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Two-Dimensional Prony Modeling and Parameter
Estimation

Joseph J. Sacchini, Member, IEEE, William M. Steedly, Member, IEEE,
and Randolph L. Moses, Senior Member, IEEE

Abstract—A new method for estimating the two-dimensional
(2-D) exponential modes and amplitude coefficients in a Prony
model is presented. This method involves two parts, each uti-
lizing a 1-D singular value decomposition-based technique, and
is capable of locating frequencies anywhere in the 2-D fre-
quency plane. Simulations are shown which demonstrate the
performance of the algorithm.

I. INTRODUCTION

OR many years the problem of two-dimensional

(2-D) frequency and amplitude coefficient estimation
from a 2-D data set has been investigated. This problem
has applications in sonar, radar, geophysics, radio astron-
omy, radio communications, and medical imaging [1]-
[7]. Many techniques have been applied to the problem
such as Fourier-based methods, data extension, maximum
likelihood method (MLM), maximum entropy method
(MEM), autoregressive (AR) models, and linear predic-
tion (LP) models [8]-[15].

Fourier-based methods are currently used in tomogra-
phy to generate an image of an object [2]-[6]. The prop-
erties of these techniques have been well studied [2].
However, these techniques are limited by Fourier reso-
lution capabilities. Also, these techniques do not directly
estimate the frequencies. Thresholding must be used in
the 2-D frequency domain to determine the frequencies.

Other methods include the MLM of spectral estimation
which was proposed as an m-dimensional (m-D) tech-
nique for array processing [8]. This technique has also
been applied to the tomography problem in [14]. The
MEM of spectral estimation has also been applied to the
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2-D problem [10], [11], [15]. This method also provides
high resolution, but does not exist for all data sets [16].
Two-dimensional AR modeling and algorithms exist [9],
[12], [13], as well as state space methods [17]. A matrix
pencil method [18] has also been used.

Prony’s method coupled with total least squares (TLS)
techniques in one-dimension (1-D) has been used suc-
cessfully to estimate frequencies in the presence of noise
[19]. For the 2-D problem, an iterative constrained total
least squares (CTLS) algorithm has been applied to pro-
vide frequencies [20]. In this paper, 2-D frequencies and
amplitude coeflicients are estimated by a noniterative two-
step method using a 1-D TLS-based Prony model and es-
timation technique in each step. This method is capable
of locating frequencies anywhere in the 2-D plane, along
with their damping factors.

A related method, developed by Hua [18], also esti-
mates 2-D frequencies. In Hua’s method, two estimation
steps are performed to separately estimate the x-compo-
nents and y-components of the 2-D frequencies. Then, a
matching step is performed to find the correct x-compo-
nent and y-component frequency pairings. The method we
present is similar to Hua’s in some respects, but different
in others. First, we estimate the x-components of the fre-
quencies. Then, we use the amplitude coefficients corre-
sponding to each x-component frequency to estimate a set
of y-components. In this way, we avoid the requirement
of a matching step. Our algorithm is computationally less
expensive than Hua’s method, and more amenable to par-
allel implementation. We also present a second algorithm
in which the first algorithm is used twice, first to estimate
x then y-components and then y then x-components. This
second algorithm does require matching, but gives more
accurate parameter estimates than does the first method.
Both methods we present have a smaller computational
load than Hua’s method, but Hua’s method generally gives
more accurate parameter estimates. Thus, the methods we
present are lower computational alternatives to [18], for
cases in which some loss in accuracy can be tolerated.

An outline of this paper is as follows. In Section II, the
data model and parameter estimation procedures are pre-
sented, along with computational issues. Section 1II pre-
sents simulations using the estimation procedure. Finally,
Section IV concludes the paper.
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II. DatA MODEL AND ESTIMATION ALGORITHMS
A. Data Model

It is assumed that we are given noisy 2-D data which
has the form

d'(m, n) = d(m, n) + w(m, n), 1
wherem=0,1,--+- ,M—-1landn=20,1,--- ,N—
1 and w(m, n) is 2-D noise sequence. We will refer to the
first index of d (m, n) as the x-component, and the second
index as the y-component.

The noiseless data is assumed to fit the damped expo-
nential model

K L

d(m, n) = kgl gl ak./PZP;k,u @

I
where

Px. = kth x-pole, x-component of 2-D exponential
Py = k, Ith y-pole, y-component of 2-D exponential
k, Ith amplitude coefficient

a1 =

Ly

number of y-poles corresponding to the kth x-pole.
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This model has application in 2-D frequency estimation
for various applications, as well as 2-D scattering center
estimation for the radar problem [21].

Given noisy datad '(m,n), n =0, 1, - - - ,M — 1 and
n=0,1,-++,N — 1, we wish to estimate the param-
eters in the model (2). Below we present two TLS-based
algorithms for estimating these parameters, Algorithm
One and Algorithm Two.

B. Algorithm One

Algorithm One consists of four steps. The x-poles,
{p. K.\, are first estimated using a TLS-Prony algo-
rithm. Second, a set of amplitude coefficients correspond-
ing to these x-pole estimates are computed. The amplitude
coefficients are themselves used in a set of second
TLS-Prony estimates to obtain the y-pole estimates,
{Py % |, which is the third step. Finally, a least squares
technique is used to estimate the amplitude coefficients
{a.;}. These steps are detailed below and summarized in
Table 1.

Step 1: Estimation of the x-poles. The first step in the
parameter estimation problem is to estimate the x-poles,
{p.)¥_|. We now define a matrix composed of the noisy

®)  data, {d'(m, M} LY as
d’'(0, 0) d’'(1, 0) e d'M~-1,0)
_ d’'(, ?) d'(1, }) s d'M - .1, 1) @
d’(O,I.V—l) d’(l,I‘V—l)"'d’(M—.l,N—l)

Each row of D’ can be used to provide an estimate of the x-poles. However, in order to utilize 1-D Prony estimation
procedures, all of the rows of D’ will be used simultaneously in the estimation of the x-poles. A total least squares
(TLS) backward linear prediction approach similar to [19] is used. The backward linear prediction equations are

d' (0, 0) d'q, 0) d'(2,0) d'Q,0 |
d'(1, 0) d'(2,0) d'(3,0) d'(Q + 1,0
d'M-Q-1,0) d'M — Q, 0) d'M—-Q +1,0) d'M — 1, 0)
d'o, 1) d'a, 1) d'2, 1 d'(Q, 1) [ 17
a1, 1 d'@, d'G, 1) d'@Q + 1,1 b,
: : : : by | =0
d'M-Q-1,1 d'M - Q, 1) d'M—-Q+1,1) d'M—-1,1) :
i | b, |
d'O,N -1 d'(1, N = 1) d'2,N—-1 d'(Q,N - 1)
d'Q,N = 1) d'Q,N—-1) d'G,N—1) - d(@Q+ 1,N=1
ldM-Q-1,N-1) dM-QN-1) d'M-Q+1,N-1 - d'M~-1,N= 1]

®
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TABLE 1
SUMMARY OF STEPS PERFORMED IN ALGORITHM ONE

Step Estimated Parameters Method of Solution
1| {pe }, (2-poles) TLS of Eq. (6) w/ SVD truncation
2 {cgm an'ilxﬂ (z-amplitude coefficients) | LS of Eq. (11) via QR decomposition

3 | {pu}ros, (-poles) TLS of Eq. (15) w/ SVD truncation

4 {u*-'}:iih (amplitude coefficients) LS of Eq. (19) via QR decomposition

£

where Q is the order of prediction, and b is the coeflicient
vector of the polynomial B(z) given by

B(z) =

Ideally, Q can be any integer greater than or equal to the
model order K; in practice, choosing Q > K results in
more accurate parameter estimates [22]-[24]. Note that
all of the rows of D' are used simultaneously to estimate
a single set of prediction coefficients (and therefore, a sin-
gle set of x-poles).

Equation (6) is used to solve for the estimate of b, b,
in a total least squares sense to arrive at a minimum norm
(TLS) estimate, where the @ + 1 — K smallest singular
values of § are truncated to arrive at a noise cleaned es-
timate S (see [19] for details).

The estimated x-poles are found by

g=12,-,0 (8

Because only K singular values of § are nonzero, there are
at most K x-pole estimates which can correspond to data
modes. Therefore, only the K x-poles which have the
largest energy are retained (as discussed in Step 2 below).

Step 2: Estimation of the x-amplitude Coefficients. Be-
fore we find the y-poles we must first estimate x-amplitude
coefficients. These are defined as follows:

Lk

_ n
n = 2:1 Ag.1Py,1>

or

(6)

1+ bz +bg?+ - +boz% (D

pr, = €10, (B(2),

g=12,--,0 9
With this definition, the model associated with (2) using
the estimated x-poles is written as

Q
d(m, n) = Z CqnPY, (10
where ¢, , is the gth x-amplitude coefficient associated
with the nth row of D"

Note that the equations in (10) are uncoupled for dif-
ferent values of n. Thus, each row of D' will give an
x-amplitude coefficient estimate for each x-pole. These
estimates serve as the inputs to the second Prony model
and determine the y-poles. The x-amplitude coefficients
are an intermediate step in the estimation procedure and
are completely defined in (9). Also, note that the y-pole
model orders, {L}X_,, may be different for each of the K
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x-poles. Equation (10) is used to solve for the ¢, ,s as
follows

1 1 1
pxl sz ) pr
P Ph © Pi
| pM-t opMet e pt
C,0 Cr1.1 CCILN-1
0 QU TN AN _pT
Co0 €o.1 © CoN-1
or
p.c=D'T. (12)

The x-amplitude coefficients are found from a least squares
solution to (12) using the x-pole estimates, this can be
written as

¢ = (PYPY)"'PID", (13
although numerically more robust solutions (using, e.g.,
the QR decomposition [25]) are preferred to direct com-
putation of (13).

Because only K singular values of § are nonzero, there
are at most K x-pole estimates which can correspond to
data modes. Therefore, only the K x-poles which have the
largest energy are retained. This is done by computing the
Q x-mode energies as

M-1

N-1
= "go léq.nlz m2=;0 \prq|2m q= ,2,---, Q

(14)

and retaining those K poles whose corresponding energies
are highest.

Step 3: Estimation of the y-poles. The x- -amplitude
coefficients can also be used to solve for the y-poles. For
each of the K high energy x-poles, the backward linear
prediction equations for the model given by (9) become

_1_‘
Ck0 Ck,1 * Ci,Ry

b
Ck.1 Ck2 © Ck R+ 1

. ¥l =0

CkN—Ri—1 CkN—Re " CkN-1 k

bRk

e —d

k=1,2,--+,K (15)
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or

. 1
F " =0 (16)
where R, is the order of prediction for the y-poles, and v
is the coefficient vector of the polynomial B*(z) given by

BY@z) = 1 + bz + iz + -+ + bRZ® (a7

Again, R, can be any integer greater than or equal to L,
while in practice choosing R, > L, results in more accu-
rate parameter estimates [22]-[24]. .

Equation (16) is used to solve for the estimate of b*, b,
in a total least squares sense to arrive at a minimum norm
(TLS) estimate, where the R, + 1 — L, singular values
of S are truncated to arrive at a noise cleaned estimate F
(see [19] for details).

The y-pole estimates are thus given by

rk=1,2,"',Rk. (18)

The procedure from (15)-(18) is carried out K times to
estimate the y-poles corresponding to each of the K
x-poles. Because only L, singular values of F' k are non-
zero, there are at most L, y-pole estimates which can cor-
respond to data modes. Therefore, only the L, y-poles
which have the largest energy are retained (as discussed
in Step 4 below).

Step 4: Estimation of the Amplitude Coefficients. Now
that all of the required y-poles have been estimated, the
amplitude coefficients will be estimated next. Using (9),
~ we can write

By, = ze10,(B*(2)),

[ 1 1 - 1]
a1 Ck,0
Py Pwz 77 Pur a c
) ) 2 k2 | | Cka
Pyw1  Pw2 " Pwnr : =
; ; ; R CeN-1
N-1 _N-1 N-1 + Rk ,
\_Py“ pyk‘z cte p}‘k,Rk —
(19)
or
PrA* = & (20)

The amplitude coefficients are found from a least squares
solution to (20) using the y-pole estimates along the
x-amplitude coefficients; this can be written as

A4 = PY'PYHTIPY @
although numerically more robust solutions (using, €.g.,
the QR decomposition [25]) are preferred to direct com-
putation of (21). .

Because only L, singular values of F* are nonzero, there
are at most L, y-pole estimates which can correspond to
data modes. Therefore, only the L, y-poles which have
the largest energy are retained. This is done by computing
the R, y-mode energies for each of the kth x-poles as

N-1

E, = lal’ T [Byol™ ne=12" R @
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TABLE II
SUMMARY OF STEPS PERFORMED IN ALGORITHM TwoO

Step Estimated Parameters Method of Sclution

1| {pe )}, (z-poles) TLS of Eq. (6) w/ SVD truncation

2 {Cv-n)?;.i;,lo (z-amplitude coefficients) LS of Eq. (11) via QR decomposition
KL

3 | {Pui), sy (wrpoles)
K

4 {p"r‘}k'=1 (z*-poles)

M-1 . . _
5 {ny',m}ﬁ or (%-amplitude coefficients) | LS similar to Step 2

TLS of Eq. {15) w/ SVD truncation

TLS similar to Step 1

KL -
6 {I"y,'_,‘ }k' ,,=.“ (y*-poles) TLS similar to Step 3

7 {p,,.p,,w }:zx (z and y-poles) Matching using Eq. (23)

8 | {a,};, (amplitude coefficients) LS of Eq. (25) via QR decomposition

and retaining those L, poles whose corresponding ener-
gies are highest.

C. Algorithm Two

Algorithm Two utilizes the first three steps of Algo-
rithm One twice, and then requires a matching step and a
final amplitude coefficient calculation step. The steps in-
volved in Algorithm Two are summarized in Table II. The
first three steps of Algorithm One are carried out using
the data d'(m, n) yielding x and y-pole estimates,
{Ps}E_ and {p,, }I* 1. Next, the data is transposed [i.e.,
d'*(n, m) = d’'(m, n)], and Algorithm One is applied to
d''(n, m) to arrive at a second set of poles, {pL.}x =, and
2 IL}; .- Note that the model orders K and L; are re-

lated to K’ and L., depending on the structure of a partic-
ular model, and are in general different.

The two sets of estimates are combined, and the more
accurate part of the estimates from each set is retained.
The more accurate part of each estimate is the set of poles
which were estimated first, (i.e., the x-poles from each
set). The y-poles are less accurate than the x-poles be-
cause they are estimates based on the x-pole estimates. A
matching algorithm is used to combine both sets of pole
estimates yielding a single set of pole estimates.

The matching is performed using the following metric:

A((ka’ pyk,1)7 (p)tck’ pkau p;k',l'))
= \fIPXk - p;’k',l'|2 + |pyk,1 - p;k'|2 (23)

for the distance between 2-D exponential modes
(Px> Py and (Pl Y. ,), estimated from the two esti-
mates in Step 1. These distances are calculated for all of
the possible pairs. Then the closest match is made and the
respective pole pairs and distances are eliminated from
consideration. The next-to-closest match is then made in
the same fashion and so on, until there are no modes re-
maining from one of the two sets of pole pairs parts (any
leftover pole pairs are discarded). Note that the x-poles,
Px and pl,., from each of the two estimations are retained
and the y-poles are discarded as discussed above. Thus,
the y-poles are only necessary for the pairing performed
in the matching step. Note that the p},. take on the role of
y-poles in the original model. The final set of matched
pole pairs for Algorithm Two are thus designated {p,,
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Py 15 -1, where the p's are given by the paired p,’s and
pUsand T = min {ZF_, Ly, Tfi=, Lty

Using this definition, the model in (2) can be expressed
as

T
dm, m) = 2 ool 24)

Equation (24) now is used to solve for amplitude coeffi-
cients, {a,}> -1, as follows:
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D. Implementation Issues

In this subsection, we present operation counts for the
four steps of Algorithm One and for the eight steps of
Algorithm Two. These operation counts are given for the
case when the data are real. For complex data considered
in the examples below the counts were observed to be
about a factor of two to three larger for the SVD’s and
about four times larger for the QR decompositions. We

1 P 1] 40,0 |
b by P 4’0, 1)
2 r
P B, v Py d'©,2)
o oy oy d'(0,N - 1)
Pxy Px, Pxp d'(1, 0
PPy, Px,Py, Px Py, aa,n
Prif PPy, P:.P5, d'(1,2)
oo Pl PP @ d'(1,N—=1)
(03] ,
px, px, cee Pk = d'@,0) 5)
P3Py Pipy, PPy d'@, 1
ayp ,
2P P13, 0305 d'2,2)
o2 i)t ol ol d'@2,N-1
P M on! d'(M - 1,0
P on oy, d'M -1, 1)
e T A ol 0l dM=-12
DR S S M- 1N =
or
also present an alternative to the larger SVD steps which
g P
fa = D' (26) provides a reduction in computation.

The amplitude coefficients are found using the pole esti-
mates from a least squares solution to (26) which can be
written as

G = @¢"é&) ' D, eX))
although numerically more robust solutions (using, e.g.,

the QR decomposition [25]) are preferred to direct com-
putation of (27).

1) Operation Count for Algorithm One

To obtain the operation counts for the four steps of Al-
gorithm One, we need counts for the SVD computations
and the computation of the QR decompositions used for
the least squares solutions.

The approximate floating point operation (flop) count,
fcgyp, associated with the computation of the singular val-
ues and left singular vectors of areal r X ¢ matrix is given
by fcgyp = 4rc* + 8¢ [25]. Thus the flop count for the
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SVD of Step 1, febye, is given by
fcone = ANM — Q)(Q + 1)* + 8(0 + 1)°. (28)

The approximate flop count, fcgg, associated with the QR
decomposition of a real r X ¢ matrix is given by fcgr =
2rc* — (2/3)c® [25]. Thus, the flop count for the QR
decomposition required for the LS solution of Step 2 is
given by

fc%)ne i 2MQ2 - % Q3- (29)

For the K SVD’s, in Step 3 the approximate flop count is
given by

K
fcdne = I(.Z1 (GWN - RY)(R, + 1)’ + 8(R, + 1)}).  (30)

For the K QR decompositions in Step 4 the approximate
flop count is given by
K
febne = kZI QNR: - I R}). 31

The flop count for the SVD’s and QR decompositions
of Algorithm One is given by the sum of the individual
flop counts above.

To achieve near optimal performance (with respect to
the CRB), the model order used for Steps 1 and 3 of Al-
gorithm One should be integers near Q = M/3 and R, =
N/3 [26]. Using these substitutions and further approxi-
mations we arrive the following estimate for the total flop
count

feone = 3 M°N + L KN3. (32)

Note that the K estimations of Steps 3 and 4 are inde-
pendent of each other and can thus be done in parallel.

2) Operation Count for Algorithm Two

Since Algorithm Two first utilizes the first three steps of
Algorithm One we obtain fcty, = fchpe, fetyo = fcd,., and
fed,, = fcd,e for the flop counts of those steps. For Steps
4-6, the roles of M and N are reversed, and Q' and R}
are used instead of Q and R,. We thus obtain the following
for their flop counts

fctwo = 4M(N — 0)(Q" + 1)* + 8(Q" + 1)°
fc%wo = ZIVQ’2 - %Qta
KI
ffuo = 2 @M = Ri)Ry + 1) + 8RL + 1Y),

(33)

Each distance (A(-, -)) calculation requires 16 flops.

Thus, the flop count for Step 7 is given by
K K

fchyo = 16 kZI L klZl Lf. (34)

For the QR decomposition in Step 8 the approximate flop
count is given by

fotwo = 2MNT? — 212, (35)
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The flop count for the SVD’s, QR decompositions, and
matching of Algorithm Two is given by the sum of the
individual flop counts above.

Again, to achieve near optimal performance (with re-
spect to the CRB), the model order used for Steps 1, 3,
4, and 6 of Algorithm Two should be integers near Q =
Ry = M/3, R, = Q" = N/3 [26]. Using these substitu-
tions and further approximations we arrive at the follow-
ing estimate for the total flop count

forwo = 3 MPN + 3 KN° + 1 N°M + 1 K'M°
+ 2MNT? - T3, (36)

Note that the number of flops required for Step 7 is neg-
ligible when compared to the other steps. Also note that
the K estimations of Step 3 are independent and the X'
estimations of Step 6 are independent and can thus be done
in parallel. Comparing (32) and (36), we see that for M
= N, Algorithm Two requires about twice the computa-
tions as Algorithm One does.

3) Alternative Method for x-pole Estimation

The solution for b using (5) can become computation-
ally intensive for large data sets. For example, in M = N
= 64 and Q = 20, then § is of dimension (2816 X 21).
Since only the right singular vectors and the singular val-
ues are needed, one can instead obtain b from a related
eigendecomposition problem. Consider $#5,

{s{’sl ss, }
ss = ,
S 515 1S ?52
where s, is the first column of S and S, are the remaining
Qcolumns (i.e., S = [s; S,]). Note that for typical prob-
lems S contains many more rows than columns, so S#§
is smaller than S. An eigendecomposition of S%§ is per-
formed, gr@ all but the K largest eigenvalues are truncated
to give S”S. Finally, the minimum norm estimate of & is
given by,

@37

R TN
b= — (558" s¥s, (38)

N N
where Y8, and/S\?sl are the lower right and lower left
submatrices of ST, respectively (37).

We note that this procedure is less numerically accurate
than the previous procedure because of the squaring of the
data (which occurs in $¥5) so extended precision should
be used in the computations.

III. SIMULATIONS

Below we present numerical simulations to assess
model validity and noise effects. Three examples are pre-
sented. The first example considers the estimation of three
2-D undamped exponentials; this example was also con-
sidered in [18]. The second example considers the esti-
mation of three 2-D damped exponentials. The third ex-
ample utilizes electromagnetic scattering data from a thin
metal plate.
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A. Example 1

In this example, we compare the variances of frequency
estimates to their CRB’s at various signal to noise ratios
(SNR’s) for the three 2-D frequency scenario presented in
[18] using Algorithm One and Algorithm Two. Data was
generated using the model in (2) for M = N = 20 and

[p)n pym al.l] = [ej27r0.24 ejZWO'M 1]

e}27r0.24 e]27r0.26 1]

[ch] p_\‘l.z al.Z] :[

(P Pry @il = [7270% 2702 110 (39)

We can see that from the angles of the above poles the
corresponding frequencies are 0.24 and 0.26. For the pur-
poses of identification we will label the (x-pole, y-pole)
pairs above with frequencies (0.24, 0.24), (0.24, 0.26),
and (0.26, 0.24) as 2-D frequencies f3°, f3°, and f2°,
respectively. Note that these frequencies are spaced at
four-tenths of a Fourier bin in both directions (1 Fourier
bin = (1/20) = 0.05). Also note that this data consists
of undamped exponentials.

The plots in Fig. 1 show the simulation results for the
x-pole and y-pole frequencies, where Algorithm One was
used. One hundred different noise realizations were run
for each integer SNR between 0 and 50 dB. The SNR is
defined as the total signal power divided by the total noise
power. Specifically these figures show the estimated fre-
quency variances for the various SNR’s (they are given
by the dashed lines as indicated). The corresponding
CRB’s are given by the solid lines; the CRB’s of the model
were found using the expressions in [27]. The algorithm
parameters were setat Q = 8, K =2, R, = R, = 8, L,
= L, = 2 for this example. Note that we have used Q =
M/3 and R, = N /3 because these values give maximum
parameter accuracy in the SVD estimation step [26].

From Fig. 1(a) we can see that the threshold SNR is 15
dB in this case. For SNR’s above 15 dB, the variances
are within about 4 dB of the CRB; below 15 dB the al-
gorithm fails to reliably resolve the frequencies. The sim-
ulation variance lines cross the CRB lines at low SNR
because the pole estimates cannot be reliably assigned to
the true poles. Theoretically, the variance curves for f3°
and f3P are identical; however, the variance curves from
the Monte Carlo simulations separate at the lower SNR’s
due to differences in the y-pole estimates which cause
some outliers to not be included in the variance calcula-
tions. This example was also considered in [18] for an
SNR per pole of 10 dB, which corresponds to a total SNR
of 17.7 dB used here. In comparison, the estimation
scheme in [18] gives x-pole frequency variances which
are about 3 or 4 dB better for £3° and £3° and about 8 dB
better for f2P.

Fig. 1(b) is a plot of the inverses of the y-pole fre-
quency variances for the various SNR’s along with the
corresponding CRB’s as before. From this figure we can
see that the curve for the y-pole variance for f3° exhibits
the same properties as those discussed for the x-pole fre-
quency variances above. We can see that the y-pole fre-
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Fig. 1. Example 1. 10 log,, (1 /Variance) versus total SNR in dB for (a)
x-pole and (b) y-pole frequencies using Algorithm One.

quency variances for f32 and f32 are about 13 and 10 dB
away from their respective CRB lines. We can also see
that the y-pole estimation for £3° and f3° breaks down at
SNR'’s below 25 dB. The fact that these variances are far-
ther away from their CRB’s and that the resolution thresh-
old is higher is expected because of the accumulation of
error which occurs in the y-pole estimates in Algorithm
One. This accumulation of error does not occur in Algo-
rithm Two, as shown below.

The plots in Fig. 2 show the estimated x-pole and
y-pole frequency variances for this example when Algo-
rithm Two is used. As expected, the x-pole frequency
variances are much the same as those for Fig. 1(a), but
the y-pole frequency variances have been improved to
match the x-pole frequency variance performance. The
estimation scheme in [18] gives variances which are about
3 or 4 dB better for the y-pole frequencies of f3° and
f3P and variances which are about 8 dB better for the
y-pole frequency of f37.

We next consider the SVD operation counts for this ex-
ample for Algorithm Two. The SVD steps are major com-
putational parts. Each noise realization required SVD’s of
two 240 X 9 matrices and four 9 X 11 matrices where
only the singular values and right singular vectors were
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Fig. 2. Example 1. 10 log,, (1/Variance) versus total SNR in dB for (a)
x-pole and (b) y-pole frequencies using Algorithm Two.

computed. For the same example, the algorithm in [18]
required SVD’s of two 49 X 169 matrices for each noise
realization where the singular values and left singular vec-
tors are computed. Looking at expressions in [25] for SVD
computations we can see that Algorithm Two requires
about 228 Kflops for the SVD’s, whereas the algorithm in
[18] requires about 5.13 Mflops for its SVD’s. Thus, Al-
gorithm Two provides a significant savings over the al-
gorithm in [18]. We note that the SVD’s for both algo-
rithms can be performed with fewer computations by
computing the eigendecomposition of smaller square ma-
trices (37) as discussed above, with a corresponding loss
in numerical accuracy. Using this idea the total number
of computations are reduced for both methods, however
there is still savings with Algorithm Two over the algo-
rithm in [18].

B. Example 2

In this example we examine the estimation of damped
exponentials in noise utilizing Algorithm Two. Data was
generated using the model in (2) for M = N = 20 and

[Po Py, @il = [0.92€70% 0.92¢/27% 3.185]
[P Py @il = [0.926/2™2 0.95¢/°™% 2.846)
[Pa Py, a2l = [0.95€70% 0.92¢/2™% 2 .846].

(40)

For the purposes of identification we will label the
(x-pole, y-pole) pairs above with frequencies (0.24, 0.24),
and (0.24, 0.26), and (0.26, 0.24) as 2-D pole pairs p‘f,
p4, and p9, respectively. The amplitude coefficients are
chosen so that the energy of each mode is identical to the
corresponding mode energy in Example 1.

The plots in Fig. 3 show the simulation results for the
x-pole and y-pole frequency and magnitude variances. As
we can see the results are similar to the undamped results
in Example 1 using Algorithm Two. The variances track
the CRB’s as before, with the exception being that the

resolution threshold is at an SNR of about 20 dB rather
than 15 dB.

These results show that the algorithm is capable of es-
timating damped as well as undamped exponentials. In
many applications such as the electromagnetic scattering
problem, there are modes present whose frequency de-
pendence are not always constant [28], which thus require
damped modes as well as undamped modes. Thus the al-
gorithm’s ability to also estimate damped modes is im-
portant, as seen in Example 3 below.

C. Example 3

In this example we consider the application of Algo-
rithm Two to the extraction of electromagnetic scattering
features from a thin metal plate. A thin, 0.5 X 0.5 meter
perfectly conducting square plate is fixed in space as
shown in Fig. 4. Farfield monostatic 2-D scattering mea-
surements of the plate (at horizontal transmit and receive
polarization) were predicted using the geometric theory
diffraction (GTD) scattering prediction method described
in [28]. The scattering data were generated for frequen-
cies of 9 to 11.55 GHz in 85 MHz steps, and for azimuth
angles between 37.5° < ¢ < 52.5° in 0.5° steps with 6
fixed at 90°, for a 31 X 31 data grid. Note that the data
was collected on a polar grid, not a rectangular grid;
nonetheless, we assume a rectangular grid in the data pro-
cessing.

Algorithm Two is applied to this data with the param-
eterssetatQ =R=Q'=R'=10,K=K' =4,and L
= L' = 1. With no noise added to the original data, the
estimated parameters are

(o 0y il = [0.990¢/°7'¥ 0.990 2700333
8.34 X 10 %e/2™187)

[y, Py 0] = [0.992¢7721% 1001727
5.48 x 107%/2m027

[Py Py @3] = [0.998¢ /2% 1.011¢ 77270177

5.97 x 107%/2™%7)
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Fig. 3. Example 2. 10 log,, (1 /Variance) versus total SNR in dB for (a) x-pole and (b) y-pole frequencies and for (c) x-pole

and (d) y-pole magnitudes using Algorithm Two.

radar, pointed at target
0

0.5 meters
Tu degs
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x Y

4—/ 0.5 meters \

Fig. 4. Example 3. Orientation and location of thin metal perfectly con-
ducting square plate and location of radar for scattering measurements.

[0r Py ag] = [1.013e/2™012 (.944/270172
2.48 x 10%/270114) @1

where the units of the amplitude coefficients are volts.

These four modes correspond to the tip diffraction scat-
tering at the four comers of the plate. These modes are
plotted as ‘O’s in Fig. 5. Fig. 5 also shows as outline of
the flat plate at the middle of the rotation (¢ = 45°, 6 =
90°). The circles do not lie directly on the plate corners
due to modeling errors which are present [namely, that
the data are collected on a polar grid but processed assum-
ing a rectangular grid, and that the scattering from a plate
is only approximately represented by the model in (2)].
Note that these modes are damped rather than undamped,
which results because the tip scattering terms depend both
on frequency and angle.

Fig. 5 also shows the results of applying Algorithm Two
on the GTD data. This figure shows one hundred over-
lapped pole estimates each with a total SNR of 20 dB and
eachusingQ =R=Q'=R'=10,K=K'=4,and L
= L' = 1. Each estimated pole is plotted as a ‘+’ on the
figure. It can be seen that these estimates are in close
agreement with the noiseless pole locations (the ‘O’ lo-
cations in the figure). It can be seen that for all the esti-
mates, Algorithm Two correctly estimates the locations
of the four scattering terms at the four corners of the plate.
This example shows the utility of Algorithm Two when
applied to electromagnetic scattering data.
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Fig. 5. Example 3. Scatter plots of pole locations in the range domain for
a total SNR of 20 dB. Estimated pole locations are denoted by “*+.”
Noiseless pole locations are denoted by **0.”"

IV. CONCLUSIONS

We have presented a new method for estimating 2-D
exponential modes and amplitude coefficients. This
method utilizes a 1-D TLS-based Prony model and esti-
mation technique. This process has computational advan-
tages over methods which have independent steps such as
the one in [18] since the second step involves several
smaller estimations rather than one estimation as large as
the first. This procedure also has the advantage not re-
quiring a pairing of x and y-poles.

Simulations demonstrate the algorithms ability to esti-
mate 2-D pole pairs and amplitude coefficients in the pres-
ence of noise reasonably well. The estimates in [18] are
slightly more accurate than the estimates for this tech-
nique, but this technique offers computational savings
over the one in [18]. For Algorithm One, the y-pole es-
timation is less accurate than the x-pole estimation due to
a propagation of error in the x-pole estimation. If more
accuracy is required in both the x and y-pole estimates
then Algorithm Two can be implemented which and this
has computational savings over [18].
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