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ABSTRACT

Distributed sensing systems fuse information from various
local measurements to form joint estimates of physical phe-
nomena. We study Bayesian parameter estimation with mea-
surement failures, where the probability of failing to make
an observation depends on the unknown parameters. Both
the absence and the existence of the measurements provide
information about the parameters. We present lower bounds
for minimum mean square error estimation. The bounds are
applied to the analysis of sensor arrays for source localiza-
tion and the distributed estimation problem with binary de-
tectors.

1. INTRODUCTION

There has been renewed interest in the notion of deploying
large numbers of networked sensors for applications rang-
ing from environmental monitoring to surveillance [1]. In
a typical scenario a number of sensors are distributed in a
region of interest. Each sensor is equipped with sensing,
processing and communication capabilities. The informa-
tion gathered from the sensors can be used to detect, track
and classify objects of interest. On-board transducers de-
tect energy (acoustic, seismic, magnetic, pressure, etc.) and
convert to an electrical signal. Because transmission of raw
data would consume to much energy, each sensor further
process data to obtain summarized decision statistics and
communicates them to fusion center(s) for joint decisions.
For example sensors equipped with an acoustic array can
detect acoustic energy and locally process it to obtain time
of arrival (TOA) and direction of arrival (DOA) measure-
ments. These local measurements can be processed jointly
to locate the source of the acoustic energy.

In practice, some of the sensors may fail to detect a
source signal and the probability of failing to make an obser-
vation depends on the unknown parameters (e.g., the sensor
might fail to detect the source signal to compute a reliable
TOA if the distance to the source is large). A suboptimal
approach would be to use only the available measurements

in estimation. The fact that some observations failed (and
some were successful) provide information about the un-
known parameters in addition to the measurements them-
selves. This additional information could be utilized for im-
proved estimates.

In this paper we characterize the parameter estimation
performance of distributed sensing systems with detection
failures using lower bounds on minimum mean square error
estimation. We then discuss the application of the derived
bounds to the analysis of binary detector arrays for source
parameter estimation. Two examples are presented. The
first example uses a simple one dimensional sensor network
to illustrate the application of the bounds to stationary tar-
get localization. The second example discusses localization
with a dense set of binary detectors.

2. MODEL

Let x1, x2, . . . , xn be the set of potential measurements.
The random variables {xi} are conditionally independent
and distributed with density fi(y|θ), where θ ∈ Θ repre-
sent an unknown random parameter with prior density g(θ).
In addition we assume each measurement is an independent
Bernoulli trial with success and failure probabilities given
by pi(θ) and qi(θ) = 1 − pi(θ) respectively. In this model
the absence (or the existence) of a measurement provides in-
formation about the unknown parameters θ. In particular, let
I, a subset of all possible observations N = {1, 2, . . . , n}
denote the set of successful measurements with the associ-
ated measurements xI = {xi}i∈I . The posterior density of
θ is given by Bayes’ Rule as

g (θ|{xi}i∈I) =
P(xI |θ)
P(xI)

g(θ) ,

where

P(xI |θ) = P[I|θ]
∏
i∈I

fi(xi|θ)

=
∏
i∈I

pi(θ)fi(xi|θ)
∏

j∈N/I
qj(θ)
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P(xI) =
∫

Θ

P(xI |θ)g(θ)dθ .

We observe that the posterior density is affected by the mea-
sured values xI as well as the index set itself through the
probability mass function P[I|θ]. In the next section we
quantify the effect of P[I|θ] on the estimation performance
using lower bounds on mean square error.

3. PARAMETER ESTIMATION WITH
MEASUREMENT FAILURES

We consider parameter estimation problems where Θ ⊂
R

M . We define the error vector as θε = θ̂ − θ and de-
rive constraints on the correlation matrix of the error vec-
tor Rε = E[θεθ

T
ε ], where the expectation is taken over all

[θ, x]. The following theorem combines the Fisher informa-
tion from the observations, existence/absence of measure-
ments and the prior to give a lower bound on Rε.

Theorem 1

Rε ≥
∑
I⊂N

P[I]
(
JI

g +
∑

j∈N\I
JI

qj
+

∑
i∈I

(JI
pi

+JI
xi

)
)−1

(1)

where ≥ refers to the positive semidefinite (psd) partial or-
der on Hermitian matrices. (i.e. A ≥ B if A − B is psd),
P[I] is the probability mass function over possible index
sets

P[I] =
∫

Θ

(∏
i∈I

pi(θ)
)( ∏

j∈N\I
qj(θ)

)
g(θ) dθ

and the Fisher information matrices of prior, existence, ab-
sence and measurement information are computed as

[
JI

g

]
kl

= −E

[
∂2 ln g(θ)
∂θk ∂θl

∣∣∣ I]
[
JI

pi

]
kl

= −E

[
∂2 ln pi(θ)
∂θk ∂θl

∣∣∣ I]
[
JI

qj

]
kl

= −E

[
∂2 ln qj(θ)
∂θk ∂θl

∣∣∣ I]
[
JI

xi

]
kl

= −E

[
∂2 ln fi(xi|θ)

∂θk ∂θl

∣∣∣ I]

Proof: The error correlation matrix for an estimator θ̂ can
be computed as:

Rε =
∑
I⊂N

P[I]E
[
θεθ

T
ε |I

]

Under regularity conditions on f(xI , θ|I) [2], Cramer-Rao
lower bound applies to each term as:

E
[
θεθ

T
ε

∣∣ I ] ≥
E

[{∇ ln f(xI , θ)}{∇ ln f(xI , θ)}T
∣∣ I ]−1

This implies:

Rε ≥∑
I⊂N

P[I]E
[{∇ ln f(xI , θ)}{∇ ln f(xI , θ)}T |I ]−1

Then (1) follows from:

f(xI , θ|I) =
1

P[I]
[
∏
i∈I

pi(θ)fi(xi|θ)] [
∏

j∈N\I
qj(θ)] g(θ)

The computation of the bound in (1) can be computation-
ally prohibitive if the number of potential measurements is
large. In particular, for a problem with n potential measure-
ments, (1) requires computation of 2n expectation terms. A
computationally attractive bound on Rε which is linear in n
is given next.

Theorem 2

Rε ≥
(
Jg +

n∑
i=1

pi(Jpi + Jxi) + qiJqi

)−1

(2)

where the prior probability of success and failure for mea-
surement i is given as:

pi =
∫

pi(θ)g(θ)dθ qi =
∫

qi(θ)g(θ)dθ

and the relevant Fisher information matrices are computed
as:

[
Jg

]
kl

= −E

[
∂2 ln g(θ)
∂θk ∂θl

]
[
Jpi

]
kl

= −E

[
∂2 ln pi(θ)
∂θk ∂θl

∣∣∣ i ∈ I
]

[
Jqi

]
kl

= −E

[
∂2 ln qj(θ)
∂θk ∂θl

∣∣∣ i /∈ I
]

[
Jxi

]
kl

= −E

[
∂2 ln fi(xi|θ)

∂θk ∂θl

∣∣∣ i ∈ I
]

Proof: By applying the matrix-version of the harmonic arith-
metic mean inequality [3] to right hand side of (1) we get:

Rε≥
∑
I⊂N

P[I]
(
JI

g +
∑

j∈N\I
JI

qj
+

∑
i∈I

(JI
pi

+ JI
xi

)
)−1

≥
( ∑
I⊂N

P[I]
(
JI

g +
∑

j∈N\I
JI

qj
+

∑
i∈I

(JI
pi

+ JI
xi

))−1

Then, (2) follows by rewriting the expectation integrals as:∑
I⊂N

P[I]JI
g = Jg

∑
I⊂N

P[I]
∑

j∈N\I
JI

qj
=

n∑
i=1

qiJqi
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∑
I⊂N

P[I]
∑
i∈I

JI
pi

=
n∑

i=1

piJpi

∑
I⊂N

P[I]
∑
i∈I

JI
xi

=
n∑

i=1

piJxi

4. DISTRIBUTED PARAMETER ESTIMATION
WITH BINARY DETECTORS

Large scale sensor networks are envisioned for surveillance
applications such as detection, localization and tracking of
personnel. In some applications, complexity and cost con-
straints may dictate usage of simple binary detectors for
detection and estimation tasks. For example binary trip-
wire detectors can be used for detection and localization
of acoustic or seismic energy. In this section we apply the
results of Section 3, to analyze binary detector arrays for
estimation of parameters of a single source. The fusion of
multiple binary decisions for joint detection decisions has
been studied extensively in the literature [4, 5, 6]. Here we
study the related problem of fusion of binary decisions for
joint estimation of source parameters. We limit our discus-
sion here to optimal fusion of binary decisions and don’t
consider joint optimization of the fusion and local detection
rules.

We consider parameter estimation using n binary detec-
tors and assume that each detector makes a local measure-
ment of a source signal characterized by parameter θ. The
parameter vector θ models the characteristics of the source
such as its location, amplitude or target class. Using its local
measurement, each sensor makes an independent binary de-
cision characterized by the operating point pD

i (θ) (i.e. the
probability of sensor i declaring a detection for a source
with parameter θ). We denote the probability of miss for
sensor i as pM

i (θ) = 1 − pD
i (θ). We further assume that

the source parameter has a prior distribution given by the
density function g(θ). With this prior, the fusion task can
be posed as a Bayesian paramater estimation problem with
binary measurements. The MAP estimator for θ is given by:

θ̂MAP (I) = arg max
θ

[
g(θ)

∏
i∈I

pD
i (θ)

∏
i∈N/I

pM
i (θ)

]
(3)

The results derived in the previous section can be used to
bound the correlation matrix of the errors of the MAP es-
timator. Typically binary detector systems are deployed in
large numbers to compensate for the small amount informa-
tion provided by each detector. Therefore, the bound given
in Theorem 1 is not practical for most applications. How-
ever, the bound in Theorem 2 is linear in the number of de-
tectors and can be useful in the analysis of such large scale
systems.

Corollary 3 For a binary detector with n sensor nodes em-
ploying local decision rules {pD

i (θ), pM
i (θ)}i∈N the error
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Fig. 1. Mean square error (MSE) for MAP estimator (dash-
dot) and the MSE-Bounds (Eqn.(1)- solid, Eqn.(2)- dashed)

correlation matrix Rε is bounded as:

Rε ≥
(

Jg +
n∑

i=1

pD
i JD

i + pM
i JM

i

)−1

(4)

where the prior probability of detection and miss for detec-
tor i is given as:

pD
i =

∫
pD

i (θ)g(θ) dθ pM
i =

∫
pM

i (θ)g(θ) dθ

and the Fisher information matrices associated with prior,
detection and miss information is computed as:

[
Jg

]
kl

= −E

[
∂2 ln g(θ)
∂θk ∂θl

]
[
JD

i

]
kl

= −E

[
∂2 ln pD

i (θ)
∂θk ∂θl

∣∣∣ i ∈ I
]

[
JM

i

]
kl

= −E

[
∂2 ln pM

i (θ)
∂θk ∂θl

∣∣∣ i /∈ I
]

5. EXPERIMENTS

Experiment A
We consider a one dimensional source localization problem
with time and direction of arrival measurements. A single
source is placed at a point θ on a one dimensional line, with
known prior density

g(θ) =
1√
2πσ2

g

exp[− θ2

2σg
2
]

Two sensors are located at {−α, α} and make time and di-
rection of arrival measurements for an acoustic signal emit-
ted by the source. The measurement for the sensor i can be
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modeled as:

fi(xi|θ) =
1√

2πσ2
exp

[
− (xi − (θ − (−1)iα))2

(2σ2)

]
,

under the assumption that the signal emission time is known.
Each sensor can fail to detect the source with probability

pi(x) = exp
[
− (θ − (−1)iα)2

r2
0

]
.

Mean Square Error performance of the maximum aposte-
riori probability (MAP) estimator is obtained using 10,000
Monte Carlo simulations for σg = 1, σ = 0.25 and r0 = 4.
Bounds given by (1) and (2) and the MSE performance of
the MAP estimator are plotted in Figure 1 for various values
of α.
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Fig. 2. Location of the binary detectors and scatter plot of
the source distribution for Example 2

Experiment B
We consider a source localization problem with n = 49
binary detectors placed on a uniform grid covering a 7 × 7
square area centered at the origin. The parameter vector θ =
[x, y] denotes the source location and has a prior density

g(x, y) =
1
2π

exp
[−x2 + y2

2
]

.

The location of the binary detectors and scatter plot of the
source distribution is given in Figure 2. The probability of
detection for a sensor located at [sx, sy] is specified by

pD
i (θ) = exp

[
− (x − sx)2 + (y − sy)2

r2
0

]
,

where r0 is a user selected parameter specifying the sensi-
tivity of the detector. We computed the performance of two
estimators using 10,000 MonteCarlo simulations as mea-
sured by the average radius of the uncertainty ellipse. The
first estimator is the MAP estimator given in (3). The sec-
ond estimator estimates the source location as the centroid

of the detectors which declare a detection. The performance
of the estimators is plotted for various values of r0 in Fig-
ure 3. The radius computed from (4) is also shown. We note
that for both estimators there is an optimal value for the sen-
sitivity parameter r0, illustrating the tradeoff between the
two sources of information – sensors which report detection
and sensors which report miss. We also observe that for a
wide range of r0, (4) provides a good approximation for the
MSE error for the MAP estimator.
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Fig. 3. Average uncertainity radius for the MAP estimator
(solid) and the Centroid estimator (dash-dot) and the bound
in Eqn.(4) - (dashed)

6. REFERENCES

[1] S. Kumar, D. Shepherd, and F. Zhao, “Collaborative
signal and information processing in micro-sensor net-
works,” IEEE Signal Processing Magazine, vol. 19, no.
1, 2002.

[2] H. L. Van Trees, Detection, Estimation, and Modula-
tion Theory, vol. 1, Wiley, New York, 1968.

[3] K. V. Bhagwat and R. Subramanian, “Inequalities be-
tween means of positive operators,” Math. Proc. Cam-
bridge Philos. Soc, vol. 83, pp. 393–401, 1978.

[4] R. R. Tenney and N. R. Sandell, “Detection with dis-
tributed sensors,” IEEE Trans. AES, vol. 17, 98-101
1981.

[5] I. Y. Hoballah and P. K. Varshney, “Distributed bayesian
signal detection,” IEEE Trans. Inform. Theory, vol. 35,
pp. 995–1000, 1989.

[6] V. V. Veeravalli, T. Basar, and H. V. Poor, “Minimax
robust decentralized detection,” IEEE Trans. Inform.
Theory, vol. 40, pp. 35–40, 1994.

II - 276

➡ ➠


