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The Cramér-Rao Bound for Pole and Amplitude
Coeflicient Estimates of Damped Exponential
Signals in Noise

William M. Steedly, Member, IEEE, and Randolph L. Moses, Senior Member, IEEE

Abstract—This paper provides a complete Cramér-Rao bound
(CRB) derivation for the case where signals consist of arbitrary
exponential terms in noise. Expressions for the CRB’s of the
parameters of a damped exponential model with one set of poles
and multiple sets of amplitude coefficients are derived. CRB’s
for the poles and amplitude coefficients are derived in terms of
both rectangular and polar coordinate parameters. In rectan-
gular parameters it is shown that the real and imaginary part
CRB’s for both the poles and amplitude coefficients are equal
and uncorrelated. In polar coordinates the angle and magni-
tude CRB’s are also uncorrelated; furthermore, the CRB’s of
the pole angles and relative magnitudes are equal, and are log-
arithmically symmetric about the unit circle.

I. INTRODUCTION

THE problem of estimating model parameters of noisy
exponential signals is an active area of research. These
models have a single set of complex poles and one or more
set of amplitude  coefficients (snapshots). The perfor-
mance of these parameter estimation methods is often mea-
sured by the accuracy of the estimated poles, since these
pole locations contain such information as formant fre-
quencies or directions of arrival of signal components.
This problem is considered in [1] and estimators are de-
rived for the case where the poles are confined to lie on
the unit circle. To evaluate the accuracy of the estimators,
a general expression for the Cramér-Rao bounds (CRB’s)
are derived for the real and imaginary parts of the ampli-
tude coefficients and the pole angles under the assumption
that the poles of the signal lie on the unit circle. In [2]
and [3] the signal snapshot case is considered and the
CRB’s are derived for magnitude and angle parameters of
the amplitude coefficients and poles.

This paper provides a complete CRB derivation for the
multi-snapshot case where signals consist of arbitrary ex-
ponential terms in noise. Such models are used in a broad
range of problems, including speech processing, decon-
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volution, radar and sonar signal processing, array pro-
cessing, and spectrum estimation [41-[15]. Thus, it is of
interest to obtain expressions for the CRB’s of this model.
CRB’s for the poles and amplitude coefficients are derived
in terms of both rectangular and polar coordinate ‘param-
eters. CRB’s are also derived assuming that relative mag-
nitudes of pole and amplitude coefficients are estimated,
rather than absolute magnitudes.

Using these expressions, it is shown that for the rectan-
gular parameters the real and imaginary part CRB’s for
both the poles and amplitude coefficients are equal and
uncorrelated. It is also shown that for the polar parameters
the angle and magnitude CRB’s are uncorrelated, but in
general unequal. However, the CRB of the relative mag-
nitude of the pole or amplitude coefficient estimate (i.e.,
&/, where « is the true magnitude) is equal to the CRB
of the angle estimate of that parameter. It is also shown
that some of the CRB’s are independent of the absolute
phase of the set of poles and each set of amplitude coef-
ficients.

This paper also examines pole estimation accuracy as
functions of pole magnitude, data length, and pole sepa-
ration using the CRB expressions. It is shown that for
small data lengths, poles slightly inside the unit circle are
more accurately estimated than poles on the unit circle.
In addition, the transition from the 1/ m’® (where m is the
number of data points) variance bounds decrease for poles
on the unit circle to the variance decrease as poles move
off the unit circle is also detailed.

An outline of this paper is as follows. In Section II the
multi-snapshot data model is presented. Section III pre-
sents the CRB covariance matrices and their properties.
Section IV presents some examples using the CRB
expressions. Finally, the Section V concludes the paper.

II. Data MODEL

Assume we have N “‘snapshots’’ of data vectors y(@®,
each of length m:

YO = [o® »n®  Yu1 @1
t=1,2,---,N. (1)

Each data vector is modeled as a noisy exponential se-
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quence

Y0 = L xi@pf + e

g=0,1,--+,m—1. Q)

There are n exponential modes in the data; the n poles
{ p;i}?- do not vary from snapshot to snapshot, but the
amplitudes x; (f) may vary. This type of data is found in
the sensor array problem, where one is interested in di-
rections of arrival [1], [11], and in multipolarization radar
data modeling, where one is interested in a parametric
representation of scattering center locations [15].

We assume that {e,(s)} are uncorrelated zero-mean
white Gaussian noise sequences with variance ¢. Equa-
tion (2) may be compactly written as

y(@® = A(p)x(®) + e@® (3)
where
e(t) = [eg(®) e (®) - - en_1 (O,
x() =[x® xnO x5O

and A is the m X n Vandermonde matrix derived from n
signal poles, { p;}

1 1 '...1—1
Pi P2 T Pn

4= | P P e |- @
Pt P!

III. CRB COVARIANCE MATRICES AND PROPERTIES

In this section we derive the CRB covariance matrix for
the model parameters in terms of their real and imaginary
parts (rectangular parameters) and their angles and mag-
nitudes (polar parameters). We also establish several
properties of these matrices.

From (3), the likelihood function of the data is given

[ mN
0_2
[4) -0
5 _
I;ecl =
) R
L_ R REQ)
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by

L(y(@), -+, y(N)

1 1 Y
= Groy™ P {—; ,§| [y® — Ax®1”

'wm—mmﬁ. 5)

Thus, the log-likelihood function is
In (L) = —mN In () — mN In (0)

1 N
-~ L1 - 0A [0 - &xO]

(6)
We define p;, p;, w;, and o, to be the real part, imaginary
part, angle, and magnitude, respectively, of each pole, p;,
thus p; = p; + jp; = a;e’. Similarly we define X (2), £ (1),
v (), and () to be the real part, imaginary part, angle,
and magnitude vectors, respectively, of each vector of
amplitude coefficients x (7).

We now define the following parameter vectors:

o= = 27 () FT@ @ XMW
LU

0, =[P P """ Pn Pr P2 e pal”

o = [y"() BT @ BT@ - BT

9,30]:[0’1 Wy "t Wy O Gttt an]T

=t = [o 07" 65

o = [o 67 o) (N

A Fisher information matrix for the model can now be
found by taking partial derivatives of (6) with respect to
6 or 6°° from (7).

We consider three parameterizations below: rectangu-
lar, polar, and relative polar. We then give invariance re-
sults which apply to all three cases.

Theorem 1: Assume we are given data defined by (1)
and (2). Then the Fisher information matrix for the pa-
rameters in 8 is given by

-
R(1) —R®)
R1) R®)
_ e ®)
Q0 -0 R(N) —R(N)
0 (9] R(N) R®N)
PNy -y 5§ =S
BNy Ry § 5 _
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where the unspecified elements are zero,
2
0 =-4"4
o
2
R =-A CATpX(t)
a

9 N
S =2 X"(T; A" CCAT,X (1)

ot=1

®

and where C, T,, and each X(#) are diagonal matrices
given by

1 1 1
T, = dia <——,—,"',—>
P g P P2 Pn
C=dag©,1,:---,m—-1)
s Xy (D).

X() = diag (x; (1), %@, - -~ (10
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Sl

N -1
o
=5 < ] xX*@r]A"CP; CATpX(t)>

t=

Pr =1, — A4~ A% (12)
In (12), 6, ; is the Kronecker delta function and I, is the
m X m identity matrix. Note also that P; is the orthog-
onal complement projection matrix for 4.

Proof: See Appendix A.

Expressions for Q, R(#), and S in terms of their corre-
sponding log-likelihood expectations are given in the
proof (see (34) in Appendix A).

Corollary 1.a: In CRBF®, var
var ([i‘) = var (P:i)-

Proof: This follows immediately by observing the
equivalence of the corresponding diagonal elements of
CRB;. e O

Corollary 1.b: In CRBF®, cov (X;(n), %i(1)) = 0, and
cov (ﬁi, 151‘) =0.

(7»‘/,-6)) = var ()?T\(t)), and

rect

The corresponding CRB matrix covariance is given by Proof: The corresponding cross-terms in CRB, ™ are
o ]
mN .
o',y —-Q'4 D ‘a,N) —-0'(1,N) R —-R®O
g'a, 1y Q'L g'a,N)y Q'(LLN) R(1) R(1)
CRBF® = [/5*]7! = (11)
Q'N, 1) —Q'N, D 0'(N,N) —Q'(N.N) R(N) —-R'N)
0'N,1) Q'(N, 1) 0'N,N) O'(N,N) R®) R®)
R  —-RP) RNy —-R7WN) 8 -5
REQ)  RA® REN)  RE®N) S 5
where
the diagonal elements of the imaginary part of a Hermi-
Q'@ s) = Qs + O 'R®S’ Ry Q™! tian matrix and are thus identically zero. O
. , Theorem 2: Assume we are given data as defined by
R(t) = —Q  R®OS (1) and (2). Then the Fisher information matrix for the
parameters on 6°°' is given by
pe
W U(1)T,(1) W) ()T,
—To(DHU()  T(HUMTe(1) —THW(D) TAHVDT,
(13)
TN) ONYT4N) V(N) VINYT,
~TNON)  TNTMNTAN) - —ToNYPN) THNWN)T,
Vi TROT VRN vanm W Wr,
L —Tﬁ/‘ﬁ(l) T,,F(I)T,,(l) ~Tj7”/(N) TQF(N)TG(N) -T.W T.WT,
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where

U@ = %X”(t)A”AX(t)
2 H H
Vioy = = X" (04" CAX (1)
2 N
w="=2 XHwaccax o) (14)

or=1

and where T, and each Tg(r) are diagonal matrices given

by
1 1 1
diag <*, —, ,—>
oy &3 oy

diag <_1_; _1_> (15)
B B> (0 B.()

The corresponding CRB covariance matrix is given by

T,

Ty () =
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of a Hermitian matrix and a diagonal matrix and are thus
identically zero.

Note the similarity between the Fisher information ma-
trices and CRB matrices for the rectangular and polar pa-
rameterizations. These matrices have the same structure
except for the presence of the T, and T;(r) diagonal ma-
trices. Accordingly, the cross terms in the CRB for the
parameter pairs of each amplitude coefficient and of each
pole are zero for both formulations as expressed by Cor-
ollaries 1.a and 2. Note that with the polar parameter-
ization, the variance CRB’s of the two parameters in each
pair are not equal as they are with the rectangular pa-
rameterization.

We can obtain all of the structure present with the rec-
tangular parameterization by an appropriate normalization
of the polar parameters. Consider estimates of the relative
magnitudes of the poles and amplitude coefficients as fol-

O

CRBS"I _
A —
mN
) o1, DT ;') U1 N) 01, N)T 5 (V) Vi 7T
-T;'0h0'a, n Tg‘(l)?(l, DT ;D -T;' (MO, N) 7‘;‘(1)?(1, NT'(N)y =Tz (WP T;‘(l)?(l)T;'
U'N, 1) U'(N, DT ;'(1) U'(N, N) "N, NT ;' (V) VIN) VN)T !
—T;' (N)T'(N, 1) Tg‘(N)?(N, DT ;') =T ;' (N)T'(N, N) Tg'(N)E'(N, NYT;'(N) =T ;' (NYW'(N) T;'(N)V(N)T;'
V(L) VAR5 VN VENT 5N w W
— — p— — —~ —
—T ') T'VHOT () =T ;'V'""N) T'WHN)T;'(N) =T.'W T,'wT.!
(16)
where lows:
B _ grelpol _ raT T AT2 "T2 T (2
Ut s) = U (06, + U VO W VA5 U™ (5 b = (47D BTHT() 7' @) BT
- AN BT TN
Vi =-U"0OVeHw A _—
N N N n [0 (643 [s4
; N 1 efl;elPOl =1& & Oy a_] a_ FN .a_"}
W= < % X" a" CPix () CAX(t)> - P "
2 \r=1 arelpol = [O‘ 9;&:];)017 9;;6!].)0]7]7" (18)

P =1, — AX() X" (A" ax @)~ X" (A",  (7)

Proof: See Appendix B.
Corollary 2: In CRBE, cov (y; (1), B;(1)) = 0, and cov
(w;, o) = 0.
Proof: The corresponding cross terms in CRB}” are
the diagonal elements of the product of the imaginary part

By considering the polar parameterization with a relative
magnitude parameter which is estimated rather than the
absolute magnitude parameter we obtain the parameter
pair CRB equivalence of the rectangular parameteriza-

tion.

Theorem 3: Assume we are given data as defined by
(1) and (2). Then the Fisher information matrix for the
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parameters which are estimated in ™! is given by

[ mN
02
U 9/¢))
-0y T
Ige]pol —
IZ OV R &)
L VA1) vHEQ)
The corresponding CRB covariance matrix is given by
o
mN
U1, Uua,
-0'q,n U'a,n
CRB{™ = . .
UNW,1) UWN, 1D
—U'(N, 1) U'(N,
) V(1)
L -v'Hn v

Proof: See Appendix C. -

/@rollaw 3.a: In CRBF™ var (v;,(8)/v:(t)) = var
(B;(1/B; (1), and var (&;/w;) = var (6;/ ).

Proof: This follows immediately by observing the
equivalence of the corresponding diagonal elements
CRBy"™!, O

Corollary 3.b: In CRBF®, cov (m)/yi 0, Bi (1) /B (1)
= 0, and cov (&;/w;, & /) = 0.

Proof: The corresponding cross terms in CRB'™
are the diagonal elements of the imaginary part of a Her-
mitian matrix and are thus identically zero. O

We now have CRB’s for the poles and amplitude coef-
ficients in terms of both rectangular and polar coordinate
parameters. We also have CRB’s assuming that relative
magnitudes are considered to be the estimated parame-
ters. Using these expressions we have shown that the
cross-CRB terms for the parameter pairs for each ampli-
tude coefficient and pole are zero for all of the formula-
tions. We have also shown that the two CRB’s for each
parameter pair are equal for the rectangular formulation
and the polar formulation with relative magnitude.

Invariances of the CRB with respect to changes in the
data can also be readily obtained from these expressions.
These are given in the following corollary.

Corollary 4: The Fisher information matrices and the

.
(1) (1)
-7y V()

_ - ’ (19)

U(N) U(N)y V(N) V(N)

—OWNN) UNN) -—-V(N) V(N)

VENY VAN W W

_VAN) VANY -W W

U, Ny Oa,N vy o v

~0'a,N)y UQ,N) =V V'@

. . . . (20)

UN,N) U®W, Ny Vi) V'(N)

~U'(N, N) UNN,N) —V'(N) V'(N)

VH(N) viENY W’ W'

_VHNy VRN W W

CRB covariance matrices for the polar and relative polar
parameterizations and the blocks along the main diago-
nals of the Fisher information matrix and the CRB co-
variance matrix of the rectangular parameterization are all
independent of the absolute phase references of the am-
plitude coefficients within each snapshot, ¢(7), and the
absolute phase reference of the pole, ¢. That is, these
matrices are unchanged if X(r) is replaced by ePOX(1)
and p; is replaced by e/*p;.

Proof: The result follows by examining the expres-
sions for 0, S, Q'(t, 5), S', U(?), V(r), and Win (9), (12),
and (14) and noting that they remain unchanged with re-
spect to the above absolute phase changes. O

IV. EXAMPLES AND OBSERVATIONS

This section presents examples which illustrate the be-
havior of pole CRB with respect to pole magnitude, data
length, and pole separation.

A. CRB for Single Exponential Case

In this simulation, a model with a single pole and with
one snapshot of data was chosen. The experiment entailed
moving the pole along the positive real axis (the results
are independent of the pole angle by Corollary 4, so an
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Fig. 1. Pole angle and CRB for single pole data (n = 1).
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Fig. 2. Pole magnitude and CRB for single pole data (n = 1).

angle of zero was chosen) from 0.1 to 10 and calculating
the CRB using (11), (16), or (20) for data sets of lengths
2, 5, 10, 20, 50, 100, and 1000. For comparative pur-
poses, the amplitude coefficient associated with the pole
was chosen to be a positive real number such that the mode
energy (x2 ' p*) was unity for each pole location and
data length. The noise power was also kept constant at ¢
= 1.

1) Pole Location CRB: The CRB for the pole angle
and magnitude appears in Figs. 1 and 2, respectively.
From Fig. 1 we see that the pole angle CRB is logarithm-
ically symmetric with respect to the unit circle. The pole
magnitude variance (Fig. 2) is not symmetric, and small-
est at a pole radius less than one. However, the variance
of the relative magnitude of the pole is and in fact is equal
to the angle CRB in Fig. 1 (cf. Corollary 3.a). The fact

that these bounds are logarithmically symmetric is intui-
tively appealing, because reversing a data sequence would
invert the pole, but should not affect its CRB.

From these two figures we see that inside the unit circle
the CRB for pole angle is higher than the CRB for pole
magnitude and vice versa outside the unit circle. This is
due to the fact that angular uncertainty becomes greater
as a pole moves closer to the origin. Note that the pole
angle variance approaches infinity as the pole approaches
the origin, which is what one would expect since its angle
is undefined at the origin.

We see that the CRB for both pole angle and magnitude
are asymptotically (as m — oo) lowest when the pole is
on the unit circle, and that on the unit circle the CRB is
decreasing by 1/m? (m is the data length). This is con-
sistent with the well-known 1 /m’ variance decrease, since
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Amplitude coefficient angle CRB for single pole data (n = 1).
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Fig. 4. Amplitude coefficient magnitude CRB for single pole data (n = 1).

the amplitude coefficient was adjusted in this experiment
to keep the mode energy constant (if the amplitude coef-
ficient is left unchanged, the variance decrease is 1/m’).
The variance of the pole magnitude also exhibits a sharp
decrease for poles near the unit circle, and for o = 1 has
the same 1 /m’ variance decrease as is seen for pole angle.
Note, however, that as the number of data points is re-
duced, the pole magnitude which gives the minimum CRB
is less than unity.

When the pole is not on the unit circle, the CRB does
not decrease to zero as m — o. Because of the decay or
growth of the exponential mode, and because the mode
energy is kept constant, increasing m results in adding
data points with lower and lower amplitude. Thus, the
CRB does not continue to decrease. As a result, only a

finite amount of data is needed to obtain estimation ac-
curacy which is nearly that of the infinite data case (for
example, with a pole radius 0.8 the CRB’s for pole angles
and magnitudes for m = 20 are essentially the same as
those for m = o).

2) Amplitude Coefficient CRB: The CRB for the am-
plitude coefficient angle and magnitude appear in Figs. 3
and 4. As before, each curve is a plot of CRB versus pole
magnitude for a given number of data points.

There are several points to note in these figures. First,
when the pole is inside the unit circle, increasing the num-
ber of data points provides no decrease in the bounds.
Note that the first data point is precisely the amplitude
coefficient; for a pole well inside the unit circle, by keep-
ing the energy constant we keep the amplitude nearly con-
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Fig. 5. Angle CRB as a function of pole separation for two poles on the unit circle.

stant. Outside of the unit circle the magnitude bounds drop
dramatically as the number of data points is increased. At
high growth rates, the first data point (which is the am-
plitude coefficient), is nearly zero, since the energy is held
constant. Thus, the estimate of the amplitude cannot be
expected to vary much around zero. This also causes the
bounds for the angle to increase infinitely, due to angular
uncertainty about zero as before with the pole angle.

Note that the CRB for the relative magnitude of the
amplitude coefficient (i.e., the CRB of 8(1)/8(1)) is
given by Fig. 3 (cf. Corollary 3.a). Unlike the relative
pole magnitude, this curve is not logarithmically sym-
metric with respect to the unit circle. The reason for this
is that the amplitude coefficient is the first data point; flip-
ping the sequence would correspond to having the CRB
of the last data point, which is not the same as the CRB
of the amplitude coefficient of a data sequence with an
inverted pole. If one compares the CRB of the first data
point of, say the sequence {3(0.9)}7_( to the CRB of
the last data point of the flipped sequence { (3 x 0.9" ')
(0.9)7}74, one finds that they are equal, as they must
be. Note that the amplitude coefficient was not merely in-
verted when the data sequence was flipped.

B. Angle Separation

In the following simulations we consider two poles at
e/ 24/D and e @ =2</2 for various data lengths
(m =5, 10, 20, 50, 100, and 1000) and angle separation
Aw. Note that without loss of generality we chose w, =
0; the CRB’s are invariant to wg by Corollary 4. Again, ¢
= 1, one snapshot of data was used (N = 1), and each
amplitude was chosen such that the mode energy was
unity.

1) Angle Separation for Two Poles on the Unit
Circle: In this subsection we present results for oy = a,
= 1 (i.e., two poles located on the unit circle). Fig. 5

shows the CRB for the angle of either pole versus pole
separation (the CRB are equal for the two poles) and for
the various number of data points. The CRB for the pole
magnitudes are equal to the pole angle CRB because these
poles are located on the unit circle. These results are con-
sistent with those in [16].

2) Separation for Two Poles Inside the Unit Circle:
In the following simulation we consider two poles inside
the unit circle. The poles have magnitudes of o, = 0.85
and o, = 0.95. The CRB for each pole angle appear in
Figs. 6 and 7 for the various data lengths. The CRB for
each pole magnitude is proportional to the angle CRB, as
was pointed out in the single pole simulation above.

From these figures we can see that the bounds exhibit
the same type of characteristics as those in the experiment
with two poles on the unit circle. One major difference is
that as Aw — 0 the bounds remain finite, because the poles
are at different radii, and thus never lie on top of one an-
other. We note that for Aw = 0, we obtain CRB results
for the case of real exponentials; this gives CRB results
for the estimation problem considered in [17].

For large angle separations, the CRB’s are relatively
flat, and these bounds are higher than those for two poles
on the unit circle. This is due to the fact that the angle
CRB increases as a pole moves inside the unit circle, as
was shown in Fig. 1 for the single pole case. The mag-
nitude CRB exhibits the same relationship for the higher
number of data points. However, form = 5 (and m = 10
for p,) they were slightly lower than in Fig. 1, because
locations of the minimum CRB for the pole magnitude are
not always on the unit circle. (see Fig. 2).

As the data length increases, the CRB curves approach
a lower limit because the poles lie off of the unit circle,
as was observed in the single pole case. Thus, after m
becomes sufficiently large (m = 100 for the example
shown), the addition of data does not appreciably lower
the CRB.



STEEDLY AND MOSES: CRB FOR POLE AND AMPLITUDE COEFFICIENT ESTIMATES 1313

1012 e ——— g
109 L ]
g 105§
e L ]
2 L
10° ¢ E
L m=20 i
100 &_‘ :
m=100 & m=1000 3
-3 " 1 M I Rt PR L L 1o
1010o 10! 102 103
angle between poles (degrees)

Fig. 6. Angle CRB for pole p, as a function of angle separation, when o, = 0.85, o = 0.95.
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Fig. 7. Angle CRB for pole p; as a function of angle separation, when a, = 0.85, o, = 0.95.

C. Some General Observations

Using the CRB covariance matrix, one can determine a
confidence region corresponding to an estimate of each
pole. This region can be plotted as, for example, a CRB
two standard deviation confidence ‘‘ellipse’’ about each
pole. Fig. 8 is an example of such a plot. In this experi-
ment there are ten poles, each with an energy of one.
Here, m = 100 data points and the noise power is ¢ =
0.1. The ellipses shown in Fig. 8 (they are actually cir-
cles, by Corollaries 1.a and 1.b) represent the two stan-
dard deviation concentration ellipses around the ten pole
locations. If an efficient estimator is used, 87% of poles
found in a Monte-Carlo simulation would be expected to
fall within these circles. Note that the bounds are signif-
icantly smaller for the poles which are located close to the
unit circle.

1>
1
0.5
L a5
0.5
-1
-1.5

-1.5 -1 0.5 0 0.5 1 1.5

Fig. 8. Two standard deviation bounding circles for each pole, using a
tenth-order model, with m = 100 data points, ¢ = 0.1, and each mode
energy set to unity.
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These examples have confirmed the proven properties
the CRB’s, as well as suggesting the logarithmic sym-
metry of the CRB’s for pole angle and relative magnitude.
These properties give insight into how particular models
affect the estimation of their parameters. We can see, for
example, that the poles of equal energy modes can be bet-
ter estimated when they are closer to the unit circle.

V. CONCLUSIONS

In this paper we have provided complete expressions
for the CRB of the parameters of an exponential model
with one set of poles and multiple sets of amplitude coef-
ficients. The poles of this model may lie anywhere in the
complex plane. The CRB for the poles have been derived
in terms of both rectangular and polar coordinate param-
eters. Using these expressions several useful properties of
the CRB covariance matrices were established. It was
proven that the polar and relative polar CRB’s and some
of the rectangular CRB’s are independent of the absolute
phase of the set of poles and each set of amplitude coef-
ficients. In rectangular parameters it was proven that the
real and imaginary part CRB’s for both poles and ampli-
tude coefficients are equal and uncorrelated. In polar co-
ordinates the angle and magnitude CRB’s were also
proven to be uncorrelated; furthermore, the CRB’s of the
relative magnitudes and angles were shown to be equal.
The examples presented support these properties as well
as the fact that the CRB’s of the pole angles and relative
magnitudes are logarithmically symmetric about the unit
circle. These results are useful for the analysis of param-
eter estimation methods. The CRB’s themselves provide
lower variance performance bounds for unbiased estima-
tion, while the properties established give insight into how
particular models will affect parameter estimation (e.g.,
pole locations).

APPENDIX A
ProoOF oF THEOREM 1

First, we calculate the partial derivatives of (6) with

respectto o, {X(O }, {X(®}, {P;}, and {p;}, which gives
the following:

N
din(d) _ —"’—N+l2 Y e @b
do o gi=1
M = l[A“’e(t) + ATe* ()] = gRe {Afe()} (22)
ax (1) o o
dn) 1., o _2 "
320 —0[ jA"e@) +jA e*(n)] Glm{A e®}
(23)
N H
dnd) _2 3 ge {x”(t)di_e(t)} 24)
ap; ogi=1 dp;
din@) 27 w,, dA” }
ap, oo ke {x 0 5 e® 25)
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Defining p = [py po - P, and p =
[pr Py« p,1" and carrying out the differentiation,
(24) and (25) can be written compactly as

N
a—lfﬁ 2 Y Re {(X"ThiACen}  (26)
ap gi=1
N
0@ _2 5 i (X" ()T A Ce).  @T)
ap gr=1 -

From these results, the Fisher information matrix can
be found as follows:

I5 = E W5 (28)
where the E [-] denotes expectation and v is given by
pr- 1R 29

a orecl

To perform these expectations we need several results
which are proven in [1]:

" u _ {mza2 fort + s
Ele"(De®e’ (5)e] = mm — 1o?  forr=s
(30)
El'(De®e’ ()] =0 V1,5 (31)

Re {x} Re {)y'} = % [Re {xy"} + Re {0}]
Im {x} Im {y'} = —% [Re {xy"} — Re {xy"}]

Re {x} Im {y"} =3 [Im {xy"} + Im {xy"}]. 32)
Using (30) we get

E[ dInL 2} _ mN?
do o?

N
- 2'2—?’ gll Elef(he®]

1 N N
+ =3 g} gl El (e e (s)e(s)]
_mN*  _m’N* Nm
- 02 02 02
[N = Dm + (m + 1]
= Mz (33)
g

From (31), we see that 3 In (L)/do is not correlated
with any of the other partial derivatives.

Next, we use (32) and the fact that E[e(H)e’(s)] = 0
V t, s, to obtain the following:

E[(a In (L)) <a In (L)>T}
A% (1) 9% (s)

= ZRe {A"AYS,
[

E{ 3 (L)> <a In (L)ﬂ
3% (2) 3% (s)

2
= —=Im {474} 5,
ag
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d1In (L)
ax(r)

dIn (L)
ap

(52

2
= -Re {4"cAT,X(n}

(452

—% Im { A" CAT,X(1)}

(i)

= ZRe (4"a}s,,
g

o

d1In (L)
ax()

d1n (L)
ap

dl

d1n (L)
ax(r)

d In (L)
ax(s)

ol

B, 1)
B(1, 1)
B .

B(b, 1)
B, 1)

Then the B"~ ' is given by

—B(l, -
B, 1)

—§(b, 1 -
B, 1)

—B’(l, 1 ---

B'(1, 1)

—B’(b, 1 -

B'(b, 1)

d1In (L)
ax(t)

3 In (L)
ap

(57

2
=~ Im {A"CAT, X (1)}

)52

2
= “Re {A"CAT,X (1)}

)52

N
§ e { X"ty THA" CCAT, X (1) }

ol
ol
E[(

d1n (L)
ax(®

dIn (L)
ap

31In (L)
ap

d1n (L)
ap

QIN
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Ka In (L)><3 In (L)> }
N
Z Im { X" (1) T# A" CCAT, X (1) }
dln )\ /8 1n (L) T}
E[( op >< ap >
2 N
E\—Z‘ Re {X"@®)THA"CCAT,X(}. (34

Using the results of (34) in (28) and the variable substi-
tutions of (9) we can see that the Fisher information ma-
trix for the parameters in 6° is given by (8).

In ordér to invert the real matrix /5™ to arrive at
CRBF* we need the following lemma.

Lemma A: Assume we are given a real block matrix of
the following form:

where B

B,
- BQ,
B(b,
- B(b,

b)
b)

-BQ, b)
B(1, b)
: (35)
—B®, b)
B(b, b)

b)
b)

—B'(1, by ]
B'(1, b)

: (36)
—B'(b, b)
B'(b, b)

r—

~! and where B and B’ are given by the

following block matrices:

B1,1) --- B(1,b)
B=| .
B®b,1) -+ B, b
B'(1,1) --- B'(1, b)
B'=| L 37)
B'(b,1) --- B'(b, b)

Proof: Note that B can be written in the following
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form: _
[Ba. 1) - Ba, by| —B(1, 1) --- —B(1, b)
B, 1) - -+ B(b,b)| =B, 1) --- —B(b, b)
Br = TB — ~ — - TB’
B(l, 1) © B(1,b)| B(1, 1) © B(1, b)
| Bb, 1) - Bb,b)| Bk, 1) - B, b
Sl
= R 38
g gl (38)
where Tp is given by
— — We now note that this complex matrix corresponds to the
1 O real CRB matrix given by (11). ]
O
O | APPENDIX B
Ty = (39) PrROOF OF THEOREM 2
1 O The proof is similar to that of Theorem 1 and only the
e) differences will be noted here. We calculate the partial
) derivatives of (6) with respect to o, {y(®)}, {8},
[ O 1 _ {w;}, and {«;}. Thus (22), (23), (26), and (27) are re-
Since T ;' = T and since placed by
B —-B1! B _B d1In (L 2
[B BJ _ [B BJ ) 2 i (X0 o))
B B B F LA
(see [1]), the inverse of B” is given by 8612 ((t? = % Re {X”(t) Ty (t)A”e(t)}
. _ g
gr-1,|0 Es aln@ 27
= 4 n
5 Fl (40) o = X Im {x"(ACen)
which is the same as the expression given by (36). (I 3 In (L) 7 ¥
Using Lemma A we note that we can obtain CRBF* by 3 =- Z Re {X" (0T, A"Ce(n}  (43)
inverting the following complex matrix: o o=
[mN ] where © = [ w "' w,]' and o =
e [oy o+ e,
From these results, the Fisher information matrix can
Q R(1) be found as follows:
g = @1 15 = E[R ¥B] (44)
where 8" is given by
Q0 R(N)
r_ d 1In (L) 45
RUL - RE(N) S W= “3)

Using the matrix inversion lemma and the definitions on
(12) we can see that the inverse is given by

- _
mN
'L,y -+ Q'(1,N) R'(1)
CRB;™ = . @2)
Q'N. 1) --+ Q'(N,N) R'(N)
R (1) - REN)y S’

The expressions in (34) are thus replaced by
Ka In (L)) <a In (L)ﬂ
E
ay@ 3y (s)
= (% Re { X" (A" AX(s)} 6,
EKa In (L)) <a In (L))T}
L\ 3y () apes) /) .

= %Im {XH (A" AT, (5)X ()} 8, ¢
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EKa In (L)) <a In (L))T]
ay(® dw

- % Re { X" (1) AHCAX (1)}

EKa In (L)> (a In (L)>T]
avy () Jda

= %Im {x"(nA"CAT, X(1)}

E[(a in (L)> <a In (L)>T}
aB (@) aBs)

= % Re {XH(6) T, () A"AT5(5)X(5) } b, s
EKa In (L)> (a In (L)ﬂ
B dw
= - (2—1 Im { X" () Ty A"CAX (1) }
E[(a In (L)> <a In (L)>T]
ag® da
2

g
EKa In (L)> (a In (L)>T]
Jw Jw
2 N
== 21 Re { X" (nA"CCAX (1)}
EKa In (L)> <a In (L)>T]
dw Jdo
2 N
== E]‘ Im { X" (A"CCAT, X (1)}
EKa in (L)> <a In (L)>Ti\
oo Jda

N
_2 Z] Re {X#()T,A"CCAT,X(®}.  (46)
gt=

Re { X" (1) Tz (1) A"CAT,X(0) }

Using the results of (46) in (44), the variable substitu-
tions of (14), and the fact that the matrices Tg(#) and T,
are diagonal and can thus be commuted with the diagonal
matrices X (7) and subsequently factored out we can see
that the Fisher information matrix for the parameters in
7' is given by (13).

In order to invert the real matrix I5” to arrive at
CRBY” we first note that it can be written as (cf. Theorem
3)

e = JrrEel (47)

where J is the block diagonal matrix given by
J = diag (I, To(V), I, T3(2), -+ » I, Ts(N), I, To).
(48)
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Thus CRB}” is given by

CRBY® = J~' I 7t 49)

The inverses involving J are straightforward since it is a
diagonal matrix.

Using the expression for [/ rlpol1 =1 from Theorem 3,
which is derived in Appendix C, in (49), and performing
the multiplication we obtain the CRB matrix by (16). [

APPENDIX C
ProoOF OF THEOREM 3

The proof is obtained by noting that the relative polar
parameterization is simply a scaling transformation of the
absolute polar parameterization using the transformation
matrix J (cf. Appendix B) as follows:

Igrelpol — J—llgolj—l

from which we can see that I{f"p"' is given by (19).
Using Lemma A we can obtain the result for CRBy™
by inverting the following complex matrix:

(50

_ﬂ .
02
U 1 4¢))
‘i;elpol — (51)
UN) V)
L vE@y - - VRN W

Using the matrix inversion lemma and the definitions in
(12) we can see that the inverse is given by

CRBF"
o ]
mN
U, 1) S U'A,N) V(D
U(N,1) --- UNW,N) V'N)
L V) - viaNy W

from which we can see that CRBy™' is given by (20). [J
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