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Abstract—This paper considers the following problem: Given
an estimated MA covariance sequence which may not be non-
negative definite (NND), find the closest NND sequence to it.
Here, closeness is measured by the weighted Euclidean distance
of the covariances. We provide a solution to this problem by
considering a set of linear minimization problems which are
parameterized by the zero frequencies of the optimal solution.
Some properties of the optimal NND solutions are established,
and these properties are used to simplify the minimization pro-
cedure.

1. INTRODUCTION

HERE are many problems in which one is interested

in obtaining a parametric model of the spectrum of a
time series. The autoregressive (AR), moving average
(MA), and autoregressive moving average (ARMA)
models are widely used in many engineering problems. In
obtaining MA and ARMA spectral estimates, a problem
which often arises is that of ensuring that the resulting
spectral estimate is nonnegative and real on the unit circle
[1]. For example, a commonly used method of MA spec-
tral estimation is to estimate the first n + 1 autocovari-
ances {;}o of a time series from some measurements of
that time series. Depending on the estimator used for {vy;}.
the spectral estimate may not be nonnegative and real. A
similar problem occurs in ARMA spectral estimation al-
gorithms in which the AR parameters are estimated in a
first step, and the MA part of the spectrum is estimated
using the AR coefficient estimates [2]-[6].

It is well known that a necessary and sufficient condi-
tion for the MA spectrum to be nonnegative real is that
the MA covariance sequence {vy;};= -, be nonnegative
definite (NND). Here, the sequence is nonzero only for
|k| = n where n is the order of the MA process. If the
MA covariance sequence estimate is not NND, there are
various ways in which one can alter the estimate to make
it NND. A common procedure entails multiplying the es-
timated autocovariances by some window sequence (such
as the Bartlett window or an exponential window) [1],
[5]. For some estimates, the window can be chosen in
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such a way as to guarantee NND estimates; however, such
a window imposes a bias on the resulting estimate [1]. A
second approach is to use a data adaptive window, in
which a parameter in the window is chosen to ensure NND
estimates, with a minimum of bias for that particular win-
dow. For example, an exponential window w; = oM can
be used, where « is chosen by a one-dimensional search
procedure to be as small as possible so that the sequence
{wyv,} is NND. This variable window method imposes
less bias than the fixed window method, but it requires
iteration to find «.

In this paper we consider an optimum approach to ob-
taining a NND covariance sequence. Given an estimated
covariance sequence {y;};-o of an MA time series, we
wish to find the closest NND sequence to that estimate,
where closeness is measured in terms of a [, error norm
in coefficient space. This is a nonlinear minimization
problem. We discuss necessary and sufficient conditions
for the solution to this problem. We then derive an algo-
rithm for finding the global minimum.

This problem is closely related to the approximate sto-
chastic realization problem as considered in [6]-[12]. In
[6], [9]-[11], the approach taken is to parameterize the
covariance sequence in terms of the parameters of an
ARMA model which admits this sequence. Then the
ARMA model which yields the closest covariance se-
quence to a given one is found by minimizing an error
functional; this involves a nonlinear minimization proce-
dures on the coefficients of the ARMA model. The func-
tional dependence on the AR parameters is highly nonlin-
ear, and convergence to local minima is a problem [6],
[91, [10]. For the special case of a moving average model,
the minimization is quartic in the MA parameters [11]. In
either case, the minimization problem is of dimension
equal to the number of ARMA (MA) parameters.

This work is also related to recent work by Steinhardt
and others [13], [14]. In this work the authors have char-
acterized the set of all partial covariance sequences {ro,
<+ +, r,} which admit an MA or ARMA model of given
order. They also develop the expanding hull algorithm to
find the smallest order model which can admit a given
partial sequence {ry, - - * . r,} which is NND. The prob-
lem considered in this paper is somewhat different: given
a sequence {vg, * * * , Y»4 Which is not NND, we wish to
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find the closest NND sequence {rg, * =+, 7,, 0,0, - - - }
(corresponding to an MA(n) model).

In this paper, the approach taken is to consider the min-
imization problem in the space of covariance parameters.
One reason to consider the problem in covariance space
is to gain insight on the geometry of the problem. Specif-
ically, if a covariance sequence is not NND, then its Fou-
rier transform (power spectral density function) is nega-
tive for some frequencies. The closest NND approximant
to this sequence will have a Fourier transform which
touches zero at some frequencies. We derive a minimi-
zation procedure which is based on locating these zero
frequencies. These frequencies correspond to tangent hy-
perplanes in the set of solutions, and the minimization
problem can be seen as a standard orthogonal projection
problem onto these hyperplanes. The nonlinearity of this
problem arises because these frequencies are not known
a priori, and must be found using iterative minimization
techniques. On the other hand, the number of zero fre-
quencies is small; for v, sequences which are “‘close’ to
NND, the nonlinear minimization problem has low di-
mension. The worst case dimension of the minimization
is |n/2] + 1 where n is the MA order. Thus, iterative
minimization is carried out in a space of lower dimension
than if the solution is found in the space of MA parame-
ters as in [6], [8]-[11].

An outline of this paper is as follows. In Section II we
present a formal statement of the problem. In Section III
some properties of the nonnegativity region are described.
In Section IV we derive a solution to the minimization
problem which uses the Lagrange method in terms of
known zero-spectrum frequencies. In Section V we fur-
ther characterize the optimal solution. Section VI presents
examples of the algorithm, and Section VII concludes the

paper.

II. PROBLEM STATEMENT

Let {y}i-o denote a sequence of real numbers. This
sequence can be thought of as estimates of the first n + 1
covariances of an MA(n) process. Consider the function

S, = 2 yuz " (1

In order to ensure that S.(z) is a valid spectral density
function, we must have S,(e’*) = 0, or, equivalently, that

gw) =sp+ scosw+ - + 5, c08nw =0

Yw € [0, 7] (2)

where s, = 7o, and 5, = 2y, fork = 1, - - -, n. Nearly
all covariance estimators guarantee that y, > 0, but often
do not guarantee that (2) is satisfied; thus, we will assume
sg > 0 in the following discussion.

Assume condition (2) is not satisfied; that is {v;}
is not a NND sequence. In this case, we are interested in
finding a covariance sequence which is NND and which
is close to the given sequence. To this end, let p =
[0 P1» * * * » p,]" and define

f(w, p) = pp + prcOsSw + *** + p, COS nW. ?3)
Define the nonnegative definite set D by
D= {p|fw,p) =0 forwel0, 7l}.

Then the problem of finding the closest NND sequence
can be stated as follows:

Problem P: Given a vector s = [sg, 51, * * * » S €D,
find the vector o € D such that @ = || o™ — sl* =
llo — sl? for all p € D, where ||| is the I, (Euclidean)

vector norm.

Note that even though s and p have the same dimension
in the above problem statement, one can find the NND
solution for a different order than that of s. If the closest
NND sequence of order [ is desired for | < n, s is re-
placed by [sg, = - * , s;]7. If the desired order [ is greater
than n, s is replaced by the I + 1-vector [sg, * * * , 54, 0,
e O]T.

Once p* is found, an MA(n) filter which realizes p°"
is obtained by performing a spectral factorization on the
function

n

Spnp!(z) = kg r|k|z_k (4)
where ry = o and r, = pfP /2 for 1 < k < n.

III. DESCRIPTION OF THE ADMISSIBLE SET D

The minimization problem is nontrivial because the set
D is a complicated function of the p vector. We first es-
tablish some properties of D.

Theorem 1:

a) D C R"*'is a closed convex cone with vertex at
the origin.

b) Let dD denote the boundary of D. If p € aD, there
is at least one frequency w € [0, 7] such that f (wg, p) =
0.

¢) If p* € D and f (wy, p*) = 0, then the hyperplane

Hw(} = {p|f(w03 p) = O} (5)

is tangent to D.

d) There is a unique solution 0°"" to the minimization
problem P.

e) Define the half-spaces H,,

H} = {p e R""|f(w, p) = 0}
= {p e R""'|{b(w), p) =< 0} (6)
where

b(w) = —[1, cos w, cos 2w, * * * , COS NwW]

is the normal vector for H,,. Then D is the intersection of
these half spaces

D= (N HI. Q)

wel0. 7
Proof:
a) It is readily verified that if p|, p, € D, ap; + (1 —
a)p, € D for any o € [0, 1], so D is convex. It is also
clear from (3) that if p € D, then cp € D forall a = 0.
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Fig. 1. Nonnegative definite regions N and D forn = 2.

Thus D is a convex cone with vertex at the origin. To
show D is closed, consider any p° € D¢, where D is the
complement of D. Then flw, p%) < 0 for some w €
{0, 7]. Since f(w, p) is a continuous function of p for any
fixed w, there exists a neighborhood of p° such that f
(p, w) < O for any p in that neighborhood. This implies
that D€ is open, and thus D is closed.

b) This follows readily from the definition of f (w, p).

¢) Note that p* € H,, so H,, intersects D. Moreover,
H,, cannot contain an interior point of D, because every
interior point p of D has the property that f(w, p) > 0for
all w € [0, w]. Thus, H, is tangent to D.

d) This follows immediately from the fact that D is a
closed and convex cone, and Q is a distance function {15,
theorem 1, p. 69].

¢) Equations (6) and (7) follow immediately from the
definition of D. |

We remark that a set which is related to D can found
by considering the slice of D found by setting pg to a con-

stant. For any p € D with py > 0, we can write
f(w, p) = poll + mycosw+ - + 7, cos hw]

where 5; = p;/po fori = 1, - -+, n. We can then define

aset N C R" by
N={n=1[n

+ 7, cos hw = 0

, )71+ pycosw e
for w € [0, 7}. (8)
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The set N is the p, = 1 slice of D. This set has been
studied in [13]. In particular, it is shown in [13] that N is
a compact, convex subset of R". One can define the min-
imization problem in terms of N instead of D, but this
gives a different solution which has higher error. How-
ever, it is convenient to use N instead of D to visualize
the geometry of the minimization problem. This is espe-
cially true when n = 3, because N is a subset of R* for
this case.

Fig. 1 shows the regions N C R?and D C R*forn =
2. Also shown are three hyperplanes (lines) on N corre-
sponding to three frequency values for which f(w, p) =
0. These three lines correspond to tangent planes of D in
R?, each defined by py + p) cos  + p; cos 20 = 0.

IV. SOLUTION TO THE MINIMIZATION PROBLEM

One way to solve the minimization problem is to define
a grid of points w;, =+ * , Wk in the interval [0, 7] and to
find the solution to

k
forpe Hf = N H;. O

i=1

p* = arg min [is — ol

In this case, p* is the closest point to s which lies on the
supporting polygonal cone which contains D. As the num-
ber of grid points increases, p* approaches the optimal
solution p°". The minimization problem (9) is a quadratic
minimization problem with k linear inequality constraints,
and can be solved using standard techniques (see [16]).

The approach we take is based on this idea, but incor-
porates some structure of the problem to simplify the min-
imization. Because p € R" "', f(w, p) = 0 for at most
|n/2] + 1 distinct frequencies in [0, w]. As a result, at
most [ n/2] + 1 of the linear inequality constraints in
(9) are active. The approach we take makes use of this
fact by using k constraints in (9) fork =1, - "+, |n/2]|
+ 1, and by forcing all constraints to be active. By vary-
ing the frequencies corresponding to these constraints, we
span over all possible points on the boundary of D, and
thus span over all possible solutions to the minimization
problem.

The minimization problem in (9) can be stated as a con-
strained minimization problem by defining

w:[wl"”’wk]

k
Q) = llp = sl* =2 2 4/ @ (10)

where each 4; is a Lagrange multiplier. Let Q07 (w) denote
the minimum of Q,(®) with respect to o for a given fre-
quency vector @, and let p* denote the minimum point.
Then minimization of Q(w) gives the point p* which is
closest to s under the constraint that p* lies on the hyper-
plane H, = H,, N - N Hy, and Ql:k(w) = ”p* - SH2~
The solution p* is the orthogonal projection of the point
s onto the hyperplane H,, and can be found by solving a
set of linear equations as given by
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I, —C||p* s
{—CT 01 L*} ) M (v
where
I cosw; ¢os2w; **° COS hw;
oo | . . .
1 cos w, cos2w, *° €OS nwy
A% = [AF, -, A
The solution to (11) is given by
ok =5 — C(CTCY 'g (12)
A* = —(CTO)™'g (13)
Of(w) = g'(CTO) g (14)
where
g =Cls = [glw). . gw]”. (15)

Because each H,, is tangent to D, any solution p* lies
either outside D or on the boundary dD. If the frequency
vector @ is chosen appropriately, the p* lies in D and
coincides with the optimal solution p°. Below we de-
velop conditions for which p* = p°"'. From these condi-
tions, we develop an algorithm for finding o™ based on
solving the projection problem in (10). To this end, the
following theorems are of interest.

Theorem 2: Let p* and A* be the solutions to (12) and
(13). and let f(w, p*) = 0 for k distinct frequencies wj,

*, o Then AF = Oforj =1, - k.

Remark: Theorem 2 states that s — p* is in the convex
cone spanned by the normals of the hyperplanes H,, for i
=1.-"-,k

Proof: This is a standard result from optimization
theory (see, e.g., [15, pp. 213-270]); the conditions 4"
= 0 forj =1, - - -, k are the Kuhn-Tucker necessary
conditions. |

Theorem 3: Let p° be the solution to the minimization
problem P, and let {w], - - - . ]} be the set of k distinct
frequencies for which f(w, p°*') = 0. Then the functional
Qf(®) in (14) has a local maximum at the point w =
@ - ).

Proof: According to the duality principle [15], the
minimum distance between a convex set and a point out-
side this set is equal to the maximum of the distances from
the point to supporting hyperplanes separating the point
and the convex set. In addition, the point p* (and conse-
quently, the distance Q;(®) between s and p*) is com-
pletely parameterized by the zero frequencies of f (w, p¥).
Thus, varying p to minimize {[p — s|? is equivalent to
varying the zero frequencies w;, * -+ , w; to find local
maxima of Qf(w). [ |

We illustrate the above theorems by means of a simple
example on the set N as shown in Fig. 2. Consider first
the point g as the given covariance vector s. For any fre-
quency w € [0, =], the point p*(w) is the orthogonal pro-
jection of a onto the hyperplane H,, which in this case is
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Fig. 2. Solutions on N forn = 2.

a line. The hyperplanes H, and H, are shown, and for w
€ (0, 7) the hyperplane H, is the tangent line to D, which
rotates clockwise from H, around to H, as w increases.
The value of Q*(w) is the squared distance between a and
the hyperplane H,,. For the point a, this distance achieves
local maxima at @ = 7/4 and at w = 3w /4; however,
A*(w /4) > 0 and A*(37 /4) < 0 because a and D are on
opposite sides of the hyperplane H, /4 but on the same side
of Hy, 4. The projection p*(w /4) is the point b, and this
is also o' for this problem.

Next, consider the point ¢. For this point Q*(w) has
local maxima at w = 0, w/2, and 7, and the correspond-
ing p* points are marked d, e, and f, respectively. For
points d and £, the corresponding A*(w) = 0, but they are
outside D; the point e is on the boundary dD, but the cor-
responding A*(w) < 0, so none of these points are ad-
missible solutions to problem P. Thus, we must consider
the two constraint problem. The only possible two-con-
straint set for this orderis w = 0, w = w, and Hy, N H,
gives the point g, which is the optimum solution p°** for
this case.

The above theorems and example motivate a method
for finding the optimum solution to the minimization
problem P via projections onto the tangent subspaces H;,
as given by the following theorem.

Theorem 4: Let o* = [wy, "+ , o] be a set of k
distinct frequencies, each in the interval [0, 7]. Let p*,
A*, and Q*(w) be the corresponding solutions to (12)-
(14). Assume

1) Qi(w) achieves a local maximum at 0*;
2) Af = 0forj=1, -, k and
3) p*eD.

Then p* = p°P".
Proof: We know that
k
Is —o*l = s — ol voeH{ = -01 H,
i=
with equality if and only if p = p*. We also know that D
C H/ . These two statements imply

Is = p*l < s = ol vpeD.
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But the above statement is the definition of p°", and since

there is a unique solution to the minimization problem, p*
— opt
= p°,

A. Description of the Algorithm

The above theorems provide a means for finding p°*.
Start with one frequency constraint (k = 1) in ( 10). Find
local maxima of Q*(w;) in (14) and corresponding p* and
A* in (12) and (13) (note that this involves a nonlinear
maximization in one variable w, € [0, «]). For each local
maximum, check conditions 2) and 3) of Theorem 4. If
both are satisfied, p* = p°®. If not, increment k and con-
tinue.

Note that if 7 is even f(w, p) = O for at most | n/2 |
distinct frequencies in (0, 7). There can be up to [n/2 ]
+ 1 distinct zeros in [0, «], but only if f(w, p) = 0 at
both @ = 0 and w = =. Thus, the maximum value of & is

|n/2] + 1, and the dimension of the nonlinear max-
imization problem is at most |[n/2] . Similarly, if n is
odd there are at most | n/2] zeros of f(w, p) in (0, 7),
and k is at most |n/2] + 1. In either case, then, k <
|n/2] + 1. Also, because of the symmetry of X (w)
with respect to interchanging of two frequencies, it suf-
fices to find maxima of Q' (®) on the set

I = {wel0, 7"w, €0, 7], ), € [0, @), ** ",

oy € [0, W1} (16)

The set [, can be further restricted as described later in
(25). Finally, we mention that in our implementation of
the above procedure we used the alternative maximization
method as described in [17] to perform the nonlinear max-
imization step, although other methods could be used.

One step in the procedure requires testing if p* € D.
This test can be implemented using a Schur-Cohn algo-
rithm as we now describe. From p* form the 2n degree
polynomial z"S,+(z) as defined in (4). This polynomial has
zeros at e*@ fori = 1, 2, -+ - , k, so we divide this
polynomial by

k
CR) = I_II (z2 — 2 cos wiz + 1) (17)

to form the remainder polynomial R(z). Now, p* € D if
R(z) has no zeros of odd multiplicity on the unit circle.
(In fact, R(z) will have no zeros on the unit circle except
in the rare case that the optimum solution is found using
k frequency constraints, when in fact there are more than
k zero frequencies; this is a degenerate case, as it occurs
for points s on a set of measure zero.) The needed zero
test for R(z) can be implemented using a Schur-Cohn test;
see [18], [19] for details.

We summarize the above discussion by a concise state-
ment of the algorithm.

1) Setk = 1.
2) Form Q*(w) in (14). Find local maxima of O*(w)
on the region I, defined in (16) (using, for example,
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the alternative maximization method described in

[17]). For each local maximum:

a) Find 4* using (13) and check condition 2) of
Theorem 4.

b) Find p* using (12) and check if p* € D using the
Schur-Cohn procedure described above.

3) If an admissible solution is found in the previous
step, it is the optimal solution p°". If not, increment
k and go to step 2.

One important feature of the above algorithm is that the
nonlinear maximizations are carried out in low dimen-
sional space. This is in contrast to methods which param-
eterize the covariances in terms of MA or ARMA param-
eters, where the dimension of the minimization problem
is fixed at n. The procedure presented above starts on with
O*(w,); that is, we maximize a function over a single di-
mensional variable w;, which itself lies in a compact re-
gion w, € [0, ]. If an admissible solution is found using
k constraints, this solution is the optimum one (by Theo-
rem 4) and we need not search for a solution using a larger
number of constraints. For many problems, admissible
solutions are found for small numbers of constraints k,
and thus the nonlinear maximization is a low dimensional
problem. For an MA order of n, maximization of 0 ()
is a maximization in over at most |n/2| + 1 variables,
compared to an n + | dimensional minimization if MA
parameters are used as in [6], [9], [11].

V. FURTHER CHARACTERIZATION OF SOLUTIONS

In this section we consider some geometrical properties
of the solution to the minimization problem P. These
properties provide some insight on the spectral properties
of the optimum solution with respect to s, ot equivalently,
to g(w). These properties lead to additional necessary con-
ditions on the solution to the minimization problem, and
these conditions can be used to reduce the regions over
which one needs to find local maxima of O*(w).

A. Variance Bounds

An immediate result of Theorem 2 is given below:

Corollary 1: Assume s ¢ D and p°P is the optimal so-
lution to the minimization problem P, then pg” > so.

Proof: From (12) and (13) we have oF — 50 =

TX_, A*. Since A¥ = 0 fori = 1, - -+, k, and not all
A¥ = 0, the result follows. [ |

The above corollary states that the estimated variance
of the MA(n) process is always increased to arrive at the
closest NND covariance sequence. An upper bound on
this variance can also be obtained. If M = —ming 5, <«
g(w), then p = [so + M, 5, ==, 8i] is an admissible
solution with error 0 = M?; thus we have

So < pP = 50 + M.

B. Characterization of Zero Frequencies

It is of interest to obtain properties of the solution to
the minimization problem in terms of the original given
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vector s or, equivalently, in terms of g(w). In particular,
the solution to the minimization problem can be simplified
if we find restrictions on the regions of frequencies for
which f(w, p°) = 0. To this end, we consider the fol-
lowing two conjectures:

Conjecture Cl: If f(wy, o) = 0, then g(wg) =< 0.

Conjecture C2: If g(w) < 0 for w € (a, b), and if g(a)
= g(b) = 0, then f(w, p°™) = O for at least one w €
{a, b].

Simply stated, these conjectures say that the spectral
density function corresponding to the optimum solution
to the minimization problem is zero at wy if and only if
g(w) is negative there. Conjectures C1 and C2 seem rea-
sonable from an approximation point of view. In fact, as
the MA order n — oo, the solution to the minimization
problem becomes

foo(w, popt) = max {g(w)’ 0}

and in this case, both conjectures are satisfied. It turns out
that for finite MA order n, neither conjecture is true in
general. We discuss each conjecture below.

1) Conjecture CI: In general, it is not true that if f (w,
0°") = 0 at some frequency wy, then g(wg) < 0. A coun-
terexample for n = 3 is given by

s = [3.8, —6.16, 3.34, —1.]".

In this case, optimal NDD solution is found to be

for0 <= w=nm (18)

0% = [3.80538, —6.15485, 3.34475, -0.99528]".

It is readily verified that f (w, p°) = 0 for w = 70.126°,
but g(70.126°) > 0.

The reason that conjecture C1 does not hold in general
results from acute angles on the boundary of D. A sim-
plified sketch of the problem is shown in Fig. 3. In this
figure, H,, is the hyperplane corresponding to frequency
wy; that is, H,, is the set of all points p for which f (p, @)
= 0. H,, is similarly defined. It can be seen that p™ is
the closest point in D to s, and that f (w, p°™) = 0 at fre-
quencies w; and w,. Also, g(w;) < 0and g(w;) > 0, which
follows from the fact that s is on the same side of H,, as
D, but on the opposite side of H,, from D.

The angle between two hyperplanes H,, and H,, cannot
be greater than a certain amount, and this angle bound can
be used to restrict the regions of zero frequencies, as the
following theorem shows.

Theorem 5: Let p° be the solution to the minimization
problem P, and assume that f(w, p®) = 0 for k distinct

frequencies w, * -+, w;. Define
M= max - g(w)
Osw=<T
. b(w)  b(wy)
6, = min — T ) - 19
o<« \Tbt@)l Tot@yl >

(Note that §, < 0 and depends only on the model order
n.) Then

gw) = —Ms,[lbwyll. (20

+Ha,

Fig. 3. Geometric description explaining the counterexample for conjec-
ture C1.

Proof: Equation (19) states that the cosine of the an-
gle between the b(w;) vectors is no less than §,. From
Theorem 2 we know that the vector s = p° is in the
convex cone spanned by the b(w;) vectors. These two
statements imply

s — p™ b(w)
, = 5,
s — o llb(w)ll

@n

= —gw) + f(p™, @) = 8,s = s k()

= g(w) < —6,M|bwyl. 22

If the zero frequencies are such that the angle between
their corresponding normal hyperplanes is always acute,
then conjecture 1 holds. This is stated below.

Corollary 2: Let p°" be the solution to the minimiza-
tion problem P, and assume that f (w, 0°™) = 0 for k dis-
tinct frequencies w;, * -+, w. If <b(w), b(w)> = 0 for
j=1,+++,k, then g(w) < 0.

Proof: In this case the cosine of the angle between
the b(w,) vectors is greater than or equal to zero, so 6, =
0, and the result follows immediately. |

Theorem 6: Under the assumptions of Theorem 2, there
is at least one zero frequency w; such that g(w;) < 0. Thus,
if k = 1, then g(w) < 0.

Proof: Equations (12) and (13) give

k
s = %= 2 ATb(w) (23)
with 4* = 0 (here p* = p°™ is the corresponding solution
to the constrairied minimization problem (10)). Equation
(23) implies
k
(s, 5 — py = Zl AX (s, b(w)).
i=

Using the formulas Q*(w) = (s — p*, s — p*) =
(s, s — p*) and g(w) = —{s, b(w;)>, we have

k
QK@) = 2 AF[—g(@)].

Since Q*(®) > 0 and A¥ = 0, we have the result. W
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Fig. 4. The plots of g(w) and f (w, p°") forn = 2 and s = [1, 1.5, -3]".

Note that if g(w) < O on an interval, it is not necessarily true that f(w,
p°®) = 0 on that interval.

Fig. 5. Geometric description explaining the counterexample to conjec-
ture C2.

Theorem 5 provides an equation which restricts the fre-
quency intervals over which Q*(©) must be maximized.
Specifically, define

J = {wel0, 7l|gw) = —M3,[lb)ll}

Then the search region I, in the maximization algorithm
can be replaced by

24

I =1 NJ (25)

where J* is the Cartesian product of J, k times. Note that
J depends only on n and s, so can be computed in the
beginning of the algorithm (at step 1).

2) Conjecture C2: Conjecture C2 does not hold in
general, as the following example shows. For n = 2 and
s = [1, 1.5, =3]7, it is readily verified that g(w) < O for
w € [0, 18.0°) and w € (134.5°, 180°] (see Fig. 4). The
optimal solution is found to be o™ = [13/6, 1/3,
~11/6]%; f(w, p°) = O has a zero at w; = 180°. The
loss function O* = 4.0833 and A* = 7/6. The solution
obtained by enforcing two constraints at w; = 0 and w, =
180° gives p = [2, 0, —2]" with Q* = 4.25, A} =
—0.25, and AF = 1.25, so this solution is not optimal.

Fig. 5 shows the geometric situation which allows con-
jecture C2 to be violated. Here g(w) < 0 and g(w;y) < 0
because s is on the opposite side of the hyperplanes H,,
and H,, from D. However, the projection onto D is such
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that p°™ is on the other side of H,,, so f(wi, 0% > 0.
We note that by considering this problem in N, the opti-
mum solution would have zeros at w = 0 and w = 7 (as
this problem corresponds to point d in Fig. 2). Thus, the
optimal solutions using D or N as the constraint set give
results with different geometrical properties.

VI. EXAMPLES

Below we consider three examples which illustrate the
algorithm for finding the solution to the minimization
problem P.

Example 1: n =2,s = [1, 2, 3]T.

Forn = 2, f(w, p°) has at most two distinct zero fre-
quencies. We first consider k = 1 constraint. A plot of
Q% () is shown in Fig. 6. It can be seen that this function
has a local maximum at w, = 102.85°. From (12)-(14)
we find that

o* = [2.154, 1.743, 1.960]"

A*

1.154, Qf(w) = 2.479.

Since A* = 0 and f(w, p*) = 0, it follows from Theorem
4 that p* = p°". The functions g(w) and f(w, ™) are
shown in Fig. 6.

Note that g(w) has only one negative interval, given by
w € (64.26°, 140.14°), and it follows from Theorem 6
that the zero frequency corresponding to the optimal so-
lution must lie in this region.

Example 2: n =3,s =[1, =2,0, 01"

In example 2, we have appended two zeros to s to find
the closest third-order NND sequence to a given first-or-
der sequence which is not NND. For n = 3, f(w, 2°™
has at most two distinct zero frequencies.

From s we find g(w) as shown in Fig. 7. We first con-
sider k = 1 constraint, and Q}(w) is also shown in Fig.
7. Note that g(w) is negative for w € [0, 60°), so by Theo-
rem 6, the frequency w satisfying f (w, p°) = 0 must lie
in this interval. Maximization of QF(w) over the interval
w € [0, 60°) gives w, = 23.47°, with corresponding

p* = [1.345, —1.684, 0.235, 0.1161"

AF = 0.345, - Qf(w) = 0.288.

This solution is admissible (4¥ = 0) and in D, so it is the
optimal solution p®. f(w, 0°"Y is also shown in Fig. 7.

Example 3: n = 4,5 =[1,2,3,4,5]".

This case is shown in Fig. 8. For n = 4, f(w, 0°™) has
at most three distinct zero frequencies. Using k = 1 con-
straint gives no admissible solutions at maxima of

*(w). With k = 2 constraints, a local maximum of
0% (o) is found at (w, w;) = (55.6°, 138.3°), with cor-
responding

p* = [3.556, 2.872, 2.283, 2.187, 3.0111
A* = [2.120, 0.436]),

Again according Theorem 4 this is the optimal solution.

Q*(w) = 33.75.
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Fig. 7. Example 2 original, optimal NND, and distance measure
functions.
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Fig. 8. Example 3 original and optimal NND functions.

VII. CoNCLUSIONS

We have considered the problem of finding the closest
nonnegative definite MA covariance sequence to a given
estimate which may not be nonnegative definite. We de-
veloped an algorithm which is based on a set of con-
strained minimization problems, each parameterized by
the zero frequencies of the spectral density function cor-
responding to the optimal solution. The algorithm entails

first solving a simple minimization problem with linear
constraints whose closed-form solution is given by a pro-
jection onto a subspace. These solutions lie either outside
the set of NND sequences, or on its boundary; if the so-
lution lies on the boundary, it is the optimal solution.
One property of this algorithm is that we consider the
problem directly in the space of covariance sequence ele-
ments. As a result, the nonlinear maximization step is
performed on sets of low dimension (up to | n/2 ], where
n is the MA order). In addition, by considering the min-
imization problem in this space, we were able to charac-
terize some of the geometrical properties of the optimal
solution in terms of the locations of its zero frequencies.
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