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Abstract. This paper presents several results concerned with finding the zero distribution of a polynomial with respect to the
unit circle using variants of the Schur-Cohn procedure. First, new and simple proofs of the Schur-Cohn procedure in the
regular and singular cases are presented. A new method for handling one type of singular case is also developed. Next, we
consider several aspects of the ‘inverse problem’, in which one wishes to alter a given polynomial to have a prescribed zero
distribution. Three methods for forcing all zeros of a polynomial to lie inside the unit circle are derived. Also, two algorithms
for solving singular inverse problems are presented; specifically, one corrects a symmetric polynomial to ensure that all its
zeros lie on the unit circle, and the other corrects a symmetric polynomial to ensure that none of its zeros lie on the unit circle.
The inverse problems have applications in spectral estimation, signal processing and system identification.

Zusammenfassung. Verschiedene Ergebnisse werden vorgestellt zur Frage des Auffindens der Lage von Polynomnullstellen in
Bezug auf den Einheitskreis; debei werden Varianten der Schur-Cohn-Prozedur verwendet. Erstens werden neue und einfache
Beweise fiir die Schur-Cohn-Prozedur im reguldren wie im singuldren Fall vorgestellt. Auch wird eine neue Methode zur
Behandlung eines bestimmten singuldren Falles entwickelt. Als ndchstes betrachten wir verschiedene Aspekte des ‘inversen
Problems’, in welchem man ein gegebenes Polynom so dndern mochte, dafl es eine vorgeschricbene Nullstellenverteilung
aufweist. Drei Verfahren werden hergeleitet, die eine Lage aller Nullstellen eines Polynoms innerhalb des Einheitskreises
erzwingen. Auch werden zwel Algorithmen zur Losung inverser singuldrer Probleme vorgestellt; insbesondere korrigiert eines
davon ein symmetrisches Polynom so, daB alle seine Nullstellen sicher auf dem Einheitskreis liegen, und das andere stellt
sicher, dal} nach Korrektur eines symmetrischen Polynoms keine seiner Nullstellen auf dem Einheitskreis liegen. Die inversen
Probleme lassen sich bei der Spektralschitzung, der Signalverarbeitung und der Systemidentifkation anwenden.

Résumé. Cet article presente plusieurs résultats concernant la détermination de la position des zéros d’un polynéme par rapport
au cercle unité en utilisant des variantes de la procédure de Schur-Cohn. Premiérement, des démonstrations simples et nouvelles
de cette derniére procédure sont présentées dans les cas regulier et singulier. Une nouvelle méthode pour utiliser 'un des deux
cas singuliers est également développée. Enfin, nous considérons plusieurs aspects du ‘probléme inverse’, dans lequel on souhaite
modifier le polyndme donné pour qu’il ait une distribution de zéros imposée. Deux méthodes permettant de forcer tous les
zéros d'un polyndme a appartenir a I'intérieur du cercle unité sont établies. Aussi, deux algorithmes pour résoudre les problémes
inverses dans le cas singulier sont présentés, spécifiquement, ['un corrige un polyndme symétrique pour qu’il ait tous ses zéros
sur le cercle unité, et I'autre corrige un polyndme symétrique pour qu’il n’ait aucun zéro sur le cercle unité. Les problémes
inverses ont des applications en estimation spectrale, en traitement du signal et dans I'tdentification des systémes.

Keywords. Schur-Cohn procedure, polynomial zero distribution, discrete-time system stability, wide-sense stability, stabiliza-
tion. frequency estimation, spectral estimation.
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1. Introduction

The unit circle problem consists of determining
the distribution of the zeros of a given polynomial
with respect to the unit circle. This is an important
problem for many applications in control, signal
processing and system identification areas and
there are various approaches available for solving
it (see, e.g., {1, 3-5, 8-10, 12, 14-20, 25, 26, 28, 29,
32-35] and the references therein).

The Schur-Cohn (5-C) procedure is perhaps the
most frequently used approach to solve the unit
circle problem. It may be used in one of its several
equivalent forms (see, e.g., [3-5, 14, 26, 28}). In
this paper our discussion will concentrate on the
so-called ‘table form’ which is very convenient for
calculations by hand and may be easily pro-
grammed on a computer. This ‘table form’ requires
O(#n*) arithmetic operations, where 7 is the degree
of the polynomial under test. More efficient imple-
mentations of the S-C type procedures are avail-
able, for example those introduced in {3, 5} and
{17, 19} are about two times faster than the ‘table
form’ implementation if # is very large (if n<10
then the ‘table form’ implementation is faster). We
refer to the above references for more details on
implementation, as our main concern in this paper
is not the computational issue. In fact for the appli-
cations we have in mind that »n is usually small
and the ‘table form’ implementation of the S-C
procedure is quite convenient from a computa-
tional standpoint.

The main purpose of this paper may be sumamar-
ized as follows. We introduce two basic results on
the zero distribution for some polynomials of a
special form. These results turn out to be sufficient
for analyzing the S-C procedures in both the regu-
lar and the singular cases. We present simple new
proofs of the S-C test, which provide additional
insight into the properties of the test. Our analysis
of the S-C procedure is partially tutorial but we felt
motivated to include it in this paper since proofs of
the S-C table form tests are not readily available
in the literature (see [3] for a similar comment).
Furthermore our analysis suggests a simple way
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for handling one of the two types of singular cases
which may appear within the S-C procedure. There
are several treatments in the literature of the singu-
lar cases {1, 3-5, 7, 10, 14, 19, 26, 35]. We will
comment on some of them later. Here we make the
remark that most of the earlier studies are imcom-
plete or somewhat informal. An important excep-
tion is the detailed formal study [3], which deals
with the problem of establishing whether the zeros
of a given polynomial lie inside and on the unit
circle (the so-called wide-sense stability problem).
However, this problem is less general than that
considered herein and in fact the main results of
{3] can be obtained as special cases of our results.
We may also remark in the present context that the
relation between S-C stability test and the Levin-
son procedure for solving stationary linear pre-
diction problems is very well understood in the
regular case but not completely understood in the
singular case. Better understanding this relation-
ship in the singular case appears to be an interest-
ing research topic (see {2, 10, 11, 13} for some
relevant studies of this aspect).

This paper also presents a number of new results
on what we call the ‘inverse problem’. This is the
problem of altering a given polynomial to obtain
one with a given zero distribution with respect to
the unit circle. Even though this problem appears
to have a number of important applications in sys-
tem identification, time series analysis and spectral
estimation, a formal treatment of it does not seem
to be available in literature.

An outline of this paper is as follows. In Section
2 we establish two key lemmas concerned with the
zero distribution of a special class of polynomials.
In Section 3 we apply these two lemmas to prove
the validity of the Schur-Cohn procedure in the
regular case. We also consider the ‘inverse prob-
lem’ in the regular case. We develop three proce-
dures for correcting a polynomial to ensure that all
its zeros lie inside the unit circle. In Section 4 we
consider the singular cases of the Schur-Cohn pro-
cedure. We develop a simple new procedure for
handling one type of singular case, and give a sim-
ple proof of Cohn’s result for the second singular
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case. Finally, in Section 5 we consider two impor-
tant singular inverse problems: correcting a sym-
metric (also called self reciprocal) polynomial to
ensure all of its zeros lie on the unit circle, and
correcting it to ensure that none of its zeros lie on
the unit circle.

2. Notation and basic mathematical results

We consider throughout this paper polynomials
with real coefficients. Let

AZ)=ap+az+- - -+a,z" (ay- a,#0).
Let A*(z) denote the reciprocal polynomial
A*(z)=2"A(z"")
=qa,+a, 1z+ " +az".

We will let #,4 denote the degree of A(z), and we
will let 1}, n; and »% denote the number of zeros
of A(z) which are located outside, inside and on
the unit circle C;2{jz|=1}. Note that |4(z)|=
|4*(z)] on Cy, so A(z) and A4*(z) have the same
zeros on C;, and in particular, n% =n% . Note also
that n;=n4 and n;=n4. Finally, let A4'(z)=
(d/dz)A4(2).

In this section we deal with polynomials of the
following special form:

P(z)=K(z)B(z) + L(z) B*(2), 2.1

where K, L and B are polynomials, and where K(z)
and L(z) have no zeros on C,. For polynomials of
the form (2.1) it is relatively easy to make state-
ments on zero distribution, using the Rouché’s
theorem. For ease of reference we include a state-
ment of this theorem [27, p. 218].

ROQUCHE'S THEOREM. If two functions f(z)
and g(z) are analytic on and inside the closed
path C, f(z)#0 on C, and | f(z)| > g(2)] on C, then
f(z) and f(z) +g(z2) have the same number of zeros
inside C.

Our first basic result is the following.

LEMMA A. Consider the polynomial P(z) defined
by (2.1).
(1) I IK(DI>1L(z2)| on Cy, then

ny=n3 + g, (2.2)
Hp=np—Hny—nz—ng, (2.3)
nY=ny, (2.4)

(it) If (K(2)|<|L(2)| on C,, then
np=ng+ng, (2.5)
Hp=np—ny—ny—ny, (2.6)
nh=n%. 2.7)

PROOF. See Appendix A.

If |K(2)]=[L(z)] on C;, the study of the zero
distribution of P(z) is a bit more complicated. In
such a case exact assertions on the distribution of
the zeros of P(z) cannot be made unless additional
assumptions are introduced. Our second basic
result deals with this case.

LEMMA B. Consider (2.1) and assume that
[K(z)|=|L(2)| on C,. Assume also that P(z) has full
degree: np=max(ng, n;)+ng.

(i) The following inequalities hold:

np <min(ng+ng, ng +nz), (2.8a)

np <min(ng— ny, ng—nz ) +max(ng, nr),
(2.8b)

(2.8¢)

0. 0 b
npzngting +n, —ng—ngl.

(it) Let zy, ..., z; denote the zeros of P(z) on C,
which are not zeros of B(z). Assume that
P'(z;)#0 for 1<i<J.

(iia) If for each icl, ..., J, the following
inequality is satisfied:

Re {&Z@}w
z: P'(z;)

Re {L(z,-)B*(zi)} 0
z; P'(z;)

(2.9)
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then
np=nz+ng, (2.10a)
np=max(ng, ny) +nz—nz.
(2.10b)

(iib) If for each iel, ..., J, the following
inequality is satisfied:

K Zi B i
Re{———( ) (Z)}>o
z; P'(z;)
Re {L@)B (z,)}<0’
z; P'(z;)
Q2.11)
then
np=ng+n;, (2.12a)
np=max(ng, ny)+ng—ng.
(2.12b)

PROOF. See Appendix B.

3. The Schur—Cohn test in the regular case

3.1. The direct problem
Let A4,(z) denote a given polynomial of degree n
Af2)=ap,tar,z+- - -+a,z". 3.1

The ‘direct problem’ consists of finding the distri-
bution of the zeros of A4,(z) with respect to C,.
To solve this problem, consider the sequence of
decreasing order polynomials found by using the
following recursion’:

zA;1(2) = Ai(2) — prAE(2),
k=nn—1,...,1, 3.2)
¢k = aO,k/ak,k .

! Note that by using (3.2), one reduces the zeroth order term
of 4,(z). An alternative way would be to reduce the highest-
order term of 4,(z) by using the recursion

A 1(2)= Ai(2) = (e i/ A0 1) AR (2).

Using this recursion leads to similar results with those corre-
sponding to (3.2); however, (3.2) seems to be the more com-
monly used recursion (see, e.g., [4, 26]).
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It is assumed that A4,(z) is such that

e, #0, k=0,...,n (3.3)
Note from (3.2) that
11 =l — (ao,k/ak,k)z]- (3.4)

Thus, the condition (3.3) is equivalent to
an,n ?50,
& gl #l, k=1,...,n (3.5)

a0l # | il,

The condition above designates the ‘regular case’.
The ‘singular case’, in which (3.5) fails to hold, is
discussed in the next section.

Under the condition (3.5) it is rather easy to
solve the direct problem. The following result is
attributed originally to Schur and Cohn even if in
its present form it looks quite different from the
original results (Schur and Cohn results evolved
towards the form of results presented below
through the work of many researchers including
Jury, Astrém and Raible).

THEOREM 1. Assume that the condition (3.5) is
satisfied. Let s~ denote the number of ay, coeffi-
cients, k=n—1,n—2,...,0, which have the same
sign as a,,. Then

ny,=s, nmy=n—s, ny=0. (3.6)
PROOF. Theorem 1 follows immediately from
Theorem 2 below (set p=0, ny=ny=n%=0
there). [

Next we present a more general result that will
be quite useful when analyzing the singular cases
of the S-C procedure in Section 4. This result is
also useful for the present analysis. Specifically, it
can be used to save computation whenever in the
recursive calculation of (3.2) one arrives at a poly-
nomial with known zero distribution.

THEOREM 2. Let A,(z) be computed from A,(z)
using (3.2) for k=n,n—1,...,p+1, and assume
a,,#0. Let s, , (s,,.,) denote the number of elements
in the sequence {a;}r=, (v>u) which have the
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same sign as a,, (—a,.,), and let s~ (s*) be a short
notation for s, (Sy,). Then
63 Ifap,p " >0,

N4, =Na, TS, (3.7a)

N, =ny +s, (3.7b)

n(j”:ne‘p. (3.7¢)
@iy If a,, - G,, <9,

ng,=ng+s, (3.8a)

na,=ngts, (3.8b)

ny,=n% . (3.8¢)

PROOF. See Appendix C.

3.2. The inverse problem

Let us assume that we are given a polynomial
A,(z) which satisfies the regularity condition (3.5).
Then its zero distribution may be established using
Theorem 1. Now, let us suppose that we want an
approximant of A4,(z), with a given zero distribu-
tion (i.e., with a specified number of zeros inside
and outside C;). Determination of such an approx-
imant is what we call the ‘inverse problem’. Most
commonly, such a problem occurs in parameter
estimation and system identification applications
where we may need a stable approximant (i.e., one
with all zeros lying inside the unit circle) of a given
possibly unstable polynomial [22, 31]. A simple
solution to this class of inverse problems may be
obtained as described below.

Let us observe that (3.2) can be rewritten as

AfF_1(2) = — e Ar(z) + A% (2). 3.9

Combining (3.2) and (3.9), we get

[zAk_l(z)}:[l —‘ﬁk}{f‘lk@)] (3.10)
Afa@) 1 =g 1 LAEG)

Since || # 1, the matrix in (3.10) is nonsingular.
Thus, (3.10) can be rewritten as

[Ak(z)J: 1 [ 1 (Zsk}':ZAk»l(Z):I
AL 1=¢dLge 1 LA (2) 1
' (3.11)

which in turn gives

Ai(2) =245 1 (2) + reAF1(2)1/(1 = $2).
(3.12)

Equations (3.2) and (3.12) are commonly called
the ‘backward recursion’ and ‘forward recursion’
equations, respectively. Any polynomial A4,(z)
(satisfying condition (3.5)) can be converted to the
set {aoo, P15 ..., ¢.}, and conversely, using these
two equations.

Recall that our inverse problem is to obtain a
stable approximant of a given polynomial 4,(z).
To this end we can proceed by using one of the
following two methods which correct the sequence
{¢x} associated with A,(z). Note that if this
sequence is such that ¢ <1 for | <k<n, then all
of the elements in the sequence {a.,}{-o have the
same sign, which implies that the corresponding
polynomial A4,(z) is stable (c.f. Theorem 1).

METHOD A
Step 0. Test whether 4,(z) is stable. If it is, then
set A4,(z)=A,(z). Otherwise, determine a stable
approximant 4,(z) in the following steps.
Step 1. For each k=n,n—1,...,1,
(a) Compute ¢;.
(b) If |¢] < a, then leave it unchanged (a (0, 1)).
(c) If |¢u/ > a, then replace it by ¢, =a sign(¢).
Also, replace arix by @c.=aor/¢x (alterna-
tively, replace aox by dox= arxPx). Use the ‘bar
terms’ in all subsequent computations of the
backward recursion (3.2).
Step 2. Using (3.12), compute the stable approx-
imant A(z) from {¢;}¢-, and o, (note that dog
has only a scaling effect which is eliminated by the
next operation). Normalize A4,(z) such that @ ,=
a., for some k (usually for k=n).
Vol. 26, No. 1, January 1992
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The threshold ¢ in the above method should not
be chosen too close to one, contrary to what might
be expected. For example, one may choose ¢ =0.75
or 0.8. This recommendation can be motivated as
follows. If |¢. is only slightly less than 1 (e.g.,
{¢:i=10.99) then |@,— | will in general be quite large
since ap -1 .1 will be small (see (3.4)). Thus, ¢
will have to be significantly truncated, and this may
affect the approximation error adversely.

Note that Step 0 in Method A is required to
avoid correcting a possibly stable polynomial 4,(z)
in Steps 1 and 2. Note also that the truncation of
¢« to the interval [—a, a] (e.g., ¢ =0.75) is neither
necessary nor sufficient for ensuring that [¢,_,]| is
‘small’. Method B presented in the following is
designed to eliminate the above drawbacks of
Method A.

METHOD B

Step 1. Foreach k=n,n—1,...,1

(a) Compute ¢, .

(b) If |¢s| <1, then leave it unchanged.

(c) If 1<|¢ef<1.5, then replace ¢, by qi;k=
0.95 sign{¢y). also, replace arx by drr=dor/
$k (alternatively, replace agz by dosk=ak,kq$k).
Use the ‘hat terms’ in all subsequent computa-
tions of the backward recursion (3.2).

(d) If |¢,)>1.5, then replace it by ¢,=0.95
sign{¢,).
If | > 1.5 for k<n, then decrease |¢; .| in
steps of 0.05, correct ariix+1 (OF Qox+1)
accordingly, and recompute ¢, until either
[l <1.5 (thus one of cases (b) or (c) occurs)
or [¢r+1]<0.5. In the latter case, replace ¢, by
$k=0.95 sign(¢y) and go to k—1.

Step 2. As in Method A.

The various threshold values in Method B (1.5,
0.95, 0.05, 0.5) were arrived at by experiment, and
other values may produce improved approxima-
tions in specific applications. However, in our
experiments, the approximation error has not
changed significantly as these parameters have
been varied.
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It should be noted that Methods A and B are
not optimal in the sense of minimizing some norm
of the difference between the given polynomial and
its stable approximant. Furthermore, these meth-
ods are based on the transformation {a;,} — {¢;}
which may be quite sensitive to small perturbations
in the coefficient sequence {a;,} as is shown in
Examples 3.1 and 3.2 below. Nevertheless, they are
computationally simple means of determining a
‘suboptimal’ stable approximant of a given polyno-
mial; their results may be refined by more sophis-
ticated methods if SO desired
(see e.g., [22]).

EXAMPLE 3.1. This example illustrates the per-
formance of Methods A and B for stabilizing noise-
perturbed versious of the polynomial

Ag(z)=2°—0.2842"—0.22262*+ 0.05272°
+0.32542*—0.21352 - 0.6161.

This polynomial has zeros at 098¢*%°
0.9 % 0.99 and —0.8. White noise with zero
mean and standard deviation o =0.1 was added to
each coefficient except the z° coefficient, resulting
in a perturbed monic polynomial. Methods A and
B were applied to stabilize the resulting poly-
nomial. This experiment was repeated 50 times and
the errors between the original and stabilized poly-
nomial coefficients were computed by

1 50
D=,/ dei—a)?, k=0,1,...,5.
e SOZ‘](k’ %)

(3.13)

The resulting errors from Methods A and B are
shown in Table 1. Also shown are the errors for the
perturbed polynomials before stabilization; these
errors are approximately equal to ¢ as they should
be. However, for the stabilized polynomials it can
be seen that some of the coefficient errors for
Methods A and B are much larger than o, indicat-
ing that the corrected polynomials are ‘far’ from
the original polynomial. This large error is also
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Table 1

Errors of uncorrected and corrected polynomial coefficients corresponding to Examples 3.1
and 3.2

D, D, D; Dy Ds Ds

Uncorrected 0.1166 0.1145 0.1022 0.0986 0.0874 0.0992
Method A 0.1062 0.6146 1.1020 0.2714 1.0731 0.9701
Method B 0.1037 0.7581 0.9775 0.1633 0.7920 1.0955
Method C 0.1750 0.0900 0.1067 0.0859 0.0724 0.0831

evident in the zero locations of the stabilized poly-
nomials. Figure 1 shows the zeros of the uncor-
rected and corrected polynomials, and it is evident
that the corrected polynomials zeros are not always
close to the original polynomial zeros.

101

The primary reason that the corrected poly-
nomials are far from the original one is that the
correction procedures in Methods A and B rely on
correcting the {¢.} sequence, and that small errors
in the polynomial coeflicients can give rise to large

(c) Method B corrected polynomials

Fig. 1. Zero locations of polynomials in Example 3.1.

Vol. 26, No. 1, January 1992
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Table 2
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Errors in the reflection coefficient sequence corresponding to Example 3.1

o &> ¢s ¢4 @5 b
True sequence —0.6948 0.1331 0.0394 —0.1910 —0.6262 -0.6161
Five sample 0.4479 1.6876 —2.6804 —~0.7421 —~0.7276 -0.5699
sequences ~0.7648 1.8952 0.9607 7.3625 —~1.0385 ~0.7077
—4.5244 —0.9857 —11.0594 0.9972 —20.6429 —0.9755
—0.8711 14.3291 0.8840 ~0.5183 ~0.8550 —0.5872
1.2651 ~4.8264 ~0.8516 —0.1443 ~0.5582 —0.6336
Mean of 50 —0.6365 0.0991 ~0.0752 3.2267 —1.0999 -0.6211
St. dev of 50 1.7957 10.1654 2.0788 18.3636 2.8107 0.1165

deviations in the {¢;} sequence. This is shown in
Table 2, where the ‘reflection coefficient’ sequences
{¢:} of five of the perturbed polynomials in the
Monte-Carlo experiment are shown. Even though
the coefficients of these polynomials are perturbed
by no more than 26 =0.2, the reflection coefficients
are sometimes very different from the unperturbed
reflection coefficients. The ill-conditioning of the
transformation from the {a;} to the {¢} sequence
is caused by the division by (1~ ¢7) in (3.12);
when the zeros of A,(z) are near the unit circle,
this term approaches zero. There does not seem to
be a direct way of overcoming this inherent ill-
conditioning problem for Methods A and B.

One way to circumvent the ili-conditioning prob-
lem is to stabilize a polynomial by directly adjust-
g the polynomial coefficients, and use the
reflection coefficient sequence only as a stability
test. This leads to Method C.

METHOD C

Step 0. Test whether A,(z) 1s stable; if so, then

A,(z)=A,(z). If not, determine a stable approx-

imant 4,(z) in the following steps.

Step 1. Let Apn2)= annz"+ ap 102"+ -+

a;,na(’)"’zﬁ-ao‘nag for some aye(0, 1}. Test whether

/],,(z) Is stable.

- If gn(z) is stable, use a bisecting method 7 times
on a€elag, 1] to determine the largest o for
which 4,(z) is stable.

- If 1?1,?(2) is not stable, reduce aq by some given
amount J and repeat Step 1.

Signat Processing

Note that Method C does not change the angles
of the zeros of A4,(z); this method scales the magni-
tudes of the zeros unti}l the maximum magnitude is
less than one. As a result, if an unstable polynomial
has zeros not too far outside the unit circle, the
Method C stabilized polynomial will have zeros
(and polynomial coefficients) which are close to
those of the unstable polynomial. In addition,
Method C is computationally efficient; for most
choices of a, and 7, this method is faster than
Method B.

EXAMPLE 3.2, Figure 2 shows the zeros of the
50 stabilized polynomials using Method C; these
results use the same polynomials as in Fig. 1. For
this example, ao=0.8, f=0.2 and /=35. The poly-
nomial coefficient errors for this method are shown
in Table 1. It can be seen that the stabilized polyno-
mial zeros are much closer to the original polyno-
mial zeros using Method C. The polynomial

Fig. 2. Zero locations of Method C corrected polynomtals, cor-
responding to Fig. 1.
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coefficient errors are also much smaller with
Method C than with either Methods A or B.

In general, method C is expected to work well
when # is not too large, and when the errors on the
polynomial coefficients are not too large. The small
order restriction results from the exponential per-
turbation on the polynomial coefficients; aj is close
to zero when # is large. The small perturbation
restriction arises from the fact that the set of all
polynomial coefficients which give stable polyno-
mials is not convex; thus, for large perturbations,
the projection of an unstable polynomial vector
onto the stability set may be ‘far’ from the original
polynomial. This latter issue is not particular to
Method C, but true of all stabilizing methods, even
optimal methods [22]. On the other hand, applica-
tions which use polynomial stabilization often
satisfy the constraints that neither n nor the pertur-
bations are too large.

4. The direct problem in the singular case

During the recursive computation of (3.2) one
may encounter a polynomial 4,(z) of the following
form

Afz)y=(ap+az+- - +a,2")
+(am+lz”’+’ 4. _,_ap‘milzpﬁm,l)

+ B2 M@+ Gz + -+ aZ™)  (a0#0)

L F(z)+ R(z) + =P "F*(z), @

where f==1, and where O0<m<|p/2] (|x]
denotes the integer part of x). Assume that

an1+l?éﬁap71n~l' (42)

The condition above ensures that m is the largest
order for which 4,(z) can be written in the form
of (4.1). Note that if m=[p/2]| then R(z)=0 in
4.1).

It may be argued that in applications it is
unlikely to arrive at polynomials 4,(z) of the form
(4.1) due to round-off errors. However, we may

obtain polynomials A4,(z) having the symmetry of
(4.1) to within a pre-imposed numerical accuracy;
moreover, the polynomial A4,(z) itself may be of
the form (4.1).

For A,(z) given by (4.1) we have ¢,=f=+1,
so from (3.2)

A,-1(2) =£ R(z)— Bz~ lR(Z_l)

= m .. p—m—2
—a,,,,,,,lz +- +a,,_,,1k2’,,,12 .

(4.3)

Thus the first m and the last m+ 1 coefficients of
A, 1(z) are equal to zero. This situation is usually
referred to as the singular case of the Schur-Cohn
test. When it occurs, g),,,l cannot be computed,
and the recursion (3.2) must be stopped. In the
following we will discuss how to handle the singu-
lar case. It will be convenient to consider separately
the following two types of singular cases:
Singular case I: A,_(z)Z0,

Singular case II: A, (z)=0.

4.1. Singular case I

Theorem 2 in Section 3 suggests the following
method to handle Singular case I: When an A4,(z)
of the form (4.1) i1s obtained during the recursive
computation of (3.2), replace it by a polynomial
A,(z) with the same zero distribution as 4,(z) but
with |¢,|#1, and continue the recursion using
A,(z). This is the way to proceed that is commonly
used in literature (e.g., [26, 35], etc.) even though
a proof of its validity is not provided; also, the
importance of the sign of a,,a,, (c.f. Theorem 2)
is not mentioned.

The problem which remains is to find a poly-
nomial 4,(z) having the same zero distribution as
A,(z). In [26], following a result by Cohn, it is
suggested to form A,(z) as

A (2) = (" +g)A4,(2) (4.4)

for certain g with |g] > 1. Note that 4,(z) has degree
m+p+ 1 and has the same zeros inside and on C,
as A,(z). Alternatively, in [35] 1t is suggested to set
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Af2)=(z+ 0)A,(2) 4.5)

for some o #+ 1. This solution might seem simpler
than that of [26] since the degree of (4.5) is smaller
than that of (4.4). However, this is not true. To see
this, define F(z) such that F(z)=ay+zF(z). Then
we have from (4.1), (4.5)

A2)=zA,(z)+ olay+zF(z)
+R(z)+ PzP "F*(2)]
=2[A,(z)+ o F(z)+2z 'oR(2)
+o Bz " 'F¥(2)] + ago, (4.6)
AX)=(1+02)45(2)
=26 43(2) + 2 "F*(2)
+z" M R*(2) + Blay+ zF(2)]
— 2O AR (2) + 2P (D)
+2"R*(z) + BE(2)]+ Bas. 4.7
Since ¢, =0/ =0cf, we get from (4.6) and (4.7)

A1) % [4,(:) — o BAX()]

=A,(2)— 0’ BAF(z) + oz 'R(z)
—o 2" R*(z),

which is still in the Singular case I form, but now
the F(z) polynomial corresponding to A4,-(z) has
degree m — 1. Thus, we need to multiply 4,_,(z) by
(z+ o) again, and this procedure must be repeated
m times.

The discussion above shows that the procedure
based on (4.4) is more efficient computationally
than that which uses (4.5). However, (4.4) isnot a
very attractive choice for Z,,(z) either, because
A,(z) has a (much) higher degree than 4,(z) and
this leads to an increase in the computational
burden. Furthermore, Singular case I may occur
more than once for a given polynomial 4,(z). Since
in every such case we have to replace 4,(z) by a
higher-order polynomial, it is not a priori clear in
how many steps such a procedure will eventually
terminate. It would be very convenient from both
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a computational and a theoretical standpoint to
replace A,(z) with a polynomial 4,(z) of degree p.
Such a polynomial exists as shown in the following.

THEOREM 3. Consider the polynomial A,(z)
given by (4.1). Then the polynomial

A2)=A,(=) + pz " LA (2) = fAF ()],
lpl <2 (4.8)

has the same zero distribution (with respect to C))
as A,(z) does. Furthermore |d,o/a,,|#1 for every
lple(0, 1/2) except possibly for p=—2ay/(@m+1—
Bay—m—1).

PROQF. See Appendix D.

The polynomial 4,(z) is easy to construct. Note
that z7'[4,(z) — BA}(z)] in (4.8) is equal to 4, (z)
and is obtained during the iteration with (3.2). We
illustrate the use of A4,(z) in (4.8) by means of a
numerical example.

EXAMPLE 4.1. Let
Ag(z)=42"— 62— 47" +2:°+57°
—14z* =82 +47 —6z—4
=4(z=2)(*+2)(2*+ 3)(z + 3).
Note that
na, =4, ny,=5, n%=0.

Use of Theorems 2 and 3 to resolve Singular case
I which occurs during the application of the Schur—
Cohn procedure leads to the results of Table 3.
From Table 3 we obtain the correct zero distribu-
tion from the signs of the ;. and a, . coefficients
(shown as bold face numbers in the table).

Note that other ways of handling Singular case
I may be found in [1, 14]. Stated briefly, the basic
idea of both the g-approach of [ 14} and the method
of [1] (which is based on infinitesimally contracting
and/or expanding Cy) is to perturb the coefficients
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Table 3
Schur-Cohn table to Example 4.1, illustrating Singular case 1

Ao 4 -6 —4 2
— o AL —4 —6 4 -8
Ay 0 -12 0 —6
T Ay 0 0 ~4 0
As 4 -6 -8 2
— o A% -16 —12 4 -22
Ay 12 -18 —4 —20
— gl 27 21 10.5 16.5
A, 15 3 6.5 -3.5
—ps A% —11.267 0867 —16.467 —13.433
A 3.733 3.867 -9.667 —16.933
— oAt ~3.471 12.889 17.871  —16.329
As 0.262 16.756 7.905  —33.262
—Ps At ~1115.9 —~582.4 2171.1 —516.0
A, —~1115.6 —565.6 2179.0 —549.2
~Pads 1054.8 5341  -21188 550
A —60.76 —31.59 60.17 0.8
— s A% 0.011 0.792 —0.416 0.8
A, —60.75 -30.79 59.76

~ A% 58.8 —-30.3 —59.76

A ~1.975 -61.1

— ¢ A} 1889.2 61.1

Ay 1887.2

5 -14 -8 4 —6 4 py=—1
14 5 2 -4 -6 4
-9 -9 -6 0 -12 0 Singular case I
-2 -3 -3 =2 0 -4
3 -17 -1 2 =6 -8  Py=—2
—34 6 4 —16 -12 8
-31 -11 -7 -14 -18 Ps=1.5
46.5 30 6 27 18
15.5 19 -1 13 $;=0.867
3.033 —5.633 —2.6 -—I13
18.533 13.367 3.6 s =—0.964
~9.611 3729 3.6
8.923 17.095 Ps=65.273
—-1093.7  —~17.095
—1084.8 d4=0.9724
1084.8
3=
-0.0132
—0.9836
$,=30.93

of A,(z) in such a way that Singular case I is elimin-
ated (within the g-approach this is done implicitly).
To ensure that no other singular cases are intro-
duced by this perturbation, both these methods
require algebraic manipulations; as such they do
not seem attractive for analysis of high-order poly-
nomials or for numerical implementation.

4.2. Singular case 11

Consider now the case where 4,_,(z)=0. This
may happen if and only if 4,(z) is given by (4.1)
with no R(z) term. In other words,

A(z)=F(z)+ BzF ""F*(z), (4.9)
where m=|p/2{. In this case

if f=+1,
if p=-1.

Ap(2)

Ay (Z)={_ 4(2)

We say that A4,(z) is ‘symmetric’ when f=+1
and ‘skew-symmetric’ when =—1.

Since A4,-(z) =0, the procedure of the previous
subsection is of no help here. However, this singu-
lar case can be handled by using an interesting
result due to Cohn (see, e.g., [3, 26]). We will pre-
sent a simple proof of that result. First, however,
we need the following preliminary resuit.

LEMMA 1. Let A(z)=ap+aiz+- - +a,z". Then
nA*(z) =z[A*(2)] + [4'(2)]*. (4.10)

PROOQF. Equation (4.10) follows by a simple cal-
culation (see [3]). O

It follows from Lemma 1 above that 4,(z) given
by (4.9) satisfies
pAp(2) = z4,(2) + BlAp(2)]*.

We can now state and prove Cohn’s result.

(4.11)

LEMMA 2. Let the polynomial A,(z) be symmet-
ric or skew-symmetric. Then A,(z) and A,(z) have
the same number of zeros outside C, .
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PROOF. See Appendix E.

Next we describe the use of Lemma 2 and Theo-
rem 2 for handling the case of a polynomial 4,(z)
of the form (4.9), which may cocur during the
recursive computation of (3.2).

THEOREM 4. Let A,(z) be determined from A,(z)
using (3.2) for k=n,n—1,...,p+1. Assume that
Ay(z) is of the form (4.9) (or, equivalently, that
A,—1(z)=0). Define B,_(z) £ Ay(z). Then

- _ _+ - + _+ +
M4, =np,_,+S , n4=ng_,+s,
' ’ (4.12)

0 _ . A +
h4, =P anp—l’

where s~ and s* are as defined in Theorem 2.
PROOF. See Appendix F.

We illustrate the use of Theorem 4 for handling
Singular case II by means of a numerical example.

EXAMPLE 4.2, Let
As(zy=z2"—z* -2~ +2z+2
=(Z-D(z—2(F+z+1).

Note that n,, =0, nj, =1 and n%, =4. The Schur-
Cohn procedure, combined with the method previ-
ously described for resolving Singular case 11, leads
to the results shown in Table 4. It follows from
Table 4 that n3,=0, s' =1 and s~ =0 which, when

Table 4

inserted into (4.12), leads to the correct zero distri-
bution of As(z).

It is worth remarking that for some 4,(z) poly-
nomials, both Singular cases I and II may occur,
possibly more than once. In such situations we
have to repeat the procedures described above for
handling the singular cases and the so obtained
results should be interpreted with care.

We end this section by a numerical example
where both Singular cases I and II occur.

EXAMPLE 4.3. Let
Ag(z)=222—47"— 5 +62°—97*
+0z°+ 42" 2z +4
=2(z=2)(Z*— ) +2)(*+ 3).

Note that ny,=2, n,=4 and n%,=2. By applying
the Schur-Cohn test to A4g(z), together with the
techniques for handling the singular cases intro-
duced above, we obtain the results shown in Table
5. From this table we get nz =0, s;,=3 and
s27=2, which, when inserted into (4.12), give
ng,=3, ny,=2 and n%,=2. We also note that
ar7a33<0, s73=0 and s75=1, which, when used in
(3.8a-c), give the correct zero distribution.

4.3. Wide-sense stability test

The results established so far can be readily used
to derive a wide-sense stability test (a polynomial

Schur-Cohn table for Example 4.2, illustrating Singular case II

As 1 -1 -2 1
— st —4 -2 2

Aq -3 -3 0 3
—pad} 3 3 0 -3
As 0 0 0 0
By -12 -9 0 3
—$sB? 0.75 0 -225 -3
B ~11.25 -9 225
—$.B% 0.45 1.8 2.25

B ~10.8 7.2

—$.B% 48 72

Bo -6

1

2

3 dy=—1
3

0 Singular case II
9y =—0.25
=02

$1=0.666

Signal Processing
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Table 5
Schur-Cohn table for Example 4.3

Ag 2 —4 -1 6
— A -8 4 -8 0
A —6 0 -9 6
— ¢, 4% 6 6 -12 9
zAq 0 6 21 15
3Aq 0 0 2 -7
A, —6 0 —7 -1
— @, A% 10.6667 —1.3333  —9.3333  18.6667
As 4.6667 —1.3333 —16.3333  17.6667
—poA* —0.2143  —3.5000 2.7143 3.7857
As 4.4524  —4.8333 —13.6190  21.4524
—¢s At —62.0326  34.2157  80.0736 —50.8347
As —-57.5802  29.3824  66.4545 —29.3824
—padl 1.3677 45284 —10.2421  —4.5284
A —56.2125 339108 562125 —33.9108
—psAf 204571 —33.9108 —20.4571  33.9108
A, —35.7554 0 357554

— ¢, A% 35.7554 0 —35.7554

A 0 0

B —71.5109 0

—¢\B} 0 0

B, —71.5109

-9 0 4 =2 4 ¢g=2
18 —-12 2 g —4
9 —12 6 6 ¢,=-1
6 -9 0 —6
I —21 6 0 Singular case I
5 5 =7 2
14 | 8 @¢,=—1.333
—1.333  —9.3333 0 -8
12.6667 —16.3333 -1 Bs=
—0.2143
—3.5000  —0.2857 1
9.1667 —16.6190 Bs=
—3.7326
—18.0410 16.6190
—8.8743 $,=0.1514
8.8743
¢5=0.6033
¢=—1

Singular case II

=0

A,(z) is called wide-sense stable if 7y, = 0). In doing
s0, we rediscover the test introduced in the interest-
ing paper [3]. This test proceeds as follows:

(1) Use (3.2) to compute 4,-(z), 4,-2(2), . ...
If one encounters a [¢,|>1 then A4,(z) is
unstable (this follows from Theorem 2 since
in the above case s > 1).

(i1) Ifoneencountersa|g,|=1and thecorrespond-
ing polynomial 4,(z) is in Singular case I, then
again A4,(z) is unstable. This is so since such an
A,(z) cannot have all its zeros on C; (in that
case it would be symmetric or skew symmetric)
and, therefore, it must have zeros both inside
and outside C) (since |¢,|=|product of the
zeros of A,(z)|=1); thus nj >1, n, >1 in
Theorem 2, and the assertion follows.

(iii) If one encounters a |¢,/=1 and the poly-
nomial 4,(z) is in Singular case II then 4,(z)
is wide-sense stable if and only if B,_1(z)=
A,(z) is wide-sense stable (c.f. Theorem 4).
Thus the test proceeds on B,_;(z).

Wide-sense stability tests, such as the above one,
find applications in systems and circuits problems.

For example, the procedure of [22] for determining
the stable polynomial which is closest, in the Eucli-
dean norm sense, to an unstable one, requires a
wide-sense stability test to check whether a given
coefficient vector belongs to the stability set
(including its boundary).

5. The inverse problem in the singular case

The inverse problem in the singular case is, by
analogy with the regular case, to synthesize a poly-
nomial A,(z) which does not satisfy (3.5) and
which has a certain specified zero distribution with
respect to C;. For such a polynomial, the corre-
sponding sequence of {¢@,} must contain some ele-
ments of unit modulus. Then the forward recursion
(3.12) cannot be used to generate A4,(z). Thus it
appears difficult to derive general solutions to the
inverse problem in the singular case. In the follow-
ing, we present some specialized results on zero
distribution of symmetric polynomials (which
belong to the singular class). Such polynomials
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occur in spectral estimation and system identifica-
tion problems, and the results which we present are
relevant there.

To be more specific, let us introduce the follow-
ing symmetric polynomial:

A(z)y=go+ - +guZ" '+ g2
+g;;1412m+1+' . _+g022m

=G(z) +2"G*(z), (5.1)
where
G(Z) =g +glz+ R +gm‘ IZ'"H 1 + %ngm.

Polynomials of the form (5.1) appear in several
signal processing applications. Two such applica-
tions are
- Estimation of the frequencies of multiple sinu-

soids from noise-corrupted data [21].
~ Estimation of the spectral density of a moving-

average or mixed autoregressive moving-average

process (see, e.g., [6, 23, 24]).

In the first application, we wish to correct as
necessary a given (G(z) polynomial such that the
corresponding A4(z) polynomial has a/l its zeros on
C,. The angular positions of the zeros of 4(z) are
then used as estimates of the sinusoidal frequencies
[21]. In the second application, the problem is
different: a given G(z) polynomial is to be cor-
rected such that the corresponding A(z) has no zero
on C;, and thus corresponds to a valid spectral
density function [6].

5.1. Ensuring all zeros lie on the unit circle

The following corollary of Lemma B provides
some guidelines for solving the first inverse prob-
lem stated above.

COROLLARY 1. The polynomial A(z) defined by
(5.1) has all its zeros on C if ng=0.

PROOF. Note that (5.1) is in the form of (2.1)
with P(z)=A(z), B(z)=G(z), K(z)=1 and L(z)=

Signal Processing

z”. Tt follows from Lemma B, part (i) that for
ns=0 we have

1% =nE+ng+m—ng
=nS+ni+m=2m=n,, (5.2)

which concludes the proof. [

The condition of the above corollary is sufficient,
but not necessary. To see this, consider the follow-
ing example: For m=2 and G(z)=1+4z+32
(with zeros at z=—1, —3) we get A(z)=(z+1)"
Thus, a procedure based on the condition ng =0 to
ensure that n% =2m may be overly restrictive, and
must be used with care. A less restrictive procedure
is described in the following.

Consider the decomposition (4.11) of A(z),
instead of the decomposition (5.1). Define

B(z) :(L)A’(z), (5.3a)
2m
and note from (4.11) that
A(z)=1zB(z)+ B*(z). (5.3b)

It follows from Theorem 4 that » =2m if and only
if mz=0. The perturbed A(z) polynomial fre-
quently dealt with in applications is close to a poly-
nomial with all zeros on C;. We may therefore
think of ensuring »% = 2m by slightly correcting the
(perturbed) polynomial B(z). This way to proceed
has a subtle aspect which should be clarified: by
altering B(z), this polynomial may no longer be
proportional to the derivative of a symmetric poly-
nomial (the polynomial A(z) in (5.3b) correspond-
ing to an arbitrary B(z) is still symmetric, but the
decomposition in (5.3b) is not unique); therefore
Theorem 4 cannot be invoked to prove that the
corrected A(z) polynomial satisfies n% =2m. How-
ever, by applying Lemma B, part (i) to (5.3b) for
a general B(z) and under the assumption np =0 we
get

Wy = Hy+ng—ng—1|=n%+nz+1=2m.

This shows that a sufficient condition for
n=2mis np=0.
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The condition nz=0 is not necessary for
n%=2m. For example, B(z)=z"+az’—a (with
ng>1for a>1) gives A(z)=z"+ 1. In spite of this
comment, since only small perturbations on the
coeflficients of B(z) are usually required (c.f. the
discussion above) one can expect that the corrected
A(z) polynomial is close to the original polynomial.

Procedures for enforcing #5=0 have been dis-
cussed earlier in Section 3.2. Using these proce-
dures, a method for correcting 4(z) so that all its
zeros lie on C; is as follows:

— From A(z) construct B(z) using (5.3a).

— Test whether nj=0. If so, then A(z)=A4(z). If
not, use one of the stabilization methods out-
lined in Section 3.2 to form a corrected poly-
nomial B(z) with n3=0.

— Reconstruct A(z) from B(z) using (5.3b).

The above procedure is computationally very sim-

ple, and could be included as an added step in

many frequency estimation algorithms.

EXAMPLE 5.1. Consider the polynomial

Au(z) =z"—2.08362"+ 3.06742°
—2.0836z + 1 (5.4)

with zeros at 1e*/%*" and 1 ¢*/**™ We generate
50 perturbed polynomials, each one constructed
by adding zero mean white Gaussian noise with
standard deviation o =0.1 to the first three coeffi-
cients of 44(z), and setting the z° and z' coefficients
equal to the perturbed z* and z° coeflicients, respec-
tively; thus, the perturbed polynomials retain
coefficient symmetry. The zeros of these perturbed
polynomials are shown in Fig. 3(a). Of the 50 sets
of zeros, 26 have the property that not all zeros are
on the unit circle; these 26 sets are shown in Fig.
3(b).

One application of the zero moving method dis-
cussed above concerns sinusoidal frequency esti-
mation using prediction polynomial techniques
{21]. In this application one is primarily interested
in the angles of the zeros, as these correspond to

the frequencies to be estimated. If the zeros are
closely spaced, then errors in the prediction
polynomial estimate can cause the zeros of the
polynomial to be off the unit circle, It can be seen
that in these 26 sets the two frequencies were not
resolved (there is a pair of zeros with the same
angle, but off the unit circle instead of two zeros
with different angles on the unit circle).

The method described in this section for ensuring
all zeros of a polynomial lie on the unit circle was
applied to these 50 polynomials; for this example,
Method C was used to stabilize B(z). The zeros of
the resulting polynomials are shown in Fig. 3(c).
The zeros in Fig. 3(c) differ from Fig. 3(a) for only
26 of the 50 sets; the 26 changed polynomial zeros
are shown in Fig. 3(d) and can be compared with
Fig. 3(b).

In the sinusoidal frequency estimation problem,
the angles of the polynomial zeros are of interest.
Table 6 shows the means and standard deviations
of the zero angles (frequencies) for the 26 uncor-
rected and corrected cases corresponding to Figs.
3(b) and 3(d) (the remaining 24 sets of zeros in
Figs. 3(a) and 3(c) are the same for both the uncor-
rected and corrected polynomials, so their contri-
butions to the error are equal.) It can be seen that
the uncorrected polynomials which have zeros off
the unit circle give a single frequency estimate at
about the average of the two true frequencies. The
correction procedure results in two resolved fre-
quencies which are closer to the original frequen-
cies than are the uncorrected frequencies.

Several points can be noted from this example.
[f the zeros of A(z) are not close to each other,
then small perturbations on the coefficients often
do not move the zeros off the unit circle, and the
stabilization procedure has no effect. Even when
zeros are closely spaced, coefficient perturbations
may not result in zeros off the unit circle (this
occurred about half the time in the example
shown). When the zeros are off the unit circle, the
two frequencies not resolved generally result in
zeros whose angles are close to the average of
the two true pole angles. For these cases, the
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(a) 50 noise perturbed polynomials

(c) 50 corrected polynomials

(b) polynomials in (a) with zeros ¢ C

(d) corrected polynomials in (b)

Fig. 3. Perturbed and corrected polynomial zeros corresponding to Example 5.1.

Table 6

Means and standard deviations of polynomial zero angles for
uncorrected and corrected polynomials in Example 5.1

Frequency 1 Frequency 2

mean (std) mean (std)
True 0.3 (0) 0.35 (0)
Uncorrected 0.3274 (0.0186)
Corrected 0.3168 (0.0178) 0.3530 (0.0177)

stabilization method is successful at moving the
zeros onto the unit circle to resolve the frequencies,
and results in angle estimates which are closer to
the angles of the unperturbed polynomial zeros.

Signal Processing

5.2. Ensuring no zeros lie on the unit circle

Here we require A(z) to be modified so that none
of its zeros lie on the unit circle. Note from (5.1)
that if Z#=+1 is a zero of A(z), then 1/z is also
a (distinct) zero. If we know that no zero of the
corrected A(z) has modulus 1, then all the zeros
must occur in reciprocal pairs. Therefore, the cor-
rected A(z) can be factored in the form
Az"H(z)H(z "), where A==+1 and H(z) is a poly-
nomial of degree m. If A=+1, then z7"A(z) repre-
sents a valid spectral density function.

We first present a result which is relevant to the
application introduced above.
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COROLLARY 2. A necessary condition for the
polynomial A(z) to have no zero on C is ng=m,
where G(z) is defined in (5.1).

PROOF. From Lemma B, part (i) with ng=m we
have n%=n%+né+m—ng =2(m—ng). Thus if
ng<m then A4(z) has at least two zeros on -C,. [J

The condition in the above corollary is neces-
sary, but not sufficient, as we show below. From
(5.1), A(z) can be written as

A(z)=2"D(z2),

] (5.5)
D(2)2[G*(2)+ G*=z)].

Note that the spectral factorization D(z)=
H(z)H(z ") exists when D(z) >0 on C; . From (5.5)
we see that D(z)=0 on C; if and only if
Re[G*(2)]=20 on C,. Define the sets

D={g=[g0, 81, .., 8/ 2Alng=m},

D= {g|Re[G*(z)]=0 on C,}.

It follows that D D. However, D#D in general
(as the following example shows), and thus the
condition in Corollary 2 is not a sufficient
condition.

EXAMPLE 5.2. Let m=2 and g,,=2. The corre-
sponding sets D and D are shown in Fig. 4 (sece,
e.g., [31] for a derivation). As expected D<= D, but
D#D.

Since the condition of Corollary 2 is not a
sufficient one, the polynomial G(z) which satisfies
it may not be a solution to the spectral estimation
problem mentioned earlier. However, it can be
shown that D is a closed, convex cone [6, 23].
Therefore, to obtain a solution in D, we may pro-
ceed in the following way.

- Correct G{z) using the technique of Section 3.2
to ensure that ng =m. Denote the corrected poly-
nomial as G(z).

— Test whether the coefficient vector g of G(z) is
in the set D. (To test whether geD one can use

the decomposition (5.3) of A(z) and apply Theo-

rem 4 to B(z). It follows from this theorem that

geD if and only if nj=m. Other tests of the

condition ge D can be found in [14, 30].)

- 1If so, then stop.

~ If not, then use a bisecting procedure on the

line connecting g and the point

g°2[0,...,0,3,/2] to determine a point in D

which 1s of minimum distance from g.
The convexity of D is a nice property which makes
it possible to use the bisecting procedure. We
expect the point g provided by the first step will in
general be close to D. Note also that the point
g’ is situated well inside D. Thus the procedure
introduced above may be expected to produce sat-
isfactory solutions in most cases.

It might be though that the condition nz =m can
be used to conceive a procedure for ensuring
n% =0, similar to the procedure described in Section
5.1. For such a procedure to be valid we need to
show that the polynomial 4(z) obtained by (5.3b)
from a general B(z) with nf=m (and nz=m—1),
has no zero on ;. But this is not generally true:

B(z)=2"+z—-0.625=(z—0.5)(z+0.5z+ 1.25)

with nj=2, np=1 gives A(z)=2'—0.6257"427
—0.625z+ 1=(2"41)(z*—0.625z+ 1). Hence the
condition (nj=m, ny=m—1) is not sufficient for
n%=0 when B(z) in (5.3) is a general polynomial.
However this condition is necessary: assuming
n%=0 and using Lemma B, part (i) we get

0=>n+|ng—np—1]
< ny=0, np—nz=1
< ngtng=22m—-1, nf—nz=1
< ng=m, ng=m—1.
Thus, the conditions #n5=m and nz=m—1 can be
used to devise a ‘necessary’ procedure followed by
a correction step, similar to the one described

above in this section.
Vol. 26, No. 1, January 1992
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2 T r

1.5+

T T

—_ L

1 2 3

Fig. 4. The sets D (solid line) and D (dotted line) for m=2.

EXAMPLE 5.3. Consider the polynomial
Ag(z2)=(*+0.61822+1)%, (5.6)

with a pair of zeros at 1e*®*™ and 1e™%™ We
generate 50 perturbed polynomials, each one con-
structed by adding zero mean white Gaussian noise
with standard deviation o=0.1 to the first five
polynomial coefficients of As(z), and setting the

2%~ % coefficient equal to the z* coefficient for k=

(a) perturbed polynomials

0, 1,2, 3. In this way, the perturbed polynomials
satisfy the coefficient symmetry property. The zeros
of these polynomials are shown in Fig. 5(a).

The method described in this section for ensuring
that no zeros of a polynomial lie on the unit circle
was applied to these 50 polynomials; for this exam-
ple, Method C was used to stabilize G(z). The zeros
of the corrected polynomials are shown in Fig.
5(b). Note that the angles of the corrected zeros

(b) corrected polynomials

Fig. 5. Perturbed and corrected polynomial zeros corresponding to Example 5.3.
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are much closer to the true zero angles than in the
uncorrected case.

As mentioned earlier, this stabilization proce-
dure has an application in spectral estimation,
where an estimate of a moving average spectral
density function is required to be non-negative
definite, but its estimate may not be. In this case,
A(e!®) corresponds to the spectrum; this spectrum
is non-negative definite if the zeros of 4(z) do not
lie on the unit circle. Figure 6 shows the true spec-
trum and the 50 uncorrected and corrected spectral
estimates corresponding to the zeros in Fig. 5. The

uncorrected and corrected spectra exhibit similar
variation among the experiments, but the corrected
spectra are all nonnegative as is desired.

6. Summary

We have considered several aspects of the Schur-
Cohn procedure, and of its application to the
inverse problem. We first established two funda-
mental lemmas on the zero distribution of a poly-
nomial of a certain form. These lemmas facilitated

{a) true response

0 0.05 0.1 0.15 0.2

0.3 035 04 045 05

(b) uncorrected responses

] 0.05 0.1 0.15 0.2

03 0.35 04 0.45 0.5

() corrected responses

Fig. 6. Frequency response plots corresponding to 4(z) polynomials in Example 5.3. (a) Original polynomial. (b) Uncorrected
polynomials. (¢) Corrected polynomials.
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simple proofs of the Schur-Cohn procedure in
both the regular and singular cases, and led to new
methods for handling one of the singular cases and
for solving various inverse problems. We presented
algorithms for three inverse problems, namely sta-
bilizing an unstable polynomial in the regular case,
correcting a symmetric polynomial so that all of
its zeros lie on the unit circle, and correcting a
symmetric polynomial so that none of its zeros lie
on the unit circle. These algorithms are computa-
tionally efficient and easily programmed, and can
be readily incorporated into relevant spectral esti-
mation or system identification procedures.
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Appendix A. Proof of Lemma A

First consider the equalities (2.4) and (2.7).
Observe that the zeros of B(z) on () are also zeros
of B*(z) (with the same multiplicity) and, there-
fore, zeros of P(z) as well. Cancel these zeros from
P(z) and B(z) and denote the resulting polynomials
by P(z) and B(z). Then B(z) has no zeros on C;.
It follows from (2.1) that P(z) and B(z) satisfy

P(2)=K(2)B(z) — L(2) B*(2). (A1)

To show that the equality n%=#% holds, let Z denote
a possible zero of P(z) on C;. Then, from (A.1),

K(29)B(2)=—L(2)B*(2),

Signal Processing

which implies |K(2)|=|L(2)| since |B(z)| = B*(z)| on
C,. But this contradicts the assumptions in both
(1) and (i1). Therefore no such zero Z can exist, so
np=ny.

Next consider the equalities (2.2) and (2.5).
These equalities follow directly from Rouché’s
Theorem applied to (A.1). Finally, (2.3) and (2.6)
follow immediately from (2.2), (2.4) and (2.5),
(2.7), respectively. L[]

Appendix B. Proof of Lemma B
Let £ denote a small number. Define
PA2)=K(2)B(z) + (1 + &) L{z) B*(2). (B.1)

Application of Lemma A to P.(z) for £ <0 gives

np,=ng+ng, (B.2a)

np,=max(ng, ny) +ng—ng, (B.2b)

n(}g =n%. (B.2¢)
For ¢>0, Lemma A gives

n;5=n§+nz, (B.3a)

hp,=max(ng, nz) +hz—ng, (B.3b)

n =ny. (B.3¢)
Next note that

P(z)=P(z) + eL(z)B*(z). (B.4)

For sufficiently small ¢, the zeros of P(z) which
lie inside or outside C) remain in those regions.
However, the zeros of P(z) which lie on C; may
leave C; and become outside or inside zeros for
P.(z). Thus, the number of zeros of P, which lie
outside (inside) C, is greater than or equal to the
number of outside (inside) zeros of P(z). This
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observation, together with (B.2a)-(B.3c), imply
that

np <min(ng +ny , np+ nx),
np <max(ng, ny) +min(ng —ng, ng —nr),
np=ng+max(ng, 1)

—min{(ng+nz, ny+ng)

—max(ng, ny)—min(ny — g, np —Hr)
=ng+ng+nz —2 min(ng +ng , ng +ng)
=ngtng+ng

+2 max(—ng—Hz, —Ng—Ng)
=n%+max(ng +ng—n; —ny,

~(np+ng—n; —ng))
=np+ |np+ng —ng—nxl,
which concludes the proof of part (i).
To prove part (ii), note that for sufficiently small
g, P.(z) must have a zero z; which is close to z;. A

Taylor series expansion of P.(z) around z;, evalua-
ted at z;, gives

0="P(2)~ P(z;) + eL(z))B*(z))
——

+[P(z:)+ e{L'(z))B*(z)
+L(z) B (z))} 1(Zi— z:),
which implies that

. ELE)BX(E)
T P

=z,—[l~g£(—zi—)m] (B.5)
z,P'(z;)

A first-order approximation of |Z/* readily follows
from (B.5):

A1 26 Re %h—L(z")B*(Z")}
: z,P'(z;)
142 Re{ﬁ—%} (B.6)

where use has been made of the fact that

Re {L@-)B*(:»}+ Re {K,(z»B(z,-)}
ziP'(z;) z:P'(z2;)

=Re{ P }zo. ‘
=P ()

Thus, if (2.9) holds and if &¢>0 (£<0) is
sufficiently small, then all the zeros z,€ C; of P(z)
move inside (outside) Cj; in other words, under
(2.9) P(z) and P(z) have the same number of zeros
outside (inside) C; if >0 (£<0). Combining this
property with (B.2a)-(B.3c) concludes the proof of
part (iia). The proof of (iib) follows similarly. [

Appendix C. Proof of Theorem 2

The proof proceeds by induction. A straight-
forward application of Lemma A to (3.2) shows
that:

If lapx/ax s <1, then

Ry, T 1=ny,, (C.1)

nh_ =k —n, —ng,=ny. (C.2)
If |aox/ar il > 1, then

My +1=ny,, (C.3)

ny,  =k—ny—nh=n,,. (C.4)
Also, we have from (3.4)

et p— x>0 = aor/ard <1,

G151k <0 <= laox/arsl > 1.

Using this observation, (C.1)-(C.4) can be written
as follows:
If 151> 0,

Mgy =Hap ¥ Sk—15 (C.5a)

na =N TSk (C.5b)
If ar -1 p- 104 <0,

n2k=nﬁk,l+&?_1,k, (C.6a)

Mae=Na Sk (C.6b)
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This establishes (3.7a), (3.7b) and (3.82), (3.8b)
for n=p+ 1. Next assume that these equations hold
for some n=/>p. Using this assumption and b= @t Plan = By 1]

polynomial of degree p, with

(C.5a)-(C.6b), we can write
(a) If a,pa/11,+1>0, then
(al) ifaya;1,-1>0 <= a,,q,>0,

My, =n4+1 =n:,p+s;,+ 1
=n4, TS0,
Mo =na=nk Y sy =ns +sp..
(a2) ifaya; 1,11 <0 <= a,,a,<0,
Mo =Na=ng + 8, =n4 TS0,
n;,ﬂ =ng4+1 =n:§p+s;,,+ 1
:n;p*‘S;,/ﬂ-

(b) If Ap pli+1,1+1 < 0, then
(b)) ifaua;101>0 = a,,q,<0,

M., =nagt1 =n§p+s,,f,+ 1
:n§p+s;,+1 ,
Moy =M =na, + Sy =na, +Spiet .
(b2) if g0 <0 = a,pa,>0,
Wy =M =N, + Sp =1+ Spii1,
nh, =hg+1 =n4,tspt1
=14, + Spr41.

Thus, (3.7a), (3.7b), (3.8a) and (3.8b) hold for
the index n=1[+1, which completes the proof by
induction.

Finally, (3.7¢) and (3.8c) follow directly from
(3.72)-(3.7b) and (3.8a)-(3.8b), respectively. [

Appendix D. Proof of Theorem 3

First note that z '[4,(z) — B4;}(2)] is the poly-
nomial given by (4.3), where a,, 1=
Q1= Bap——1#0 (cf. (4.2)). Thus, 4,(z) is a

Signal Processing

aoﬁ
:ﬂ[l +a£ (Gmt1 Aﬂapfml)].

It is clear from the above equation that if
p#—2a0/[am+1— Pap—m—1], then |@[,#1. Next
observe that we have

2" A (2) = (p+ 2" N A,(2) — pBAS(2)
(D.1)

and that for z=¢’*, we[—n, n],
p+el TP =142p cos(m+ 1w+ p*>p°
=|-Bpl* for |p|<s.

Applying Lemma A to (D.1) with
K(z)=p+2""" and L(z)=—~Bp, we get

(m+1)tnzg,=ng,+(m+1) = nz=ny

p?
+ 0 - .

ng,=m+1+p)—ny—n, —(m+1)=n,,
0 _ 0
nf?,,_nA],,

which completes the proof. []

Appendix E. Proof of Lemma 2

First observe that (4.11) is in the form of (2.1)
with  P(z)=pA,(z), K(z)=z, L(z)=f and
B(z) = A4,(z). With these definitions,

Regw}:go
zP'(z) p

for all z#0 which are not zeros of P'(z). Also,
P'(2)=pB(z2), so if z,eC; and z is not a zero of
B(z), then P'(z;) #0. Thus, by Lemama B, part (ii)
it follows that

+ _ + o+
nAp— 1 +”IA};‘ 1 —nA];,

which concludes the proof. []
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Appendix F. Proof of Theorem 4

By Lemma 2, ny =ng,_,. Next note that the
zeros of a polynomial of the form of (4.9) occur in
reciprocal pairs. In other words, if Z (Z#0 and +1)
is a zero of A4,(z), then 1/Z is also a zero. Thus

-+ o +
Nap=Ha,=Hp, |, ny,=p—2ng,

and the assertion of the theorem follows immedi-
ately from Theorem 2. [
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