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A Recursive  Procedure for ARMA  Modeling 

Abstract-This  paper  presents a two-part fast recursive  algorithm for 
ARMA modeling. The  algorithm  first obtains estimates of the p 
autoregressive coefficients  from  a set of p extended  Yule-Walker 
equations.  An exact  recursive  lattice  algorithm for this  estimator is then 
derived.  The 4 + 1 numerator  spectrum coefficients are  then  obtained by 
using  one of the output data  sequences of this  lattice  algorithm. The 
complete recursive  algorithm is fast in  the  sense  that O ( p  + q) 
computations are  required for each update. Moreover, an exponential 
forgetting factor is incorporated to facilitate tracking of time  variations  in 
the  time  series. 

I. INTRODUCTION 

T HERE are many applications in  which it is desired to 
estimate the essential attributes from observations of a 

zero-mean, complex-valued wide sense stationary time series 
(x(n)} . This characterization is often adequately revealed 
through knowledge of its autocorrelation function 

~ , ( ~ ) = E { X ( T Z + ~ ) X " ( I T Z ) }  n=0, + 1 ,  + 2 ,  * * I  (1) 

in  which E and * denote the operations of expectation and 
complex conjugation, respectively. The requisite characteriza- 
tion  may also be made  in the frequency domain through the 
power spectral density function 

Frequently, this second-order statistical characterization pro- 
vides all the information required for a given application (e.g., 
optimal Wiener filtering, one-step prediction, etc.). 

A variety of parametric procedures have been proposed for 
estimating the power spectral density function from a finite set 
of data observations [2]-[ 101. Considerable work has  recently 
been focused on the autoregressive moving average (ARMA) 
model  of order ( p ,  q),  where it is  assumed that {x(n)> satisfies 

P 
x(n)+  ajx(n-i)= bkw(n-k)  

4 

(3) 
i = O  k=O 

and where {w(n)} is zero-mean, unit variance white  noise. 
The corresponding power spectral density function  is  given by 

(bo+ble-jw+.. .+b4e-jqW12 IB(ej")I2 
I 1 + ale-jw + - - + ape-jP"I [ A  (&")I Sx(ejw) = - - (4) 
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in which the ak and b k  are referred to as the autoregressive 
(AR) and  moving average (MA) coefficients, respectively. 
The power spectral density function may also be written as 

where 

= C  _, z - ~ + . . . + c _ ~ z - ~ + c ~ + c ~ z + . . . + c ~ z Q  . Ob) 

We shall refer to the ck  coefficients as the numerator spectral 
(NS) coefficients. It is  well  known  that  any continuous spectral 
density  can be approximated arbitrarily closely by this rational 
form if  the order pair ( p ,  q) is selected adequately large [ 11. 
Thus, by imposing a rational form on the spectral model, we 
incur no real loss in spectral representation. 

The problem of ARMA spectral estimation is concerned 
with estimating the coefficients of the power spectral density 
model  in either (4) or (5) from a finite data record, say x( l ) ,  
x(2), * * , x(N) .  Most ARMA spectral estimation procedures 
available are block-processing algorithms; that is, they operate 
on the block of N data points to  obtain a spectral estimate in a 
single computational effort. However, in  many  applications 
one desires to update the estimated coefficients of an ARMA 
spectral model as each  new data point becomes available. 
Examples include radar and sonar signal processing, and 
applications involving nonstationary data where the coeffi- 
cients should track changing signal characteristics (in  nonsta- 
tionary environments these coefficients no longer have  the 
interpretation of being power spectral density coefficients for a 
stationary time series). For these types of  applications a 
recursive coefficient estimation procedure is more suitable 
than a block processing one. 

The growing interest in recursive algorithms has  been  met 
with the development of so-called fast recursive lattice 
algorithms. Many of these algorithms are based on the 
autoregressive (AR) model, which  is the special case of (2) 
with q = 0 there [ 111-[  141. ARMA algorithms have also been 
derived in the context of two-dimensional AR models [ 151, 
[21],  [22]. However, these methods assume knowledge  of the 
driving white  noise process { w(k)) ,  or they  must estimate it 
by some sort of bootstrapping procedure. 

In this paper we present an alternative recursive procedure 
for ARMA spectral estimation. This procedure is  composed of 
two parts. First, the autoregressive coefficients are estimated 
by using a fast recursive lattice algorithm. Then, a forward 
prediction error sequence generated by this lattice algorithm is 
used to recursively compute numerator spectrum coefficient 
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estimates. This recursive procedure is fast in the sense that 
only O ( p  + q) computations per time update are required. 

The outline of the paper is as follows. In Section I1 we 
derive a block processing estimator for the AR coefficients of 
an ARMA model. Section I11 develops a fast recursive lattice 
implementation of the latter AR coefficient estimator. A 
recursive numerator spectrum estimator is  given  in  Section IV. 
Section V presents some numerical examples and  Section  VI 
concludes the paper. 

11. BLOCK PROCESSING AR COEFFICIENT ESTIMATION 

This section develops a computationally efficient block 
processing procedure for estimating the AR coefficients in an 
ARMA Cp, q) model from the N data observations x( l ) ,  - * , 
x(N).  This procedure is  based  on the so-called extended Yule- 
Walker equations defined by multiplying both sides of ( 1 )  by 
x*(n - m) and taking the expected value to give 

3 (zkrx(m - k)  = - rx(m), m > q. (6) 
m = l  

It  is important to note that  the parameter m is restricted to 
exceed the numerator order q.  (The Yule-Walker equations 
involve the moving average coefficients b k  in a nonlinear 
manner for 0 5 m I q). 

A straightforward procedure for obtaining AR coefficient 
estimates can be found by expressing the first “p” Yule- 
Walker equations as a set of linear equations 

= [SYN S2yN * ’ sprh;l 
where y(k) = x(k - q), and where the shift operator S is 
defined  by 

sx, = [O x(q+ 1 )  - - x(n - l ) ]  =. (9) 

The autocorrelation matrix and vector in expression (7) are 
then estimated by 

RN= Y ~ , N X ~ , N  
H 

(loa) 

Y N =  Y ~ , N ~ N  (lob) 

where H is the Hermitian operator. The effect of the zeros in 
(8c)  and (8d) is to bias the autocorrelation estimates that make 
up R N  and rN. Specific formulas for this  bias  can  be found in 
[ 5 ] ,  [ 1 6 ] .  These biases are proportional to the fraction of data 
points set to zero and therefore vanish as N -+ 00. Heuristi- 
cally, we expect the biases in RN and rN to cause a bias in a , , ,  
and for this reason  find it undesirable. On the other hand, these 

H 

or 
R a =  - r .  

padding zeros facilitate a corresponding decrease in the 
(7b) number  of computations needed to solve for the AR coefficient 

If exact autocorrelations are given, (7b) can  be  used to solve If and in (7) are replaced by RN and rN,  the 
for the AR coefficient vector a. In practice however, it is corresponding AR coefficient vector estimate is 
necessary to compute appropriate autocorrelation estimates 

estimates. 

from the given set of time series observations. The estimates a p , N =  - [RN] - ‘rN (1W 
considered here are prewindow estimates, defined by the (n - 
q) x 1 vectors x,, and y ,  and the (n - q) X m matrices Xm,n = - [ y f N x p , N l -  Y f N X N .  (1lb) 
and Y m , n  

x, = [x(q + 1 )  x(4 + 2) * * * x@)]* (8a) It can be shown [23] that  if {x(k))  is an ergodic ARMA ( p a ,  

y ,  = [y(q + 1) Y ( 4  + 2) - ’ * M ) l  (8b) independent, identically distributed sequence with finite fourth 
qa) process, p a  I p and qa 5 q, and (w(k)}  is an 

moments, then  in (1 1) is an asymptotically unbiased and 
consistent estimate of a in (7). In fact, .JN[a - a p , N ]  is 
asymptotically normally distributed [23]. 

Equation ( 1  1) also exhibits some attractive computational 
features. First, the p X p matrix Y E N X p , N  has displacement 
rank 3 (see [ 171, [ 18]) ,  so (1 1) may  be  solved  using  only 

needed  by conventional solution techniques. For large values 
of p ,  the computational savings can be significant. A second 

0 0 
0 

... 0 

X p , N  = 

0(3p2)  computations, as compared with O(p3)  computations 

x(N-  1 )  x (N-2)  * - - x(N-p)  

= [SXN s2xN ‘ * spxN] (8c) attractive feature is that equation ( 1 1 )  may be solved recur- 



sively (requiring O(p) computations per update) via the 
algorithm discussed in the next section. 

Note that when 4 = 0, the estimator in (1 1) reduces to the 
prewindow AR model coefficient estimator in [ 131, [19]. 

HI. THE FAST RECURSIVE ALGORITHM 

In this section we introduce a computationally fast recursive 
implementation of the procedure discussed in the previous 
section. This recursive method facilitates continual updating of 
the AR coefficient estimates as new data points  become 
available. Thus at every time interval this method  yields the 
same AR coefficients as those obtained by  solving  the system 
of equations (1 1). Moreover, the recursive method provides 
AR coefficient estimates for all model orders from 1 to p .  

The recursive algorithm is  based on updating elements of 
prediction error vectors. Equation (11) can  be written 

Y E , n f X m , n  = 0 (12) 

where the (n - q) X 1 vector f",,, is the so-called forward 
prediction error vector defined by 

fL,,n=Xn +Xm,nam,n. (13) 

Note  that the kth element off;,, (for k 2 4 + m) is 

fxm,n(W=x(k) + arn,n(Wk-i)  (14) 
m 

i= I 

which can be thought of as the error resulting from a 
prediction of x(k) by a linear combination of the m previous 
data x(k - l), x(k - 2), * - * ,  x(k - m). To reinforce this 
prediction error interpretation, consider the mth order esti- 
mate of the vector x, as being 

i m , n  = - Xm,nam,n (15) 

which  in turn generates the forward prediction error vector 

f xm ,n=Xn- im ,n -  (16) 

Upon substitution of expression (1 1) into (16), the estimate 
vector is  given  by 

~m,n=Xrn,n[Ym,nXm,nI-' Y$,nxn 
H 

= PxYxn (17) 

and  the corresponding forward prediction error becomes 

fYm,n=(I-Xm,n[~Z,nXm,nl-~ y z , n ) x n  

= P>yx,. (1 8) 

We have used here the compact (n - 4) X (n - 4) matrix 
product representations 

H 
P~~=Xrn,n[Ym,nXrn,nI-' Ym,n  (194 

P>y= I- Pxy. (19b) 

H 

Alternatively, the AR coefficient vector estimate a,,,, in 
(1 1) can be associated with an auxiliary minimization problem 
involving the prediction error vector. Namely, this estimate 

minimizes the quadratic functional 

g(am,n) [ f L , n l  ~ f X m , n l  (20) 

where W is the (n - q) X (n - 4) positive  semidefinite 
matrix 

H 
W= Y m , n  Y m , n  (21) 

We can also define the mth order backward prediction error 
vector for x, by 

b ~ , n - l = S m + ' ~ n + X m , n i m , , .  (22) 

The subscript n - 1 is used to indicate that observed data only 
through time n - 1 appears in equation (22). It can be  seen 
that  the kth row of  (22) represents a prediction of x(k - m - 
1) by a linear combination of the m most  immediate future 
values x(k - m), * - * , x(k - 1). The resulting error in  this 
backward prediction is bL,,- ~ ( k ) .  Proceeding in a manner 
similar to that for the forward prediction error vector, the 6,,,, 
vector is given by 

irn,m,n= - [ ~ E , n x r n , n l - ~ ~ ~ , n [ ~ m + ~ ~ n ~ .  (23) 
The vector estimate of Srn+ ' x n  is specified by 

Srn+'xn= -Xm,,r?,,,=Pxy(Sm+l~n) (24) 

and the corresponding backward prediction error vector is 

bX,,n-l=P$y(Sm+I~n) (25) 

where Pxy  and P>y are given by (19). Alternatively, the &,, 
vector is the one that  minimizes the quadratic functional 

g(a,,,)=[bX,,n-11~W[bX,,n-11 (26) 

where W is  defined  in (21). 

be  defined similarly by 
Prediction error vectors corresponding to the y ,  vector  can 

f i , n  = Y n  - ym,n  [x,,, y m , n ~  1XZ2nYn 
H 

= PcYxYn (27) 

and  the mth order backward prediction error then  is 

b&l=[Srn+'Ynl- Y m , n [ ~ Z , n Y r n l - l ~ ~ , n C ~ m + ' ~ l  

= P&(Srn+ 'y,). (28) 

We can gain more insight about the four prediction error 
vectors through a geometric interpretation. Consider the (n - 
q)-dimensional Hilbert space H = (Cn-q, (x, y )  = y " ~ } .  
Note  that the vectors x,, Srnxn, y ,  and Smyn and the columns 
of X,,,, and Y,,, are all elements of H. The span  of  the 
columns  of Xm,, is a subspace of H which we denote by Mx.  
Similarly, MY is the subspace spanned by the m columns of 

Let us now consider the forward prediction of x,. From (17) 
we see that the im,, is formed by operating on x, by the matrix 
Pxy.  Pxy is a linear operator that  maps elements of H onto the 
subspace Mx. Also, it is evident from (19a)  that P z y  = PXU,  
so that Pxy is a projection operator onto the subspace Mx.  PXY 

Ym,n-  
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It follows from (35) that for any vectors c and d ,  

/My 

%ll," 

Fig. 1. Geometric  relationship  between x,, &,, andfX,,,. 

is not  in general the orthogonal projection operator onto Mx, 
but  instead projects in  a direction orthogonal to M y .  The 
relationship between x,, &,, and fm,n  is depicted in Fig. 1, 
and the corresponding relationships for b",,- f L,,, and 
b$+ are similar. 

Four scalars that  will appear in the recursive algorithm are 
inner products of these prediction error vectors 

In addition, a fifth scalar, 

In  (29)-(33)  we  used  the relations 

[PC,Xl = pC,x (34b) 

which follow by noting  that P>y and P'yx are complements of 
projection operators and therefore are projection operators 
themselves. 

The strategy behind the fast recursive AR estimator is to 
determinefX,,,(n) for m = 1, 2, - , p and for each n. This is 
accomplished by finding order update equations for this 
prediction error. These update equations require that the other 
prediction error vectors, as well as a, 7,  p ,  w,  and y, be 
updated. Since all of these quantities can  be  defined  in terms of 
P&, all necessary update equations can be  obtained  using  a 
single update formula for P z y .  Such  a formula is  given  in the 
following theorem. 

Theorem I (Projection Operator Update Theorem): Let 
A and B be n X matrices, and a and b be n X 1 vectors. 
Define the augmented matrices C = ( A  :a] and D = [B: b ] .  If 
[BHA]-'  and [DHC]-' exist, then 

P ~ D = P P ~ ~ B - P > B ~ [ ~ ~ P P ~ ~ B ~ ] - ' ~ ~ P P ~ ~ B  (35) 

where P i B  and P& are defined as in (19). The proof  of this 
theorem is given in Appendix A. 

All  necessary update equations may  now  be derived. Since 
only the last elements of prediction error vectors are needed, 
we will for notational convenience drop the "(n)," and use for 
examplef&, (without the boldface), to denote a last element 
of  a prediction error vector. All necessary update equations 
are obtained by using A = X m , n  and B = Ym," in  (36)  with 
appropriate vectors for a, b, c, and d .  The update equations 
are given below, and Table I outlines the particular vectors a, 
b, c, and d, used in (36) to derive them: 

fYm+ I,n =fYm,n - [ b X , , n -  11[arn,n~~m,n- 11 (37) 

fYm+I,n=f~,n-[bYm,n-11[7m,nI*/[~m.n-11* (38) 

bYm+I,n=bYm,n-l -[fYm,nl[am,n~*/[~~m,nl* (40) 

pm+ ~ , n  = pm,n - [~m,nl[~m,nl/[~m,n- 11 (41) 

u m + l , n  = wm,n-  I - [ ~ m , n l [ ~ m , n l / [ ~ m , n l  (42) 

um,n = amp-  I + Ebm,n- I I * [ f Y m , n l / [ ~ m , n l  (43) 

Tm,n = 7 m , n -  1 + [ f m , n ] * [ b i , , n -   1 1 / [ Y m , n l  (44) 

pm,n = p m , n -  1 + ~Y,,n~*[f", ,n~/[ym,nl  (45) 

u m , n -  1 = wn2,n-z + [bm,n-  Il*[bk,n- 11/[~m,n1 (46) 

Ym+I,n=Yrn,n-[bYm,n-lI*[b~,n-Il~[~m,n-11 (47) 

y m +  I,n+ 1 = Ym,n - [fYm,n~*[fYm,n~/[~m,n~- (48) 

Y 

Y 

Y 

The initial conditions for the updated parameters are 

From (13), (22), (27), and (28) it can be  seen  that 
obtained by considering their defining equations. 

f i , n  = bi,n = (494 

0,n - 0,n - A n )  = x(n - 4). (49b) fy - b y  - 

Also, since yn = 0 for n I q, it follows that 

= 70,n = po,n = W O , ~  = 0 for n 5 q. (50) 

Moreover, fm,,+ and bE,q+m- are zero vectors since 
equations (13) and (22) are not overdetermined at that point. 
Since and 7,,,+ are formed by inner products 
involving these vectors, it follows that 

am,q+m=7m,q+m=0 m=O, 1 ,  - . e ,  p-1. (51) 

Finally, for m ,  = 0, we have 

Yo,n = 1 * (52) 

The implementation of the algorithm is summarized in Table 
II. 

The recursive algorithm may be implemented  using the 
lattice filter shown in Fig. 2. It is seen here that the prediction 
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TABLE I 
VECTORS a, b, c, AND d ,  USED IN (36) TO DERIVE THE UPDATE 

EQUATIONS 

b 

S"+ 'y" 
S" + 'Y" 
YII 
Yn 

Y ,  
S"+ 'Y" 

en 
en 
en 
en 
S"+ 'y, 
Yfl 

C 

en 

en 
S"+ 'Y" 

S" + 'Y" 
S" + 'y,  

Y" 

Y ,  

Y ,  
Yn 
S"+ 'y.  
en 
e, 

TABLE I1 
THE FAST RECURSIVE AR COEFFICIENT ESTIMATION ALGORITHM 

I) Attimen = qseta,,, = rm," = 0 , m  = 0, 1, - - - , p  - 1. 

2) Set: f" -b" - 
0,n - 0,n -x(n) 

A . n  = bi," = A n )  = x(n - 4) 

YO," = 1. 

3)  Set  the  maximum  filter  order: pm = min [p ,  n - q - 21. For each 
m = 0, 1, . - . , pmax- l ,  

a)  Update am,n9 rm,n, P m , m  am," using  (43)-(46) 
b) Update t o f i + ~ , , ,  b%+~.~,f;+~,~, b',+I,, using (37)-(40) 
c) Update  to ^/"+ I,n using (47). 

4) Ifp,, < p ,  add a filter order: 
a) set in = pmx 
b) Update  to a,,,,, T ~ , ~  using (43), (44) 
c) Update  to P m + l , n ,  a m + l , n  using (42) 
d) UpdatefX,,~,,, b % + ~ , ~ , f ' , + ~ , ~ ,  b',+~,, using (37)-(40). 

5) Set n = n + 1 and go to  Step 2. 

- 
Fig. 2. Lattice  filter  for  AR  coefficient  estimation. 

errors are represented by signals propagating through the filter 
and the filter multipliers (often called reflection coefficients or 
partial correlation coefficients) are given by 

a;,, = Tm,n/pm,n (53) 

P",n = um,n/Wm,n - 1 (54) 

(55) 

P i , ,  = T%,n /W%,n-  1. (56) 

a m , , =  u%,n/p%,n 
Y 

The conversion from reflection coefficients to autoregres- 
sive coefficients proceeds as follows. Define A,,,(z) as the 
transfer function at time n from x(n) tofYm,,, , and Am,,&) as the 
transfer function at time n from x(n)  to b",,. Then 

A o , n  (2) = A o , n  (z) = 1 . (57) 

By taking z-transforms of (37) and  (39)  and by noting  that 
Fx, ,n(Z)  = Am,n(Z )  and BX,,n(z) = Am,n(z)y  we find 

Am,n(z)=Am-l,n(z)+z-'PXm-l,rP"m-l,n-*(z) (58a) 

am,n(Z)=A;-l,n-l(Z)+Z-'aXm-l,nArn-I,n(z). (58b) 

Given the ax and P" coefficients, (58) can be used to 
recursively compute Am&,) and A,,,(Z> for m = 1 , 2, - e ,  

p. In this way we obtain autoregressive coefficient estimates 
for all autoregressive model orders 1, 2, - - , p .  

The number of computations required per update is of major 
importance in real time applications of recursive algorithms. 
From Table I1 it can  be checked that 9p multiplies,9p divides, 
and 9p adds are required to update the lattice algorithm. To 
convert from reflection coefficients to AR coefficients via (58) 
requires an additional p2 + p adds and p2 + p multiplies. 

As a final note, when 4 = 0 (i.e., when an autoregressive 
model is chosen) the top and bottom halves  of  the fiiter in Fig. 
2 become equivalent. If the redundancy is eliminated, this 
filter degenerates to the AR lattice fiter described in [ 131. 

Exponential Weighting of Time Updates 

Many applications of recursive estimation algorithms re- 
quire the ability to track time variations in the estimated 
coefficients. Such  a tracking ability  may  be incorporated into 
this algorithm with  only  a minor increase in  computations 
through the use of an exponential forgetting factor. In this 
case, data lags k times in the past are attenuated by hk for 
some 0 < X I 1. To effect this, RN and rN in (IO) are 
replaced by 

H 
R N =  y p , N u m , n  (594 

TN= Y ~ , N ~ N  

where A = diag [Xn-q- * * * X 11. It should be noted  that  if X 
< 1, the variance of [ a  - ap,N] no longer approaches zero as 
N + 03, so is no longer a consistent estimate of a. 

Only the time update recursive formulas are modified by the 
addition  of this exponential forgetting factor. Specifically, 
(43)-(46), are changed to 

H 
(59b) 

um,n =Xurn,n- 1 + [bYm,n- I l* [ f xm,n l / [~m,n I  (60) 
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~m,n-l=X~m,n-2+[bY,,n-~l*[bL,n-~1/[~m,nl. (63) 

The modified recursive algorithm then requires 2p + 1 more 
multiplies per time update with the addition of the forgetting 
factor. 

IV. RECURSIVE NUMERATOR ESTIMATION 

Now that  a fast recursive AR coefficient estimator has been 
developed, there remains the problem of recursively estimat- 
ing the numerator spectral coefficients in (5). To motivate the 
derivation of this estimator, define the filtered data sequence 

From (5) and (64) it  can be seen that C(ejw) is the power 
spectral density function for {f(n)}, so that 

Ck = E{ f (n  + k)f*(n)) * (65) 

We can estimate ck by approximating the expectation in (65) 
by a time average. Since exact AR coefficients are not known, 
f (n)  must also be estimated. But from (14) we see is  an 
estimate of f (n) ,  and this estimate is already computed  in the 
recursive AR coefficient estimator. Thus, an estimate of ck is 
given by 

where X is the exponential forgetting factor. The correspond- 
ing numerator power spectral density estimate is 

k =  -4  

Note  that this estimator is suboptimal in  the sense that z,,, 
implicitly uses the ‘ A R  coefficients based on m rather than n 
data points. Heuristically we  expect z,m to be less accurate for 
smaller m, and may, therefore, want to weight them accord- 
ingly. This can be realized by  using X < 1 (and  possibly 
different from X used in the AR parameter estimation). The 
authors found that, even from stationary process realizations, 
using h < 1 in (66) often provides more accurate NS 
coefficient estimates than using h = 1. 

The windowing function wk is incorporated to provide the 
ability of ensuring that the estimated ck(n) sequence corres- 
ponds to a  nonnegatiire spectrum estimate. One possible choice 
for wk is the linear tapered window 11201 

wk= [ 0, 
1 -CYk/[q+ 11, - q s k s q  

otherwise. 

If a = 0, no windowing is used. If a = 1 ,  then wk is a  full 
triangular window, and nonnegative numerator spectrum 
estimates from (66) and (67) are guaranteed. However, when 
a = 1 ,  a rather severe bias is imposed on the numerator 
spectral estimates. In many instances, CY 4 1 may be chosen 
such  that the numerator spectral estimate is nonnegative, and 
also less biased than when CY = 1 [20]. 

Equation (66) can be recursively updated  by 

C k ( n ) = { X ( n - l - q - k ) C k ( n - l )  

+ IlfJip,nl[fJip,n-kI*wk)/(n - 4 - k). (69) 

Alternatively, &(n) 4 (n - q - k)ck(n) can be updated 
instead, leading to the simpler update formula: 

4c(n) = X M n  - 1) + [f”dJr.&,n-kl*wk. (70): 

The recursive updates in (69) require q + 1 adds, 4(q + 1) 
multiplies, and q + 1 divides per update. If  (70) is used 
instead, only q + 1 adds and 3(q  + 1) multiplies are needed. 
If X = 1 or if wk = 1, the number of multiplies decreases 
accordingly. In any case, this recursive numerator algorithm 
requires O(q) computations per update. 

It should be noted  that one reason this numerator spectral 
coefficient estimator requires so few computations per update 
is that the MA coefficients are not explicitly estimated. In 
order to derive MA coefficient estimates from the NS 
coefficient estimates, a spectral factorization of C?(ejw) must be 
performed. 

V. NUMERICAL EXAMPLE 
In order to provide an indication of the effectiveness of the 

recursive ARMA algorithm, we present two examples. The 
first example is the spectral estimation of  the  ARMA (4,  2) 
process with 

a1 = 0.4424 bo= 1 .  

az= -0.0203 bl = O .  

a3= 0.4164 bz= l .  

a4= 0.8853 

Autoregressive and numerator spectral coefficients were 
recursively obtained using the algorithm presented herein with 
p = 4, q = 2, X = 1 in  the AR parameter estimator, X = 
0.96 in the NS parameter estimator, and CY = 0.1. Spectral 
estimates corresponding to the coefficient estimates at 100 data 
point intervals are shown in Fig. 3(a). Fig. 3(b) gives similar 
estimates obtained using the recursive AR estimator in [13] 
with p = 18. We see that the ARMA spectral estimates are 
much closer to the exact spectrum than the AR spectral 
estimates. Moreover, 120 computations per update are needed 
in the ARMA method, whereas 324 computations per update 
are needed for the AR estimator. Other recursive ARMA 
lattice algorithms [15], [21], [22] require 3 to 5 times the 
number of computations per update required by this ARMA 
method. 

The second example is concerned with tracking the instanta- 
neous frequency of an FM modulated signal in noise. The time 
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Fig. 3. Spectral  estimates of an ARMA (4,2) process. (a)  Recursive  ARMA 

(4, 2) method. (b) Recursive AR (18)  method. 

series is a single sinusoid with amplitude of 3.2 embedded  in 
additive unit variance white noise. The recursive ARMA 
algorithm with p = q = 2, and the recursive AR algorithm 
with p = 2 were used to estimate the instantaneous frequency 
of this sinusoid. Fig. 4 shows these estimates for X = 0.9 (the 
true instantaneous frequency is also shown there). Of the two 
methods, the ARMA method exhibits less bias in  the fre- 
quency estimates and more accurately estimates the frequency 
slew rate. 

VI. CONCLUSIONS 

We have presented a computationally fast recursive al- 
gorithm for estimating the parameters of a power spectral 
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density parametrization associated  with an ARMA time series 
model. The autoregressive coefficient estimates are based on 
the solution of  a set of extended Yule-Walker equations. 
These estimates are under appropriate conditions asymptoti- 
cally unbiased and consistent. A recursive lattice filter 
implementation  of this coefficient estimator is derived which 
requires O(p) computations per time update. Moreover, an 
exponential forgetting factor can be  implemented  which 
facilitates  the tracking of variations in the data. The numerator 
spectral coefficients are then estimated from a forward 
prediction error sequence generated by the AR lattice. The 
latter are updated recursively in O(g) computations, which can 
also be  implemented  with an exponential forgetting factor. 

The recursive ARMA algorithm requires about 9p + q 
adds, 9p + 3g multiplies, and 9p divides per time update; a 
number that compares favorably with other ARMA lattice 
algorithms. In the present ARMA spectral estimator however, 
moving average coefficient estimates are not obtained explic- 
itly (some sort of spectral factorization must be performed to 
get them). For applications in  which  the MA coefficients perse 
are not needed, this algorithm can be  both efficient and 
effective. 

We have not yet discussed the convergence properties of the 
c k  estimates. It can be shown that  when A = 1, and under 
conditions similar to those needed for AR coefficient conver- 
gence, each ck(n) coefficient converges to WkCk (as n -+ 03) 
with probability 1. Asymptotic normality of J n l w k c k  - 
c&)] can also be established. Moreover, the ck(n) coeffi- 
cients may converge faster if X C 1 is used in the NS estimator 
until the AR  Coefficient estimates become reasonably close to 
their convergence points. A paper detailing these results is 
currently in preparation. 

APPENDIX A 

PROOF OF THEOREM 1 

Define MA as the subspace of the Hilbert space {C", (x, y )  
= xHy}  spanned by the columns of A. Similarly define MB, 
Mc, and Mo. Note that since [ B H A ] - '  and [DHC]- l  exist, 
MA and MB have dimension p and MC and MD have dimension 
p + 1. Also define M i ,  M i ,   M i ,  and M; as the 
corresponding orthogonal complements. The vector a can  be 
split into a component in MA and  a component in M i .  This 
second component along with the columns of A spans Mc: 

&=MA CB span { P i B a } = M A  CB M, (Al) 

where 

x = P>Ba (a) 
Analogously, 

MD=MB CB span (&b) =MB @ My (A3) 

where 

y=PiAb.  (A4) 

Since PAB maps orthogonally to MB,  P>B maps onto M i .  
Therefore, X E M;. Similarly, y E MA". In fact, for any 

suitable matrices A and B, the projection operator PAB defines 
a  decomposition of the Hilbert space Cn into two (not 
necessarily orthogonal) subspaces MA and M i .  Therefore, if z 
is any vector in Cn, 

Z=PABZfPiBZ (A51 

where PABZ E MA and PiBz E ME. 
Equation (35) is established by first showing  that 

PCD = PAB f p x y  (A61 

and by then performing some simple algebraic manipulations 
on (A6). To show (A6), note that PcD defines the decomposi- 
tion of C" into two subspaces as follows. 

C"=Mc CB MA (-47) 

By using equation (Al) we obtain 

Cn=MA 8 M x  @ M;. (A8) 

L e t z = f + g + h , w h e r e f E M A , g E I M , a n d h E M ~ .  
Since (f + g )  E MC and h E M i ,  it follows that 

f +g=pCDz. (A91 

We claim thatf = PABZ and g = Pxyz. To show f = P A ~ z ,  
we must show PAB(g + h )  = 0. Since  PA^ projects onto MA 
along M;, and g E M;, it folIows that PA& = 0. AISO, MB 

C_ MD, SO M; 5 M i .  Since h E M i ,  h E M i ,  SO PABh = 
0. Therefore, f = PABz. 

To show g = Pxyz, we  must  show PXJf  + h)  = 0. Recall 
that Pxy projects onto M, along M i .  Since y E M,, M i  E 
M i ,  so Pxyh = 0. Moreover, y E M i ,  so MA E Miand  
Pxy f = 0. Therefore, g = Pxyz. Equation (A9) becomes 

f+g=PcDz=PABZfPxyZ 

Since z is arbitrary, (A6) follows immediately. 
Now, since X E M i ,  P A B P ~ ~  = 0. Therefore, 

PgD = I -  PCD 

=I-  P& - Pxy 

=Pi&-  Pxy) .  (A1 1) 

= (I-pAU)(l- Pxy) 

Writing out Pxy and substituting from equations (A2)  and (A4) 
yields 

P"co=PSkB-PSkB(P>Ba)[(PCBAb)H(PSkBa)]-'(P~Ab)H. 

(A121 

Finally, by applying the properties [PiAIH = P>B and (P>B)2 
= P& to (A12), (35) is obtained. This completes the proof. 

REFERENCES 
[l] L. M. Koopmans, The  Spectral  Analysis of Time  Series. New 

[2] G .  Box and G .  Jenkins, Time  Series  Analysis:  Forecasting  and 

[3] J. A. Cadzow,  "ARMA  spectral  estimation:  An  efficient  closed-form 

York Academic, 1962. 

Control. San  Francisco, CA: Holden-Day, 1976. 



procedure,” in Proc. RADC Spectrum  Estimation Workshop, Oct. 

-, “High performance spectral  estimation-A new  ARMA 
method,” IEEE Trans. Acoust., Speech,  Signal  Processing, vol. 

-, “Spectral estimation: An overdetermined  rational  model  equa- 
tion approach,” in Proc. IEEE, vol. 70, pp.  907-939,  Sept. 1982. 
W. Gersh, “Estimation of the autoregressive parameters of  mixed 
autoregressive moving-average time series,” IEEE Trans. Automat. 
Contr., vol. AC-15, pp.  583-588, Oct. 1970. 
D. Graupe, D. J. Krause, and J. B. Moore, “Identification  of 
autoregressive moving-average parameters of  time series,” ZEEE 
Trans. Automat.  Contr., vol. AC-20, pp.  104-107,  Feb. 1975. 
J. F. Kinkel, J. Perl, L. ScharI, and A. Stubberud, “A  note on 
covariance-invariant digital filter design  and  autoregressive-moving 
average spectral estimation,” IEEE Trans. Acoust., Speech,  Signal 
Processing, vol. ASSP-27, pp. 200-202, Apr. 1979. 
M. Kaveh, “High resolution spectral estimation for noisy signals,” 
IEEE Trans. Acoust., Speech,  Signal  Processing, vol.  ASSP-27,  pp. 
286-287, June 1979. 
P. R. Gutowski, E. A. Robinson,  and S .  Treitel, “Spectral  estimation: 
Fact or fiction,“ IEEE Trans. Ceosci. Electron., vol. GE-16, pp. 80- 
84, Apr. 1966. 
E. Satorius and S. Alexander, “Channel equalization  using  adaptive 
lattice algorithms,” IEEE Trans. Commun., vol. COM-27, pp. 899- 
905, June 1979. 
D. Falconer and L. Ljung,  “Application  of  fast  Kalman estimation,” 
ZEEE Trans. Commun., vol. COM-26, pp. 1439-1446, Oct. 1976. 
D. Lee  and M. Morf, “Recursive square root ladder estimation 
algorithms,” in Proc. 1980 IEEE Int. Con5 Acoust., Speech,  Signal 
Processing, Denver, CO,  pp.  1005-1017. 
B. Friedlander, “Recursive algorithms for ladder forms,” SCI Tech. 
Mem., 1980. 
-, “Recursive algorithms for pole-zero ladder forms,” SCI Tech. 
Mem., 1980. 
J. A. Cadzow  and  R. L. Moses, “An adaptive ARMA spectral 
estimator,” in Proc. Spectral  Estimation Workshop, Hamilton, 
Ont., Aug. 17-1S, 1981. 
T. Kailath, S. Y. Kung, and M. Morf, “Displacement ranks of 
matrices  and linear equations,” J. Math. Anal. Appl., vol. 68, pp. 
395-407, Apr. 1979. 
B. Friedlander, M. Mod, T. Kailath,  and L. Ljung, “New  inversion 
formulas for matrices classified  in tern of their distance  from  Toeplitz 
matrices,” Lin. Alg.  Appl., vol. 27, pp. 31-60, 1979. 
M. Morf, B. Dickinson, T.  Kailath,  and  A. Vieira, “Efficient solution 
of covariance equations for linear prediction,” IEEE Trans. Acoust., 
Speech,  Signal  Processing, vol. ASSP-25, pp, 429-433,  Oct. 1977. 
S. Bmzzone  and  M.  Kaveh,  “On  some  suboptimum ARMA spectral 
estimators,” IEEE  Trans. Acoust., Speech,  Signal  Processing, vol. 
ASSP-28, pp. 753-755,  Dec.  1980. 
B. Friedlander, “Lattice filters for adaptive procedures,” Proc. IEEE, 
vol. 70, no. 8, pp. 829-867,  Aug. 1982. 
B. Friedlander and S. Maitra, “Speech  deconvolution by recursive 
ARMA lattice fdters,” in Proc. 1981 Int. ConJ Acoust., Speech, 
Signal Processing, Atlanta,  GA, Mar. 1981, pp. 343-346. 
T. Siiderstrom and P. Stoica, “Comparison  of  some  instrumental 
variable  methods-Consistency  and  accuracy aspects,” Automatica, 

1979, pp. 81-97. 

ASSP-28, pp. 524-529, OCt. 1980. 

VOI. 17, pp.  101-105,  1981. 

Randolph L. Moses received  the B.S., MS., and 
Ph.D. degrees in electrical  engineering  from Vir- 
ginia  Polytechnic  Institute  and  State University, 
Blacksburg,  in  1979,  1980,  and 1984, respectively. 

In Summer  1983 he  was a SCEEE  Summer 
Faculty  Research  Fellow at Rome Air Development 
Center, and  in  Summer  1984  he  served  as  Visiting 
Assistant Professor at VPI & SU. Since  August 
1984 he has  been  with  the  Eindhoven  University of 
Technology,  The  Netherlands  as a NATO  Postdoc- 
toral Fellow. His current research interests include 

parametric  time series analysis, system  identification,  and  model  reduction. 
Dr. Moses  is a member  of  Eta  Kappa  Nu,  Tau  Beta Pi, Phi  Kappa Phi, and 

Sigma Xi. 

James A. Cadzow (S’57-M160-SM’75)  was  born 
in Niagara Falls, NY, on January 3, 1936. He 
received  the  B.S.  and MS. degrees in electrical 
engineering from the  State  University of New York, 
Buffalo,  in  1958  and  1963,  respectively,  and  the 
Ph.D. degree from Cornell  University,  Ithaca, NY 
in 1964. 

From  1958  to  1963 he  was associated  with  the 
USARDL, Fort Monmouth,  NJ, Bell Aerosystems, 
Buffalo,  NY,  and  Cornell  Aeronautical  Laborato- 
ries, Buffalo,  NY.  He  was Professor of Electrical 

Engineering at S.U.N.Y. Buffalo  from  1964  to  1977  and  at  Virginia 
Polytechnic Institute, Blacksburg,  from  1977 to 1981. In 1981, he joined 
Arizona State University, Tempe, where he is presently a Research Professor. 
He  served  as a Visiting Professor of Electrical Engineering  at  Stanford 
University, Stanford, CA, from 1968  to 1969, and  was a Visiting Professor 
and  National Institutes of  Health  Fellow at the  Department of Biomedical 
Engineering, Duke  University, Durham, NC during 1972 and 1973. He  is  the 
author of Discrete-Time Systems (Englewood Cliffs, NJ: Prentice-Hall, 
1973)  and  coauthor of the texts Discrete-Time  and  Computer  Control 
Systems (Englewood Cliffs, NJ: Prentice-Hall, 1970) and System,  Signals 
and  Transforms (Prentice-Hall, 1985). His research interests are in commun- 
ication  and  control theory, digital  signal  processing, and system  modeling, 

Dr. Cadzow is a member of Sigma  Xi  and Phi Kappa Phi. 


