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High Resolution Radar Target Modeling Using
a Modified Prony Estimator
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Abstract— A method for characterizing radar signatures using
a Prony model is developed based on the concept of scattering
centers. A parameterization of the Prony model specific to the
radar target identification problem is chosen, and several key
improvements to the algorithm, including the use of singular
value decomposition and the removal of spurious scattering
centers are presented. The resulting algorithm is tested with data
taken from a compact range. These tests include comparison of
different targets, different aspect angles and frequency ranges, as
well as robustness tests on the algorithm and evaluation of
performance in noise.

I. INTRODUCTION

large amount of work has been done on numerical

approximations of the inverse scattering problem, both
for fundamental electromagnetic purposes and for diverse
applications [1}-[8]. For high frequency data, many objects
are well approximated as a set of discrete scattering centers,
so the inverse scattering problem may be approximated by a
scattering center extraction problem. Thus, one approach to
inverse scattering is to estimate a time-domain scattering
profile of the object, and to locate scattering centers from
peaks in the time-domain profile.

One commonly used method is to perform an inverse
discrete Fourier transform (IDFT) operation on frequency-
domain scattering measurements to obtain the time (or range)
domain profile. The scattering centers are then found from
peaks in this profile. In this approach, a set of N frequency
measurements is converted into an /N-point range profile. By
use of zero padding, the range profile can be interpolated to
obtain more than N points on a finer grid. In either case, one
ends up with a set of sample points which nonparametrically
describe the range profile.

In this paper we seek to locate and characterize the discrete
scattering centers of an object by using a parametric scatter-
ing model, specifically the Prony model. This paper shows
that the Prony method can be used to obtain robust, high
resolution scattering information on realistic radar targets.

In this paper we consider the use of the Prony model for
high resolution modeling of complex targets. Our work is
aimed at employing the Prony model estimates for automatic
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target recognition (ATR) systems. There are two reasons that
the Prony model is attractive. First, the Prony method is not
inherently resolution-limited as is the IDFT. As a result, the
Prony-based algorithm is able to resolve scattering centers
that are separated by less than the IDFT resolution limit.
Furthermore, the Prony method directly provides the ranges
of the scatterers, eliminating the need for peak-finding algo-
rithms or other methods of locating scatterers form an IDFT
range profile.

The Prony model was considered in [5], where it was
shown that the model is exact for point scatterers. For
diffraction scattering terms, there is a mismatch between the
Prony model and the physical scattering process. However, it
is shown in [5] that this mismatch does not significantly
degrade the accuracy of the estimates even for fairly large
relative bandwidths. This paper can be considered an exten-
sion of [5], where we consider complex targets and investi-
gate estimation algorithm issues which improve modeling
accuracy for complex targets.

The standard Prony algorithm is a well-established signal
processing procedure [9], [10]. However, it suffers from
several shortcomings when applied to radar data. First, for
most targets there will be more scattering terms present then
can be modeled; this can affect the performance of the
algorithm. Second, the Prony method can be sensitive to
noise, as has been documented in the signal processing
literature [10]. Third, the Prony method requires an a priori
selection of the model order. Since the model parameter
estimates are also sensitive to the choice of this order, it is
important to select the order ‘‘correctly’” for a given data set.
One of the main contributions of this paper is the develop-
ment of an estimation algorithm which improves the perfor-
mance of the Prony method for radar scattering data.

An outline of this paper is as follows. In Section II we
discuss the use of the Prony algorithm in the inverse scatter-
ing problem. In Section III we describe the modified Prony
algorithm, and in Section IV we present experimental results
obtained by applying the modified Prony algorithm to data
taken with the compact range at the ElectroScience Labora-
tory of the Ohio State University (OSU). The targets are
models of commercial aircraft. Section V concludes the

paper.

II. USE oF THE PRONY METHOD IN THE INVERSE
SCATTERING PROBLEM

Assume that we have available N relatively coherent radar
cross section (RCS) measurements of a target at equally
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spaced frequency steps. Denote these (complex-valued) mea-
surements as { y,}¥~/ taken at frequencies

fo=fo+ké,, k=0---N-1 (1)

The approach we take is to model the RCS measurements as
a sum of damped complex exponential sequences:

z k
Y= 2 diP,- ’

i=1

k=0-N-1. (2)
In (2) m is the model order and has to be preselected. The
parameters {d;}7., and { p;}/_, are parameters to be esti-
mated; they will be referred to as the amplitudes and the
zeros of the model, respectively. We will refer to (2) as the
Prony model for the RCS data.

Geometrically relevant information can be retrieved from
the estimated values of the {d;}/%, and { p;}/~, parameters
as is shown by taking the inverse Fourier transform (IFT) of
@"
diejzr(] —-2r/R)

m
Y(r) = I.EI e/ 1=2r/R _p°

0=<r=R (3)
(where r = ct). We have used the relative range r as the
independent variable instead of time, because range relates
more directly to the target geometry. The constant R is the
maximum unambiguous range given by R = ¢/24,.

From (3) we can see that the contribution of the ith
component of the Prony model will produce a peak at a range
r; given approximately by the argument of p;:

1 arg p;
riz(—— gP)R @)
2 27

That is, the ith component describes a scattering center at
relative range r,. We can obtain further information about
this scattering center by observing that the sharpness of the
peak at r; is dictated by the modulus of p,. Defining p; =
| p;|, we see that if p; = 1, the denominator of the ith term
in (3) will be nearly zero for r = r;, causing large changes in
the contribution of the term to Y (7). This means we obtain a
sharp, narrow peak at range r;. Values of p; not near one
lead to a broader peak. p; < 1 corresponds to a tip diffrac-
tion, and p;, > 1 corresponds to specular scattering from
plates and dihedrals [5], [11]. Thus, p; describes the degree
to which the ith scattering center is concentrated in range.

Finally, the energy of each scattering center can be com-
puted from the contribution of the scattering center’s compo-
nent of RCS data. Each component is given by {d; pf}; ¢
(see (2)). The energy P; of this component is

Nt 2k 2 - 0"
P, = kEO |d;p;1** = |d;] 1-2 (5

- p:

To summarize, the Prony model provides a downrange re-

'Equation (3) is obtained under the assumption that the sampled fre-
quency response in (2) is extrapolated for ~ o0 < kK < o0; a more realistic
assumption would be that the frequency response can be extrapolated only
for a finite amount X, < k < K,. In the latter case, the range response is

given by Y(r) in (3) convolved by a sinc function whose width is propor-
tional to 1/(K, — K).

sponse profile of the target paradetermined by m scattering
centers at ranges r,. Each of these scattering centers is
characterized by the corresponding amplitude d; and zero p;
parameters. These 2m parameters {d;, p;}/L, characterize
the target scattering and could be used as a feature vector for

a target recognition system.

1II. THE MODIFIED PRONY ALGORITHM

This section describes a method for estimating the parame-
ters {d;,, p;}", from stepped-frequency measurements.
Central to the algorithm is the use total least squares coupled
with singular value decomposition (SVD). Singular value
decomposition is helpful in increasing the accuracy of the
parameter estimates [12]-[14]. In addition, with the use of
SVD one can set an upper bound M on the model order; an
automatic method of choosing the Prony model order m < M
is discussed. The combined use of a high prediction order M
and a data-driven selection of m provides for improved
robustness of the algorithm with respect to noise and to target
aspect changes (see also [15]). A related application is dis-
cussed in [16], in which Prony’s method coupled with SVD
is used to estimate complex natural resonances from time-do-
main radar backscatter responses.

We now consider how to estimate the parameters {d }/Z
and { p;}/"., from the data { ¥, }x_o. We use the total least
squares prony method [13], coupled with singular value
decomposition. We estimate { p;}/2, by introducing a monic
polynomial A,.(z) = z™ + @,z ' + - -+ +a,, of order
M = m that has zeros { p,},. Of these M zeros, m zeros
correspond to scattering centers in the Prony model in (2),
and the remaining zeros are spurious ‘‘computation’’ zeros.
We estimate the coefficients {@,}?, by constructing a system
of backward linear prediction equations that expresses the
coefficients of A ,,(z) in terms of the RCS data { y,}3 . In
matrix form we obtain [10}

Ym+1 Im toe N aym
Ym+2 IYm+r T 3! :
: . . . a, =
Yn-1 IN-2 Yn-m-1]|1
or
YA, = 0. (6)

To solve for the linear prediction coefficients, we use total
least squares with SVD. We first form the SVD of Y,

Y=UZVH

(7

where U and V are unitary matrices, and Z is a diagonal
matrix, given by

0y

g, 0

oy
0 (N=M-1)x(M+1)
6,z0,z2 " 20,20

(8)
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(where J = min(M + 1, N — M — 1)). If the RCS meas-
urements are noiseless and correspond exactly to the model
in (2), then Y has rank m and only the first m singular
values in (8) are nonzero. In practice this is not the case. To
reduce some of the effects of noise and modeling error, T is
replaced by

0y

2/

9)
0 OJv-M-pxM+1)

In practice the correct model order m is not known a priori,
so must be estimated. We obtain an estimate of m from the
singular values {0;};_, as follows: if the scattering data fit
the model exactly and there was no noise, o,,,, = g,,,, =
- = g, = 0. In the presence of noise and model mismatch
the matrix Y will have full rank, but will be ‘‘close’’ to a
matrix Y’ of rank m and we have o,,,, = g,,,, =
=~ 0. The value of m to be used can be fixed or we can
ﬁnd a data adaptive value from the estimated singular values.
Simple adaptive tests include choosing m such that g,,, , is
the first singular value smaller than so,, with 0 < s < 1
fixed, or choosing m as the smallest number such that
Omi1 — Oy < S(0, — 0,). More complex tests can be found
from mformanon-theoretlc considerations, see [17] and [18].
The vector A ,, is found by solving

US'VHA,, =0

. o~

(10)

in the total least squares sense [13]. Next, the zeros { p;}M
of A m(2) are obtained by polynomial root finding tech-
niques. Of these M zeros, m are the desired zeros.

The estimates d ; are found as the ordinary least squares
solution of (2) given the zero estimates { p,;},. Thus,

d,
| = prey ey (o
dy
where
ﬁ? 1524 Yo
p=| =]
ﬁ{\l—l i,A/\;-l Yn-i

Now the m scattering zeros must be separated from the
computation zeros. The method we use is to compute the
energy P; in (5) of each estimated zero-amplitude pair { p,,
d;}, for i = 1,---, M. Only the m modes with the highest
energies are kept. This procedure has the advantage of
robustness: the highest energy components are selected, and
these are expected to suffer the least degradation as a result of
noise and clutter in the data. In this way, the algorithm
automatically selects the final model order, which is adequate
to model the particular data set.

Once the mode selection process has been completed, the
target scattering is represented by the m pairs { p;, d;}/,
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These pairs form the feature vector for the target.? Alter-
nately, the corresponding downrange response profile can be
found by substituting these quantities into (3).

IV. EXPERIMENTAL RESULTS

In this section we present the results of applying the above
algorithm to data measured at the ElectroScience Laboratory
Compact Range Facility. The stepped-frequency measure-
ments consist of amplitude and phase of the radar return from
the target at each frequency. The radar receiver in the OSU
compact range uses a time gate to eliminate spurious scatter-
ing effects from the anechoic chamber. The data are then
calibrated by subtracting the response of the empty chamber
and dividing by the calibrated response of a reference target.
Details of the measurement system and calibration procedure
are described in [19]. In all cases the transmit and the receive
polarizations are horizontal. White Gaussian noise is then
added to these measurements to simulate noisy measure-
ments.

For the experiments presented below, the RCS data mea-
surements were taken from scale models of commercial
aircraft. For each model, we list the equivalent the frequency
range for the full-scale target. We show a properly scaled
drawing of the target and the range profile using the inverse
DFT of the RCS data (with a Hanning window and zero-pad—
ding to 512 points.)

Fig. 1 shows the estimated downrange response of a
Boeing 707. We used N = 31 scattering measurements of
the scaled target from 18-26.5 GHz; this corresponds to
measurements taken at 120-176 MHz on the full-size air-
craft. We used a model order M = 15 and reduced to both
m =5 and m = 10 singular values. Also shown is the range
profile obtained using a (zero-padded) IDFT of the 31 data
points. For m = 5, we see three prominent peaks which
correspond to the engine inlets and wing structure. When m
is increased to 10, we see the three main peaks are retained
(although with somewhat different amplitudes), but additional
detail now becomes visible. The small peak on the left in Fig.
1 corresponds to the nose of the aircraft, the peak at 46 m
corresponds to the wing tips, and the two peaks at 59 and 62
m correspond to the tail and to a target postresonance. Thus,
for low model orders the major scattering behavior is esti-
mated, and the finer details of the scattering behavior are
estimated as the model order is increased.

Comparison of the Prony profiles to the IDFT profile in
Fig. 1 shows that the two are in good overall agreement.
Note in particular that the Prony algorithm resolved the two
pairs of engine inlets, whereas the IDFT method did not.

Fig. 2 shows the response of a Boeing 707 at an aspect
angle of 15°, with M = 15 and m = 10. At this angle the
response of the inner left and the outer right engine inlet
occur at almost the same downrange point. Similarly the
inner right engine inlet and the joint of the left wing are very
close in range. In the figure we observe a set of four large
responses in the center that model the two combined struc-

2 The mode amplitudes can be updated by solving (11) using only the m
selected zeros; we have found that this updating has little effect on the
overall estimates, however.
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Fig. 1. Downrange response of the Boeing 707 using N = 31 data points
from 120-176 MHz, model order M = 15, using m = 5 (solid line) and
m = 10 (dashed line) singular values. An IDFT with a Hanning window and
zero-padded to 512 points is also shown (dotted line).

IMPULSE RESPONSE

impulse response power

Fig. 2. Downrange response of the Boeing 707 at an aspect angle of 15°
using N = 31 data points from 120-176 MHz. Solid line: Prony model with
M =15 and m = 10. Dotted line: IDFT of the data using a Hanning
window.

tures mentioned above as well as the wingtips. The tail
response is also modeled at the expected location. This
experiment shows that the response varies in a predictable
way with the aspect angle.

Fig. 3 shows the response of the Boeing 727 also taken
with N = 31 data points from 18-26.5 GHz (this corre-
sponds to 90-133 MHz for a full-size aircraft). We used
model order M = 15 and kept m = 10 singular values and
zeros. The small peak at 52 m is attributed to the support
pedestal. Note the resolution of wingtips and engine inlets by
the Prony method, and the better localization of scattering
mechanisms when compared to the IDFT.

Fig. 4 shows the results for the Boeing 707 as in Fig. 1,
but with white Gaussian noise added at a signal-to-noise ratio
(SNR) of 10 dB. Here, SNR is the ratio of signal energy and
noise energy: SNR = ZN_!| v, |2/ 2850 | ne|?. We used
M = 15 and both m = 10 and m = 5. For each value of m
we show 10 overlapped estimates from 10 independent noise
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Fig. 3. Downrange response of the Boeing 727 using N = 31 data points
from 90-133 MHz. Solid line: Prony model with M = 15 and m = 10.
Dotted line: IDFT of the data using a Hanning window.

realizations. We observe that the reduction of the number of
singular values eliminates most of the noise peaks, while
retaining the signal peaks. For the m =5 case we also
observe that the location of the peaks is estimated reliably
despite the noise. The amplitudes show more variation, but
are still quite consistent for the two major peaks. Notice that
the response at 63 m in Fig. 4 for m = 5 appears in the
noiseless scattering response for m = 10, so it does corre-
spond to target geometry. The peak at 7 m is a spurious peak
from one of the noise realizations; its energy is 19 dB below
the energy of the main peak.

In the context of automatic target recognition, the Prony
model parameters can be used as features for target classifi-
cation. To this end, several points are worth mentioning.
First, the Prony method offers the potential of resolution
enhancement; the scattering centers are often highly local-
ized, and as was seen in Fig. 1, the Prony method is capable
of resolving scattering centers which cannot be resolved by
using IDFT. In addition, the Prony method represents the
scattering by a geometrically relevant parameter vector which
is generally of lower dimension than the original data vector.
In the examples considered, the original data consists of 31
complex numbers, whereas the Prony model consists of 2m
complex parameters. This results in 68% data reduction for
m = 5 and a 35% reduction for m = 10. These data reduc-
tion percentages are conservative because: 1) zero padding is
often employed to improve the range resolution by a factor of
3-4 in IDFT range profiles, and 2) the phase angle of d,
does not seem to be useful for target recognition and could
probably be discarded. Finally, we remark that many IDFT-
based ATR methods employ some sort of peak extraction
from the range profile; if the Prony method is used this peak
extraction step is unnecessary.

V. CONCLUSION

We have considered a Prony model for the estimation of
radar target scattering centers from frequency domain data.
We employed an SVD-based algorithm that is robust with
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Fig. 4. Ten overlayed noisy downrange responses of the Boeing 707 at 0°,
using N = 31 data points from 120-176 MHz, model order M = 15 and

SNR = 10dB. (@) m = 5. (b) m = 10.

respect to changes in the model parameters and to changes in
the frequency band employed. We have also shown that the
algorithm performs reliably in the presence of noise. Using

compact range scattering data, we have shown that different.

targets do indeed produce different response estimates, and
that varying the aspect angle of the target by 15° leads to
smooth and predictable changes in the estimated response for
data in this frequency range.

The algorithm requires the user to choose an upper bound
M on the model order: the final order m is selected automat-
ically. The algorithm can thus be used to estimate feature
vectors for an automatic target recognition system. The esti-
mated model parameters would be features supplied to a
classification stage in an ATR system. This method has the
advantage that the signal processing stage can serve to both
transform the frequency data into geometrically relevant in-
formation and perform data compression (the number of
parameters output by the algorithm is less than the number of
data points). This is important for the computational burden
imposed by the classifier stage. The performance of such a

two stage classification procedure is currently being investi-
gated.

REFERENCES

[11 T. K. Sarkar, D. D. Weiner, and V. K. Jain, ‘‘Some mathematical
considerations in dealing with the inverse problem,”” IEEE Trans.
Antennas Propagat., vol. AP-19, pp. 373-379, Mar. 1981.

[2] W.-M. Boerner, M. B. El-Arini, C.-Y. Chan, and P. M. Mastoris,
‘“‘Polarization dependence in electromagnetic inverse problems,”
IEEE Trans. Antennas Propagat., vol. AP-29, pp. 262-270, Mar.
1981.

[3] Y. Das and W.-M. Boerner, *‘On radar target shape estimation using
algorithms for reconstruction from projections,”” IEEE Trans. An-
tennas Propagat., vol. AP-26, pp. 274-279, Mar. 1978.

[4] L. W. Pearson and D. R. Roberson, ‘‘The extraction of the singular-
ity expansion description of a scatterer from sampled transient surface
current response,”” IEEE Trans. Antennas Propagat., vol. AP-28,
pp. 182-190, Mar. 1980.

[5) M. P. Hurst and R. Mittra, ‘‘Scattering center analysis via Prony’s
method,”” IEEE Trans. Antennas Propagat., vol. AP-35, pp.
986-988, Aug. 1987.

[6] R. Weyker and D. Dudley, ‘‘ Asymptotic model-based identification of
an acoustically rigid sphere,”” Wave Motion, vol. 9, no. 9, pp.
77-97, 1987.

[71 D. G. Dudley, ““A state-space formulation of transient electromag-




[8]

191
(101
f]

(12]

(13]

[14]

[15]

[16]

[17]

[18)

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 40, NO. 1, JANUARY 1992

netic scattering,”” IEEE Trans. Antennas Propagat., vol. AP-33,
pp. 1127-1130, Oct. 1985.

M. L. van Blaricum and R. Mittra, ““‘A technique for extracting the
poles and residues of a system directly from its transient response,’’
JEEE Trans. Antennas Propagat., vol. AP-23, pp. 777-781, Nov.
1975.

F. B. Hildebrand, Introduction to Numerical Analysis. New York:
McGraw-Hill, 1974.

L. Marple, Digital Spectral Analysis with Applications. Engle-
wood Cliffs, NJ: Prentice-Hall, 1987.

W. Leeper, ‘‘Identification of scattering mechanisms from measured
impulse response signatures of several conducting objects,” Master’s
thesis, Ohio State Univ., Columbus, OH, 1984.

R. Kumaresan and D. W. Tufts, ‘‘Estimating the parameters of
exponentially damped sinusoids and pole-zero modeling in noise,’
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30,
pp. 833-840, Dec. 1982.

M. A. Rahman and K.-B. Yu, ‘“Total least squares approach for
frequency estimation using linear prediction,”” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-35, pp. 1440-1454, Oct.
1987.

R. Moses, J. Li, and P. Stoica, *‘Accuracy properties of high order
Yule-Walker equation estimators of sinusoidal frequencies,” in 8t
IFAC Symp. Identification and Syst. Parameter Estimation, Aug.
27-31, 1988.

R. Carriére and R. L. Moses, ‘‘High resolution radar target modeling
using ARMA models,”” Dept. Elect. Eng., Ohio State Univ., Elec-
troSci. Lab., Columbus, OH, Tech. Rep., May 1989.

J. Auton and M. van Blaricum, ‘‘Investigation of resonance extraction
from noisy transient electromagnetics data,”” General Res. Corp.,
Tech. Rep. CR-81-984, Aug. 1981.

M. Wax and T. Kailath, ‘‘Detection of signals by information theo-
retic criteria,”” IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-33, pp. 387-392, Apr. 1985.

M. Wax and 1. Ziskind, ‘‘Detection of the number of coherent signals
by the MDL principle,”” IEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, pp. 1190-1196, Aug. 1989.

[19] A. Kamis, E. K. Walton, and F. D. Garber, ‘‘Radar target identifica-
tion techniques applied to a polarization diverse aircraft data base,’”
ElectroSci Lab., Dept. Elec. Eng., Ohio State Univ., Columbus, OH,
Tech. Rep. 717220-2, Mar. 1987.

Rob Carriére (S'86) was born on November 13,
1961. He received the M.S. (ingenieur) degree in
electrical engineering from the Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands,
in 1987. He is currently pursuing the Ph.D. degree
in electrical engineering at The Ohio State Univer-
sity, Columbus.

His current research interests are in digital sig-
nal processing and include parametric time series
analysis and radar signal processing.

Randolph L. Moses (S'78-M’85-SM’90) re-
ceived the B.S., M.S., and Ph.D. degrees in elec-
trical engineering from Virginia Polytechnic Insti-
tute and State University, Blacksburg, in 1979,
1980, and 1984, respectively.

During the summer of 1983 he was a SCEEE
Summer Faculty Research Fellow at the Rome Air
Development Center, Rome, NY. From 1984 to
1985 he was with the Eindhoven University of
Technology, Eindhoven, The Netherlands, as a
NATO Postdoctoral Fellow. Since 1985 he has
been with the Department of Electrical Engineering, The Ohio State Univer-
sity, Columbus, where he is currently an Associate Professor. His research
interests are in digital signal processing, and include parametric time series
analysis, radar signal processing, system identification, and model reduction.

Dr. Moses is a member of Eta Kappa Nu, Tau Beta Pi, Phi Kappa Phi,
and Sigma Xi.




