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Abstract—This paper characterizes the performance of the
diagonally loaded sample matrix inverse (SMI) algorithm ver-
sus the number K of snapshots used in the covariance matrix
estimate by providing O(1/K) statistics (bias and variance) of
the array weights, output powers, and output power ratios such
as SINR and INR. The approach accommodates wide-band sig-
nals. Monte Carlo simulations verify the theoretical analysis.

I. INTRODUCTION

DAPTIVE arrays are used in a wide variety of signal

processing applications to improve communication
between a source and receiver by exploiting special
knowledge of the time, frequency, or spacial character-
istics of the transmitted signal. In an adaptive array, the
received signal is a sum of the weighted outputs of a num-
ber of sensors.

It is well known that the set of array weights Wy g that
minimizes the mean-square error between' the. output of
an N-element array and a desired (reference) signal is
given by Wyys = ~! S where ® is the array covariance
matrix and S is the steering vector. In addition, for a cw!
desired signal, the least mean square (LMS) weights max-
imize the signal-to-interference-plus-noise ratio (SINR) at
the array output [1]. The sample matrix inverse (SMI)
procedure [1] is a commonly used technique for setting
the array welghts The weight estimate is found as Wi ys
= @' § where & and § are sample estimates of the true
covariance matrix and steering vector.

The performance characteristics of the SMI array can
be varied by adding or subtracting a positive real number
from the covariance matrix diagonal; we denote this as
positive and negative diagonal loading, respectively. Pos-
itive diagonal loading provides faster convergence and
decreased sensitivity to noise and clutter [2]-[4].

Negative diagonal loading increases the suppression of
weak interference signals [5] at the expense of longer con-
vergence times [6], [7]. Negative diagonal loading is ap-
plicable to slowly varying environments in which inter-
ference rejection to below the noise floor is needed. An
example of this is geosynchronous satellite transmission
of television signals [8]. In this application an interfer-
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'CW or *‘continuous wave’’ is synonymous with narrow band.

ence signal may be another television signal being trans-
mitted by an adjacent satellite. The interference signal
must be attenuated to ~ 10 dB below the noise floor be-
fore the interference patterns on the felevision picture be-
come undiscernable to the viewer [9]. This can be accom-
plished by using negative dlagonal loading as we will
show in the simulations.

A natural question that has been addressed in the liter-
ature asks how many snapshots are needed for ‘‘good”’
performance of the array. Reed et al. [1] characterized the
performance of the standard SMI array for the case of no
desired signal and zero-mean narrow-band Gaussian in-
terference and noise. Miller [10], [11] and Monzingo and
Miller [12] expanded this work to include a desired sig-
nal. Cases where, in addition, the steering vector is ap-
proximate or is estimated from the data have been ad-
dressed by Miller [10], [11], Monzingo and Miller [12],
and Boroson [13].

This paper characterizes the performance of the modi-
fied SMI array (and the standard SMI array as a special
case) based on K-snapshot estimates of the diagonally
loaded covariance matrix. We give O(1 /K) expressions
for the bias and variance of the weight estimates, output
powers, and output power ratios such as INR and SINR.
These expressions are valid for wide-band signals. We
compare the statistical expressions with Monte Carlo sim-
ulation studies. This paper extends the results of Ganz et
al. [14] in which O(1/K) expressions for the bias and
variance of the weights and the bias of the powers only
were derived. Dilsavor and Gupta [8] have compared these
expressions with the performance of an experimental ar-
ray system. ‘

. DiacoNALLY LoaDED SMI

Let X(k) be the vector of signals received at the N ele—
ments of an antenna array at time #;:

Xt = Xo(®) + 2 Xk + X,k (@

where the N X 1 vectors Xp(k), X;,(k), and X,,(k) are the
desired, mth interference, and noise components of the
received signal, respectively. We assume that X,,(k) is a
vector of zero mean, i.i.d. Gaussian random variables
with variance ¢2. The array output signal at time £ is given
by s(k) = W(k) X(k) where W(k) is the vector of complex
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weights applied at time #, and ¥ denotes Hermitian trans-
pose. From (1) we can write s(k) in terms of its compo-
nents as

M

st) = spk) + 21 spk) + 5.(K).

The expected power P of the array output signal s(k)
(assuming fixed weights) is

P = E[|s(k)|*] = EIW'X(k) X(K)" W] = Wow
. @
where
® £ E[xx1 3)

is the (N X N) covariance matrix of the received signals
and time dependence has been omitted for notational sim-
plicity. Using (1) in (3) and assuming that the received
signal components X, (for J = D, I, or w) are uncorre-
lated and zero mean, we can decompose the data covari-
ance matrix as

M

® = E[XpXp] + < 2 E[X;, X > + E[X, X
m=1

=®, + ® + ®, where ®, = ¢’L @)

From (4) and (2), the output power P can be expressed
as P = P, + P, + P, where P, = W@, WforJ = D,
I, or w. The output signal-to-interference-plus-noise ratio
(SINR) is

P, +P, P+ c'Wi'W

It is well known that for a CW desired signal, the SINR
is maximized when the weight vector is a scalar multiple
of

SINR £

Wis = ®7'S = [®, + @, + *1]7'S.  (6)

where S is the steering vector or correlation between the
received signals and the desired signal.

The LMS weight vector can be modified by introducing
diagonal loading into the covariance matrix, i.e., by re-
placing ® with T £ @ — Fo°I for some loading factor F
< 1. We have restricted F' < 1 to ensure that I' is positive
definite and thus full rank. In this case, the modified
weights are given by

W=1[I"'S=[®, + ® + (- FdI}"'S 7
When the desired signal is CW, the modified weights
maximize a modified SINR (MSINR) given by

Pp _ Pp
P+ (1 -FP, P+ U-FoWwWw
(8)

Note that the modified SMI weights (7) reduce to the
standard SMI weights (6) when F = 0; When 0 < F <
1, the covariance matrix undergoes negative diagonal

MSINR =

loading and this is the focus of the paper. However, the
theory developed here holds for the positive diagonal
loading (F < 0) case as well.

III. StaTIsTICS OF MODIFIED SMI WITH SAMPLE
COVARIANCE

This section presents a theoretical analysis of the sta-
tistical properties of the modified SMI algorithm. We de-
velop asymptotic expressions for the bias and variance of
the estimated weights, of the array output powers, and of
output power ratios such as INR and SINR. The expres-
sions are functions of the number of snapshots K, the
amount of diagonal loading F, and the signal scenario.
Much of this analysis is independent of signal model and
thus is applicable to wide-band signals. Only at the end
of the analysis do we specialize to a CW scenario con-
sisting of one desired signal and M interference signals
arriving from arbitrary directions at an equispaced linear
array of elements of arbitrary gain.

A. Weight Estimates

In an adaptive array system, the true covariance matrix
is unknown. In practice, it is estimated by averaging the
outer products of K snapshots X(k) 2 X(t =1):

N u
b, = Ezﬂ Xk Xk, )

The K-snapshot-based estimate Wy of the modified SMI
weight vector W is given by

Wy = [®f — Fo?I1'S = [T17'S (10)

where it is assumed that a good estimate of the noise
power ¢ is available. The noise power may be estimated
from the noise eigenvalues of the sample covariance ma-
trix. For the signal scenario of Section IV we found that
the minimum eigenvalue of the sample covariance matrix
was within 2.5% of the noise power ¢” = 1 after 10 thou-
sand snapshots.
We define the weight error Wy by

We 2B W-—We=["'"-T¢z18 (11)
and the modified covariance error by
l:KéI‘—IA‘K=(I)—(i)K=(i)K. (12)

Note that the error in the modified and unmodified co-
variance is the same. The expected value and variance of
the K-snapshot-based weights can be expressed as

E{W] = W — E[W]
var [W] = var [W] = E[WW"] — E{W]E[W]"

where the time subscripts have been omitted for conven-
ience. The statistics of W needed above can be expressed
in terms of the covariance matrix error as follows. First,
we manipulate T~' using (12)

I'=or-0'=[-rrhn!
=r'a-rr-h"

(13)
(14)

(15)
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Now expanding [I — [T ™']™" as a power series [15] and

using (11) gives

W=r"'"[I-{+Tr'+@rh+---}s

(16)

The power series expansion is valid if [T T™'[ < 1 where
| - || is any norm satisfying the submultiplicative property
|l4Bll < |4l IIBll. From (16) we compute the expecta-
tions

E[W] = — T ' E[ITT"'T]W,

E[WW"] = T E[@wW @W @ @9
E[WWT = I E@W@w1a™)H" (19

where E[I] = 0 and W = T~'S have been used The
approx1mat10ns are the result of neglecting (T ")’ for i
> 2 in (16). Usmg (12), one may express (17)-(19) in
terms of E[®, @], the expected value of the product of

the ilth and stth elements of the K-snapshot-based co-
variance error matrix.

an

B. Output Signal Power Statistics

The output signal powers of an array given a set of
K-snapshot-based weights are

P, L E[I5; (0] = W EIX,X1W = W' o, W (20)
where J = D, Im, or w, for desired, mth intgrference, or
noise power, respectively. Now substitute W EW-W

in (20) to express the expected value and variance of the
output signal powers as

E[B)] = E[(W - W®,(W - W)]
P, — 2 Re {W®,E[W]}

+ E[Wi®, W) 21
var [P,] & E[(B, — E[P))]

U

E[(2 Re {W"®,W})’]

where Re denotes real part and J is as before. The ap-
proximation (22) is O(1/K) as we will show.

for large K (22)

C. Output Power Ratio Statistics

The next step is to develop expressions for the expected
value and variance of the output power ratios SINR and
Py . .
INR. To do so, define the generalized power ratio

Py By Wi®W
RXY.0.2) = 5= B, ~ By WM, W (23)

whcre Py & Py + P and <I)B £ ®, + a®;. Note that
SINR R(D I, 1, w) and NR = R, w, 0, Z) where,
for example, SINR represents the output SINR of an array
whose weights are estimated using K snapshots.

Exact expressions for the probability density function,
expected value, and variance of ratios similar to (23) have
been found by Reed et al. [1] and Miller [10] under cer-
tain g priori assumptions as discussed in the introduction.

These exact expressions assume standard SMI (F = 0)
and a narrow-band desired signal. In this paper, we obtain
asymptotic expressions for a more general case by using
the Taylor expansion of R.

The second-order Taylor series approximation of R(W)
about the optimal weight vector W is given by

ROD) ~ ROW) + (VR|._) Z + 3 2 (iRl 2

(24)

where V = @ /07" is the gradlent operator, V2 = §* / dz0z7"
is the Hessian operator, Z £ [Re {W} TIm{W} 17, and Z
= 7 — Z. By substituting Py/Pj for R we obtain

1
VR = — (VPx — RVPp) - (25)
Py Y
VP 1
VIR= —-VR" |2 ’p
< Py P B (VP
— VPIVR — RV*Pp). (26)

By expanding (20) in terms of real and imaginary parts
and performing some straightforward calculations, we ob-
tain

R(W) = R(W) —~1—:2— {2 Re (W@, W} — % WH(I)ZW]
B
- %Re (WD, W} Re {W/ D, W)
5 v

where (I)Z = PB(I)X PX(DB
The statistics of R(W) follow from the Taylor approx-
imation (27):

@7

EIROW)] = ROW) — = <2 Re {W®,E[W]}

P2
N .
P § @zi,E[W?W,-])
1
B Re {WA®,E[W W o,W

+ WHOL,E[W W@ W*}

- EM(VMZ:Z)Z |
v <V2Riz Z) N
el
s <V2R|z Z) B

~ E[{(VR|.=2Z}"]

(28

var [R(W)]

@9
for large K 30) .

1 N
= F;g-E[(2 Re {W#®,W})]. @31
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The approximations in (28) and (29) are obtained by ne-
glecting O(K™°) terms for s = 3 /2, thus the approxima-
tions are valid for large K.

D. Covariance Statistics for a Particular Scenario

The array performance measures have been expressed
in terms of the weight error statistics which, in turn, de-
pend on E[®,d%]. The derivations were independent of
signal scenario. Only now, for the calculation of
E[®; ®*], must a signal scenario be assumed.

Consider a narrow-band scenario consisting of one de-
sired signal, and M interference signals arriving from ar-
bitrary directions at an N-element linear array with ele-
ment spacing A and with complex Gaussian noise, N(O,
.a%), at each element. The complex envelope of the de-
sired and interference signal components in the ith an-
tenna element are

Xoi(k) = Ay exp {j{ = — Do + 6,(0)]}

where A4,; is the amplitude of signal « in the ith element,
o = 0 corresponds to the desired signal, and o € [1, M]
corresponds to the interference signals. ¢, = 27 /) A
sin 6, is the interelement phase shift of signal «, and ©,(k)
are uniformly distributed U(0, 27) random phases of sig-
nal ««. Under this scenario the desired expectation is given
by [14]

(32)

1 M M
E |:046116i5 + az=:0 520 AciAos

a#f
. e_j(i_:)¢HA61AB’e_j(1_I)¢B

E[®,®%] =

M
+’ Z 02 {Bt[AaiAase_j(ihjwa
a=0

R )

where §,; is the Kronecker delta.

IV. SIMULATION COMPARISONS

In this section, Monte Carlo simulations of a modified
SMI array are compared with the theoretical expressions
for bias and variance derived above. In the simulations, a
snapshot is formed by sampling the array element signals
whose components are given by (32) plus i.i.d. complex
Gaussian noise, N(O, 02), at each element. A new random
phase ©,(k) is generated for each signal component in
each snapshot, thus the snapshots are uncorrelated. The
scenario consists of a linear array with a high-gain main
element and four auxiliary elements with half-wavelength
spacing. A desired signal is incident from broadside while
an interference signal arrives 30° from broadside. The
SNR of the desired signal is 14.6 dB in the main antenna
while it is —10 dB in the auxiliaries. The INR is —5 dB
in the main antenna and is —3 dB in the auxiliaries. This
is a typical example of weak interference since the inter-
ference power is about 20 dB beneath the desired signal
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Fig. 1. Output INR and SINR versus number of snapshots K for (a) F =
0 and (b) F = 0.8.

and is 5 dB below the noise in the main element. This
scenario was considered by Gupta [5].

Fig. 1 shows the output INR and SINR for F = 0
(standard SMI) and F = 0.8. Four trial runs were made
for each value of F. The curves at the top of the two graphs
(above 0 dB) are the SINR curves while those at the bot-
tom (below O dB) are the INR curves. For both INR and
SINR the figures show four trial runs which appear as jag-
ged lines, a straight horizontal line for the value of the
performance measure assuming that the true covariance is
known, the expected value of the estimator which is a
smooth curve that lies among the trial runs and asymptot-
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Fig. 2. Output interference signal power P, versus number of snapshots K
for (a) F = 0 and (b) F = 0.8.

ically approaches the true covariance value, and two
smooth curves (one above and one below the expected
value curve) that represent a 95% confidence interval (+2
standard deviations) for the estimator. For a fully labeled
graph see F1g 1(b) or 2(b).

The plots in Fig. 1 show good agreement between the-
ory and simulation. Note the minor degradation in SINR
as F is increased and the dramatic 12 dB improvement in
steady state INR. We also see that the increased interfer-
ence suppression comes at the price of having to increase
the number of snapshots in the covariance estimate to
achieve that suppression. For example, comparing the

graphs in Fig. 1 we see that setting F = 0.8 asymptoti- .
cally increases interference suppression by about 12 dB
relative to standard SMI but only 8 dB of that suppression
is achieved after 10 000 snapshots. In a nearly stationary
environment such as geosynchronous satellite communi-
cations such large values of K are practical. In fact, an
experimental system has been built and tested in which
10 000 snapshots are taken in about 40 s. [8]. The geo-
synchronous satellite scenario is stationary for times on
the order of an hour.

The dramatic difference in INR for F = 0 versus F =
0.8 is almost entirely due to an 11 dB drop in interference
power. Fig. 2 shows the interference power P, for F = 0
and F = 0.8. The theoretical curves and the trial runs
show good agreement.The explanation for the large var-
iance in the interference power is intuitive from an array
pattern viewpoint. Since the modified SMI algorithm is
designed to maximize MSINR, it will form a pattern null
in the interference signal direction. As a result, the gain
of the pattern in the interference direction will be very
sensitive. A small vaiiance in the desired signal power
would be seen since the desired s1gna1 arrives near a pat-
tern maximum.

V. CONCLUSIONS

The performance of the diagonally loaded SMI array
has been described by deriving O(1/K) approximations
of the statistics of the array weights, output powers, and
output power ratios as a function of the amount of diag-
onal loading and the number of snapshots K used in the
covariance matrix estimate. Much of the analysis is in-
dependent of signal scenario and as a result is applicable
to wide-band scenarios including a wide-band desired sig-
nal. A narrow-band signal environment was used in Monte
Carlo simulations to show that the statistical expressions
correctly predict the increase in bias and variance of the
diagonally loaded SMI array performance as the amount
of negative diagonal loading is increased.
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