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TABLE VI

COMPARISON RESULTS FOR EXAMPLE (20). THE SEQUENCES HAD 80

SAMPLES

p=2,a,=-137a,=0560>=1,N=280

k PDC PLAV PLS AIC MDL PMDL
0 0 6 36 0 0 10
1 7 121 238 0 1 92
2 973 839 713 700 946 849
3 19 31 13 112 44 41
4 1 3 0 56 5 3
5 0 0 0 48 2 2
6 0 0 0 35 2 2
7 0 0 0 24 0 1
8 0 0 0 25 0 0
TABLE VII
COMPARISON RESULTS FOR EXAMPLE (21)
p=4,a,=—-1352,ay, = 1.338, a3, = —0.662
a, = 0.240, 0> = 1, N = 100
k PDC PLAV PLS AIC MDL PMDL
0 0 21 99 0 0 11
1 0 25 96 0 0 11
2 100 407 452 5 28 104
3 386 325 233 114 324 407
4 505 214 118 625 613 405
5 8 8 2 120 31 42
6 1 0 0 57 3 12
7 0 0 0 31 1 6
8 0 0 0 48 0 2
TABLE VIII
COMPARISON RESULTS FOR EXAMPLE (22)
p=4,a,= —2760,ay = 3.809, a;, = —2.654
a, =0.924,6°=0.1,N=20
k PDC PLAV PLS AIC MDL PMDL
0 0 2 18 0 0 8
1 0 2 27 0 0 1
2 0 185 617 0 0 12
3 3 7 11 0 1 19
4 940 752 307 90 158 71
5 44 42 19 60 75 83
6 7 9 1 359 416 261
7 3 1 0 296 243 232
8 3 0 0 195 107 313

mance stems from the nature of the quasi-likelihood predictive den-
sity. This density does not precisely penalize for overparametri-
zation since it does not take into account that the parameters of the
model used to determine its form are not true, but rather are esti-
mated from data.

As a final note we emphasize that the comparison between PLAV
and PLS with the rest of the methods is not fair because the un-
derlying assumptions for their use are different. To employ PLAV
or PLS we do not require knowledge of the probability density
function of the data, while for the other approaches this informa-
tion is of fundamental importance.

V. CONCLUSION

A criterion for order selection of AR models has been derived
based on Bayesian predictive densities. Its performance was as-
sessed by extensive simulations and compared to other methods.
The simulations show that this approach often yields better results
than its competitors. Also, as an alternative to the PLS approach,
the PLAV criterion was introduced. In the numerical simulations
it systematically outperformed PLS.
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properties and the relationship between all forms of third-order cu-
mulants of complex signals are investigated. It is shown that all cu-
mulants (for different position of the complex conjugate) are related
by simple transformations. This article also investigates autoregressive
modeling of plex-valued signals using third-order cumulants. It is
shown that modeling of complex-valued signals requires a different ap-
proach from medeling of real-valued signals.

I. INTRODUCTION

Bispectral analysis of real-valued data has been an active re-
search area in the last few years. The applications of the bispectrum
extend over several disciplines. These applications include ARMA
modeling, analysis of bilinear models, detection of phase coupling,
signal reconstruction, image processing, and so on [1]. These ap-
plications have been mainly limited to real-valued signals; conse-
quently, development of bispectral analysis techniques for com-
plex-valued signals has not received as much attention. Bispectral
processing of complex signals is of interest in a number of areas,
including radar signal processing [8].

It has been suggested by Brillinger and Rosenblatt [2] that for
complex-valued signals different bispectra can be obtained depen-
dent on the placement of the complex conjugate in the third-order
cumulant. In this correspondence we investigate the definitions and
properties of these bispectra and we establish the relationship be-
tween the different bispectra. We also study the aspect of para-
metric modeling of complex-valued signals using third-order cu-
mulants. We show that modeling of complex-valued signals
requires a different approach from modeling of real-valued signals.

II. THE BISPECTRUM OF COMPLEX SIGNALS

Let {x(k)} represent a complex-valued stationary random pro-
cess. To obtain the third joint cumulant, the complex conjugate can
be placed either on one or two entries of the triple product in
E{x(k)x(k + m)x(k + n)} [2]. For each choice, only one sym-
metry relation is valid. In fact, placing the conjugate in a particular
position defines which one of the six symmetry relations given in
[1] remains valid. In general, the bispectrum of complex signals
has twofold symmetry about an axis S in the w,, w, plane, where S
is one of three defined as S € {w, = vy, wy = —(1/2)w;, w; =
—(1/2)w,}. Table I gives the definitions of the bispectrum of com-
plex-valued signals for each of the six possible positions of the
complex conjugate, where {X(w)} denotes the Fourier transform
of the signal {x(k)} (see [7]), and (,) represents the ensemble av-
erage.

Note that it is possible to obtain one bispectral response from
other bispectral responses using cumulant transformations. For ex-
ample, if

Ci(m, n) = E{x*(kxk + mx(k + n)},
Cy(m, n) = E{x(bx*k + m)x(k + n)}

Then C,(m, n) = C,(—m, n — m). Similarly, if C;(m, n) =
E{x(kx(k + m)x*(k + n)} then C,(m, n) = C3(m — n, —n).
Other relations can be obtained similarly.

The bispectra in Table I are interrelated also, and knowing one
bispectrum is sufficient to derive the others. For example, if
Bi(w), @) = (X(w)X(0)X*(w; + wp)) and By(w;, w) =
(X*(—0))X (@)X (—w; — wy)) then B|(w,;, —w; — wy) = By(w,,
w,). Similar relations hold for the other bispectra defined above.

Example: Let h(k) be a complex-valued waveform given as

h(k) — ej(kw,4+0u) + ej(kw},+0h) + e;(k(wu+w.)+0a+0»i

(6]
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where 6, and 0, are uniformly distributed random variables over
[0, 27). Notice the quadratic phase coupling at (w,, w;) which re-
sults in two bispectral peaks at (w,, w;) and (w,, w,). The bispec-
trum of h (k) is shown in Fig. 1 and it depends on the placement of
the complex conjugate in the third-order cumulant. Notice that the
symmetry axis of the bispectral response changes according to the
format of the third-order cumulant.

The hexagonal shape of the bispectrum using all of the above
definitions remains valid because in each of these definitions the
term X(w; + wy) or X(—w; — w,) is present. Note, however, that
aliasing in the bispectrum of complex-valued signals is slightly dif-
ferent from aliasing in bispectrum of real-valued signals. For ex-
ample, if B(w;, @) = (X (w)X(w)X*(wy + w;)) then the aliasing
triangle has twofold symmetry with respect to w, = w, with the
bispectral signatures that belong to the hexagon centered at (0, 0)
different from those that belong to the hexagons centered at (0, 27)
and (2, 0), respectively. The triangles that belong to the hexagons
centered at (0, 27) and (27, 0) are symmetric with respect to w, =
w, (see Fig. 2). Furthermore, for this case, it is impossible to have
a response in the region ebgd since the symmetry relation B(w;,
—w; — @) = B(w;, wy) is no longer valid (and therefore the Ny-
quist sampling criterion is completely valid [7]). Other definitions
of the bispectrum have different aliasing characteristics dependent
on the type of symmetry involved.

III. ON AUTOREGRESSIVE MODELING OF COMPLEX SIGNALS
UsSING THIRD-ORDER CUMULANTS

Modeling complex-valued signals requires an approach that is
different from modeling real-valued signals. The following theo-
rems explain the modeling aspect of complex-valued signals and
the model order needed. We use complex exponentials as an ex-
ample of complex-valued signals. These theorems show a funda-
mental difference between modeling real-valued signals and com-
plex-valued signals.

We first review the AR modeling of real signals by restating the
following result from [6]. The AR parameters can be obtained from
the following set of linear equations:

P
%@pm—hn—n=o @
ne

where C(.,.) is the third-order cumulant and {a,}%_ is the set of
AR parameters. It is shown in [6] that the AR parameters of a real
sinusoidal signal with 7 implicit couplings can be obtained from (2)
where the AR model order P = 61. In the following we restate a
theorem from [6] concerned with AR modeling of real sinusoids
with implicit couplings.

Theorem [6): Let h (k) be of the following form:
I
hi) = g]l [cos (wak + 0,) + cos (wyk + 6,)

+ cos (wg + wpk + 04 + 04)] 3

where 0,; and 0,; are uniformly distributed random variables over
[0, 2x]). Then there is a unique set of real AR coefficients
{a.} S, with ay = 1, such that

61

ZJO a,C,(n — k,n — 1) = 0. @)

Thus, for real-valued signals, the bispectrum can be obtained

from the AR parameters found by the prediction equation on the
cumulants. For complex data, this is not in general the case, as we
show below.
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TABLE I
EXPRESSIONS FOR THE BISPECTRUM AND THE ASSOCIATED SYMMETRY RELATIONS DEPENDENT ON THE
PLACEMENT OF THE COMPLEX CONJUGATE IN THE THIRD-ORDER CUMULANT

Third-Order Cumulant

Bispectrum

Symmetry Relation

E{x* (x(k + m)x(k + n)}
E{x(k)x*(k + m)x(k + n)}
E{x(kxk + mx*(k + m}
E{x(k)x* (k + m)x*(k + n)}

(X (@)X (@)X * (0, + @)
(X*(—w )X (@)X (—w, — @)D
(X(@DX*(—w0)X(—w; — @)
(X*(—o)X*(—w)X(—w; — @)

B(wy, wp) = B(w, w))
B(w;, wy) = B(w), —w, — )
B(w;, wy) = B(—w, — o, ;)
B(w,, w) = B(w2, w))

E{x*(ox*(k + mix(k + m}  (X*(—0)X(@)X* (0 + @) B(w,, @) = B(—w, — &), )
E{x*(x(k + mx*(k + m)}  AX(0)X*(—w)X* (0 + ©2)) B(w,, w3) = Blwy, —w, — @)
o, =1/20,
W
2 m' -wz

XXX

XX*X
XHXX*

Fig. 1. Example showing the dependence of the bispectrum of a complex-
valued signal on the placement of the complex conjugate in the third-order
cumulant.

Theorem 1: Let h (k) be of the following form:
1
hk) = > [ej(kwa.+0a.) 4 g ) keni+ 0
i=1

+ ej(k(wm+whi)+9n,+0h:)] (5)
where 8, 0,; are uniformly distributed random variables over
[0, 27]. Then there is a unique set of complex AR coefficients
{a,} ! - o, with ay = 1, such that

1

a%q@—hn—b=0 )

However, when this set of AR coefficient is used to compute the
bispectrum, the result is in general not the true bispectrum.

Fig. 2. Rectangular display of the bispectral hexagon in the (@), w) plane.

Proof: The third-order cumulant of h (k) is given as

1
C,,(k, l) - Z [ej(kwai+lwb{) + ej(kwbi+[wni)] (7)
i=1

and the bispectrum is

1

By(w;, ) = ,Zl [6 (w1 — wai w2 — Wp)
i=
+ 8(w; — Wy @y — WD) ®)
Then,
1
2 a,Co(n — k,n — 1)
n=0
I
= 2 > a (ej[mai(n~k)+wb.'(n—l)] + ej[wbz(n—lt)+wm(n—1)])
n
n=0i=1

1 1
Z I:(e—j(way'k+um1) + e—j(w¢.1+wbik)) > a,,ej“"“’“‘""')"]
i=1 0

n=

This expression is zero if and only if the AR parameters {a;} satisfy

1 1
L oaz =11 @— /). ©)

n=1
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Therefore, it is sufficient to choose a model of order / to model /
responses in the bispectrum. The spectrum obtained using these AR
parameters has I peaks at w,; + wy;, § = 1, - - -, I, and is given
as (using (5))

C:

1
Hw = 2 e 19

i=le
The bispectrum B(w,, w,) is obtained using H (w,)H (w)H* (w, +

w,) as

I
Ci
B(w, @) = (E} W)

1
oy
Tl eI S lwait )

! *
(s
i=1 e](w|+w:) — e/(h’u7+wbr) .

In this case, the bispectrum peaks at (@), @), ¥ J, k when either
wj, Wy, Or w; + wy is equal to w,; + w,;. For example, if H(w) =
a, H(w) = B, (where «, 8 # 0, for an all-pole model) and H (w;
+ wp) =y where lim,, ; , ~ o+ wn 1Y} = o, and (w; + @ = Wy
+ wp), i = 1, - - -, i, then the bispectrum at (w;, w,) is such that

lim

Wj + Wk~ wai + Wi

{B(w), w9} = (@) (B) (). an

Similarly, the bispectrum peaks at every ;, w; such that w; +
= Wyt wpy, W) — W = Wy F Wy, OFT W — W = Wy + wy). Note
that the true bispectral peak at (w,;, w;,;) lies on the line defined by
{w, + wy = w,; + w,}; however, the magnitude of this peak is
comparable to the other peaks along the same line and cannot be
distinguished from the others. The only bispectrum that can be
modeled correctly corresponds to the case where w,; = wy,; = 0,
since in this case lim,, ,, o {B(w;, w;)} = () (o) (). |

One way to circumvent this modeling problem is to compute the
AR parameters in a different way, as shown below.

Theorem 2: Let h (k) be of the following form:

1

h(k) — 2 [ej(kwm+0m) + ei(kmb.+0bn
i=1

+ o) kwai+ wbi) +6ui + Gm)]

(12)

where 0, 8,; are uniformly distributed random variables over [0,
2x). Then, there is a unique set of complex AR coefficients
{a,} 3, with ag = 1, such that

37

%%qm—kn—n=0 (13)

where

Citk, ) = E{h*(mh(n + kh(n + 1)

+ h(mh*(n + bh(n + 1) + h(mh(n + DA*(n + 1)}.

(14)

These parameters uniquely model the true bispectrum.
Proof: Using (14), the third-order cumulant of the signal in
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(12) is
1
C;’,(k, 1) — Z [ej(kwa.'+lwbi) + e.l(kwb,+lwm)
i=1

+ ej[k (wai + wbi} + lwsil + e J Ui + {wai + wbi]
+e J [k (wai + wbi) + lwai) + ej(kwa; + Hwai + wb;)]] .

1s)

The proof then follows similar to that in [6] for real sinusoidal
signals with J couplings. The frequency response is then given as

- —jwai

1
. c;
Hw) = > [ — Cil + __Ci2
i e -

e‘j(wa&wm el — o

Ci3
R e 16)

e - €

where ¢; # 0,j = 1, 2, 3. The bispectrum is then obtained using
H(w)H(w,)H*(w; + w,). Using this model, all responses at w,;,
wyi, and wy; + @y, i = 1, - -+, I are modeled in the impuise
response and each set of {w,, wy, w, + wp} in the frequency
response produces a single peak in the bispectrum such that

lim  {B(w, @)} = () (®) (). am

WwW2 = Wai, Whi

This peak can be easily distinguished from other peaks that are
obtained as a result of the transformation defined by
H(w)H(w)H* (0 + w)). a

We have shown in Theorem 1 (using AR modeling of complex
exponentials) that although it is possible to obtain AR parameters
that satisfy (2), the derived system does not necessarily model the
true bispectrum. Theorem 2 presents an alternative approach to
modeling complex exponentials. The AR parameters obtained as
described in Theorem 2 uniquely model the true bispectrum of
complex exponentials.

IV. CoNCLUSIONS

There are three related forms for the bispectrum of complex-
valued signals and three other forms that can be obtained by taking
the complex conjugate of the first three. Aliasing in the case of
complex-valued signals is different from the case of real-valued
signals and depends on the type of symmetry available. It is also
shown that a different approach to parametric modeling of complex
signatures is needed and requires using more than a single form of
the third-order cumuiant.
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