 7 is a semi-infinite optimisation prob-

lem which can be solved by a variety of algorithms. Here we use
the function ‘seminf’ in the Optimization Toolbox of Matlab. The

initial estimate required to start seminf can be determined as fol-
lows. Let 0, and w, be such that

Plw) = dlwz) =0 and P(w) <0 wE€ (wr,wz) (10)

{w, and w, can be obtained either by rooting $¢) or by inspection
of the plot of $(w)). If @ = (w, + @;)/2 = 0 or &, then compute

f(2) =2 f(2)) (=) (2 =) (2 me ) (—e )

X (z—e")}(z—e~*)? (11)

If © =0 or =, then f(z) is redefined as
() = M) - ez - e )z - ) (12)

By construction, $(w) 2 f(e*) is non-negative for v € [w,, w,].
Continuing in the above simple way, as necessary, we can obtain g
corrected spectral estimate that is non-negative for all frequencies,
This estimate is used as the starting point for seminf. An improved
initial estimate can be obtained by optimally scaling f'(z) deter-
mined as above. The optimal scaling factor is determined by the
minimisation of the criterion in eqn. 7. This amounts to solving a
very simple least-squares problem, the details of which are omitted
in the interest of brevity.

Fig. 1 Initial and corrected spectral densities
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Numerical example: For illustration purposes, we consider one of
the examples in [1]. Let p = [1 2 3). The corresponding §(w) does
not satisfy eqn. 5, as shown in Fig. 1. The correction method
based on eqn. 11 yields p = [3.270 2.544 3.000)” and § (w) exhib-
ited in Fig. 1. The optimal correction method, which uses the
function seminf (initialised by §) to solve the semi-infinite optimi-
sation problem eqn. 7, gives p = [1.800 1.600 1.600)7 and ¢{w)
shown in Fig. 1. For comparison, Fig. 1 also includes the solution
derived in [1], which corresponds to using the slightly different
weight Q0 = [ in eqn. 7 (the corresponding p is p = [2.154 1.743
1.960]7). As expected, the corrected ¢(w) obtained with the method
of this Letter is closer to ¢(w) than is the corrected spectral den-
sity derived in [1]. In fact, the values of the criterion in eqn. 7 cor-
responding to  §, p,, and py, above are 5.300, 1.700 and 1.906,
respectively.

In conclusion, it should be noted that the function seminf has
been found to work quite properly on all simulations conducted.
When initialised as described above, seminf yields the optimally
corrected ¢(w) almost instantaneously for low dimensional prob-
lems. Although using seminf to solve the optimisation problem
(eqn. 7) may be expected to be less efficient computationally than
using the specialised algorithm of [1], seminf is simple to use and,
unlike the method in [1}, it does not require much interaction with
the user.
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