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ABSTRACT

We present a physically-based clutter model for low frequency synthetic aperture radar that includes both
distributed scatterers and large-amplitude discrete clutter. The model is used to generate a synthetic forest
clutter scene comprised of two components, a background component and a heavy-tailed discrete component.
Model parameters are based on characteristics of the scene, such as the radar cross-section of trees, forest
thickness, and background radar cross-section. A synthetic SAR image of the scene is generated by modelling
the radar imaging process as a lowpass filter and convolving the scene with the impulse response of the radar.
We compare the synthetic, single-pass clutter image to measured data and present a metric for evaluating model
fit. We also extended the model to describe correlated, multi-pass images for change detection applications.
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1. INTRODUCTION

Interest in the detection of targets hidden by tree canopies has led to the development of foliage penetrating
(FOPEN) radar. Although much of the FOPEN data collections are for UHF band synthetic aperture radar
(SAR), some images have been collected using VHF SAR.1, 2 VHF band SAR is also of interest in forestry
applications, such as the measurement of biomass.3 For either application, characterization of VHF forest
clutter is important for understanding the performance limitations of the radar.

Radar performance predictions, in terms of false alarm and detection probabilities, may be calculated from
measured data. However, it is only possible to collect data for a limited number of scenes. It is of interest to
understand radar clutter properties in order to simulate additional scenes, especially for operating conditions
that differ from those for which measurements are available. Accurate detection performance predictions for
these conditions require good scattering models for both targets and clutter.

Although clutter scattering has been well-studied for higher frequency radars,4 less work has been reported
for VHF. For UHF band, Mitra et al., employ a joint scattering center and statistical model to describe clutter.5

In this paper, we focus on forest clutter modelling at the VHF band and compare to measured data from
the CARABAS SAR operated by the Swedish Defence Research Agency (FOI). We propose a physically-based
method for producing synthetic forest clutter images. This model takes into account scene parameters and the
correlation induced by the radar imaging process. We also extend the model to characterize radar clutter in
change detection imagery.

We begin with a background discussion on popular density-fitting methods of clutter-modelling. Then, in
Section 3, we present the physically-based model. The resulting clutter image is compared to measured data
from the CARABAS SAR in Section 4. A quantitative metric of fit is also defined. In Section 5, we extend the
model to the case of change detection images.

2. BACKGROUND

Studies of foliage backscatter have primarily used density-fitting methods to characterize the forest clutter.1, 6

It is common to match probability density functions to clutter backscatter magnitudes.7
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Figure 1. a) VHF SAR image of forest. b) Rayleigh QQ plot of forest data shown in a). Forest clutter has a heavier tail
than Rayleigh-distributed clutter.

The Rayleigh density

f(x; σ2) =
x

σ2 exp
(

− x2

2σ2

)
(1)

has been widely used to characterize the magnitude of land clutter for homogeneous regions such as grass. The
Rayleigh density models clutter for which a large number of independent scatterers are within the same resolution
cell, provided that no one scatterer dominates the others.8

In forested regions, however, tree trunk scattering often dominates the scattering in a resolution cell. There-
fore, the Rayleigh model no longer holds in these regions. Instead, a heavier-tailed distribution is needed to
model the larger scatterers. Figure 1 shows a forested region in a VHF SAR image. The magnitude data is
plotted versus Rayleigh quantiles on a quantile-quantile (QQ) plot. The QQ plot compares observed data to
points with corresponding percentiles on a given distribution.9 If the data comes from the given distribution,
the resulting plot will be a line passing through the origin with slope one. Deviations from the unity-slope
line indicate differences, such as heaviness of the probability density function (pdf) tail, between the expected
distribution and that of the observed data. The upward curvature of the observed forest data in Figure 1b shows
that the forest clutter magnitude data has a heavier-than-Rayleigh distribution tail.

Popular models for fitting to heavy-tailed distributions, such as those that arise in forest clutter, are the
Weibull, log-normal, and K distributions. However, even these pdfs may fail to adequately describe forest
clutter at low frequencies. Efforts have been made to use mixture density models6 which describe the clutter as

Forest Image Autocorrelation

Figure 2. Autocorrelation of measured image shows pixel correlation.
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Figure 3. Clutter model derived from scene and radar characteristics.

combinations of small (Rayleigh) and large (heavy-tailed) scatterers. Such models may perform well in fitting a
density function to the observed data. However, densities other than the Rayleigh generally lack a physical basis
since the additional parameters are not derived from scene properties.7 Another drawback of fitting density
models is the assumption of independent image pixels that is often made, either explicitly or implicitly. Smith
et al. note the effects of inter-tree interference on image texture for a model with just a few trees.10 The
autocorrelation of the measured image verifies that the pixels are not independent (see Fig. 2). In the next
section, we propose a model that addresses both dependent pixels and a physical model basis.

3. CLUTTER MODEL

We propose a SAR clutter model that includes both a physical model for the clutter scene and a model of the
SAR imaging process. The scene model contains two components. First, there is a background component
that describes clutter backscatter that is distributed in the scene, and whose constituent scattering elements are
spaced much more closely than the radar resolution. Examples of background scattering include grass, roads,
etc. The second scene model component describes discrete, larger amplitude clutter such as tree trunks. The
model is characterized by parameters that have a physical basis, such as the density of trees and a pdf of the tree
trunk radar cross-section (RCS) amplitudes. The SAR imaging process is modelled as a linear filter applied to
the image plane. Thus, we start with a scene model, then filter this scene by the SAR impulse response function
in the image plane to obtain the final synthetic SAR image. The process is shown in Figure 3.

3.1. Scene model

Although the proposed model may describe any scene composed of background clutter along with large amplitude,
discrete clutter, the scene of interest in this discussion is a forest. The forest scatterers are grouped into two
categories—background and trees. The scene model takes into account the expected scattering statistics of trees
and background as well as the forest thickness. An image model of the scene is formed from samples of the two
types of scatterers.

The scene model is generated on the image (x, y) plane. The model applies to real-valued x (down-range) and
y (cross-range) location parameters. However, since the model is typically simulated by computer, we discretize
the (x, y) plane into a rectangular grid with index [k, l] and spacing ∆x and ∆y in the x and y directions,
respectively. The grid spacing is chosen to be small with respect to the SAR down-range and cross-range
resolutions. We refer to points on the discrete synthesis grid as subpixels, since the filter output is downsampled
to achieve a pixel image that represents the SAR image.

The scene background is assumed to be grass or other small scatterers such that the Rayleigh model in (1)
holds for pixel magnitudes. Coherent processing of radar imagery requires the complex scattering information.
Therefore, samples of the background clutter are generated as complex Gaussian noise. Each element of the
discrete synthesis grid is thus a realization of an i.i.d. complex Gaussian random process. The resulting magnitude
data will be Rayleigh-distributed with σ2 as its parameter.11 The variance σ2 is related to background RCS as
follows. The background RCS is typically reported as a magnitude value: σ0 dB/m2. We equate the image pixel



magnitude-squared values to RCS. So, in the synthesis grid, the complex pixel variance for a clutter cell with
area ∆x∆y is σ2 = σ0∆x∆y dB. In general, we describe the background scattering as

Bkl = αkl + jβkl, (2)

where α and β are i.i.d. Gaussians with zero mean and variance σ2). The parameter σ2 is calculated from an
estimate of the background RCS, σ0, obtained from measured data and adjusted to compensate for the SAR
filter model gain.

While the background contains small scatterers, the clutter discretes are assumed to be large scatterers such
as trees that are randomly located in the scene. Because the tree scattering dominates in its subpixel cell, the
Rayleigh model is not valid, and a heavy-tailed distribution is needed. There does not appear to be a validated
physically-derived model for tree scattering available in the literature, although some modelling and validation
of results has recently been reported.12 In the absence of such a model, the log-normal pdf

f(x; µt, σ
2
t ) =

1

x
√

2πσ2
t

exp
(

− (lnx − µt)2

2σ2
t

)
. (3)

is chosen to model the magnitude of the tree scattering. The log-normal model has given reasonable clutter fitting
results for data sets tested; the values of µt and σt have been estimated from these data sets. The parameters
µt and σt describe variations due to environmental effects such as stem volume and ground slope. The complex
scattering must also include a phase term. The phase is assumed to be uniformly distributed on [0, 2π]. This
assumption is validated by analysis of measured data.

In addition to modelling the scattering statistics of the trees, the locations of the trees must also be determined.
We assume Poisson placement with parameter λ, where λ is the tree density, or number of trees per square meter.
The ground truth for the CARABAS data set includes tree density estimates; λ is set accordingly in the model.

Let N = λAT be the total number of trees, where AT is the total area of the clutter scene being modelled.
Then, the tree scattering is characterized by

Tj = {xj , yj , Aj , φj}, j = 1, ..., N, (4)

where xj and yj denote the coordinates of the tree, Aj is the log amplitude of the scattering, and φj is the phase.
We discretize the tree scattering to the synthesis grid chosen above. Grid location [k, l] is chosen to contain a
tree with probability pt = λ∆x∆y, and this choice is made independently for each grid location. If a given grid
location is selected as containing the jth tree, Aj is chosen from the pdf in (3) and φj is chosen from a uniform
pdf over [0, 2π]. As discussed above, other models for the pdfs of Aj or φj could be used instead.

An example of the scene model is shown in Figure 4. The synthesis grid is first filled with samples from
the background scattering distribution. Then trees are positioned by Poisson placement and scattering values
assigned such that tree scattering replaces background scattering. Tree and background subpixels are taken to
be independent of themselves and each other. The autocorrelation of the scene is then a single point in the
two-dimensional space, i.e., a delta function. Therefore, all correlation in the synthetic image is due to filtering
with the SAR model.

3.2. System model
The synthetic aperture radar system is described by a two-dimensional linear filter, often called the impulse
response (IPR) of the radar. The input to the filter is the scene scattering described above; the output image is
the convolution of the input with the IPR. The filter is denoted h(x, y). In order for the output image to be in
units of RCS, the peak amplitude of h(x, y) should be unity. In many cases a model of h(x, y) is available from
a system characterization of the radar.

For our model, we use a discretized sampling of h(x, y), which we denote h[k, l], where

h[k, l] = h(x, y) evaluated at x = k∆x, y = l∆y (5)

Thus, if i[k, l] represents the input clutter image described in Section 3.1 and defined on the discretized grid
[k, l], the synthesized output SAR clutter image is given by

c[k, l] = i[k, l] ∗ h[k, l]. (6)



3.2.1. Estimating the IPR

If the impulse response of the SAR system is not given, it is possible to estimate it from background clutter
regions in an output image. Assume we have available a measured region c[m, n] from the radar system that
contains background clutter only. We note that [m, n] denotes the image pixel sampling, which may be different
from the clutter discretization grid [k, l] in equation (5). The filter’s impulse response relates the autocorrelation
of its input and output by

h[m, n] ∗ h∗[−m, −n] ∗ Rii[m, n] = Rcc[m, n] (7)

Taking the two-dimensional Fourier transform of (7) gives

|H(ω1, ω2)|2Sii(ω1, ω2) = Scc(ω1, ω2), (8)

where Sii and Scc are the power spectral density functions of the input and output of the imaging process.
Solving for H and taking the inverse transform yields the filter response. Since the phase information of the
filter has already been lost, we can restrict the filter to be real-valued by taking the magnitude of the result.
Thus, the radar system model is found to be

h[m, n] =

∣∣∣∣∣F−1

(√
Scc(ω1, ω2)
Sii(ω1, ω2)

)∣∣∣∣∣ . (9)

Given the power spectral densities of the system input and output, h[m, n] may be computed directly from
(9). The autocorrelation of the filter output may be calculated from the measured image c[m, n]. Then the power
spectral density may be found via the Fourier transform. For the scene model established in Section 3.1, the
input autocorrelation is a delta function. So, the power spectral density of the input is a constant value of one.
Substituting into (9), the system response is found to be a unit gain lowpass filter. Since the filter is calculated
on the pixel sampling grid [m, n], it is necessary to convert the filter to the [k, l] grid to match the input scene
model sampling. Choosing the [k, l] grid size to be a multiple of the pixel grid size allows for easy conversion via
interpolation. Figure 5 shows the spatial response of the filter corresponding to the measured image in Figure 1.

4. CLUTTER SYNTHESIS RESULTS

In this section, we present results of synthesizing clutter to emulate clutter measured by the CARABAS SAR,
which operates in the 20-90MHz band and uses HH polarization. A full description of the system may be found
in Gustavsson et al .13
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Figure 5. Spatial response of SAR model lowpass filter.
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4.1. Parameter selection

The image segment used in this study is one of a group of inventoried forest stands in Sweden. The radar
resolution of the image is 3m×3m, while the pixel size is 0.9375m×0.9375m. The grid size for the scene model
is chosen to be 3×3 subpixels per image pixel, which is approximately one-tenth the radar resolution in each
dimension. The average diameter of tree in the forested scene is 0.26m. The ground-truth estimate of tree
density is λ = 0.0589 trees/m2.

The RCS of the background is estimated from a clearing near the forest in the measured image (Figure 6) to
be σ0 = −21dB. Dividing by the SAR filter gain, the corresponding Rayleigh parameter for the input background
model is then found to be σ2 = 1.29×10−4 (pixel amplitude units). Estimates for the tree scattering parameters
are µt = −11dB = −1.2664 (pixel amplitude units) and σt = 4dB = 0.46052 (pixel amplitude units). These
estimates are not inconsistent with results of backscatter for large stem volumes (above 200m3/ha) reported by
Smith and Ulander.12 The above parameter choices result in the model scattering densities shown in Figure 7.

4.2. Tests for clutter model fit

A visual comparison of measured and synthetic images is shown in Figure 8. The overall structure and magnitude
response of the two scenes are comparable. Clearly, the measured image has more spatial variation than the
synthetic image. A spatially varying tree density could easily be implemented in the model to obtain a more
realistic synthetic image. However, for the application of detecting targets whose sizes are 1-2 times the image
resolution, spatial variation in the clutter does not affect detection probabilities. So, more accurate modelling of
the spatial variations is not needed for this application.

The exceedance function (one minus the cumulative distribution function) defines the probability of false
alarm as a function of scattering magnitude thresholds. For accurate performance prediction estimates, the
probability of false alarm for the synthetic clutter must match that of the measured image. Therefore, the
exceedances must agree for magnitudes at a given threshold, τ .

The choice of threshold will depend on the expected target scattering and correspond to an accepted prob-
ability of a missed detection. Variations in acceptance levels and in target distributions will induce a prior
distribution on τ , denoted fτ (τ). The distribution of τ will indicate an interval on the domain of the exceedance
function where clutter model fit is of most importance. Therefore, we define a quantitative metric for testing
clutter model fit to be the weighted squared-error between the synthetic and measured image exceedances, where
the weighting is an expectation over τ . Denoting the error as ε, the error equation is

ε =
∫

|(1 − Fmeas(τ)) − (1 − Fsyn(τ))|2fτ (τ) dτ (10)

= E{|(1 − Fmeas(τ)) − (1 − Fsyn(τ))|2}, (11)
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Figure 8. Visual comparison of forest images: a) Measured image b) Synthetic image generated by clutter model.

where Fmeas and Fsyn are the cumulative distribution functions of the measured and synthetic magnitude data,
respectively.

Figure 9 compares the exceedance plots for the synthetic model presented in this paper as well as the widely-
used Rayleigh, Log-normal, and Weibull density-fitting models. Results from two choices of the synthetic model
parameters are shown. The first synthetic model has parameters which closely match the ground truth. The
second model assumes a much lower tree density and corresponding estimates of the tree scattering parameters. A
prior density on τ is assumed to be Gaussian with mean 0.7 and variance 0.52, which we denote as N (0.7, 0.052).
The errors computed with the metric in (11) are listed on the plots for each model, as well as in Table 1. The
synthetic clutter model clearly outperforms the density-fitting models. At low magnitudes, the second model
deviates from measured data; however, in the region of interest defined by the main lobe of fτ (τ) the two
synthetic clutter models look very similar. In fact, the calculated error is only slightly less for the first model
than the second for the given threshold distribution. Therefore, without having some a priori knowledge of the
scene, such as the tree density, multiple solutions may exist. Performance of the solutions will differ depending
on the choice of detection threshold.

Clutter Model Exceedance Error
Synthetic Model 1 0.000046
Synthetic Model 2 0.000056
Best-fit Rayleigh 0.008613
Best-fit Log-normal 0.001386
Best-fit Weibull 0.003277

Table 1. Comparison of exceedance plot error values in Figure 9 for fτ (τ) ∼ N (0.7, 0.052).

5. EXTENSION TO CHANGE DETECTION

The synthetic clutter model proposed in Section 3 may be extended to model clutter in change detection images.
Change detection images are formed by subtracting two images of the same scene, collected on multiple passes
of the radar. Intuitively, stationary objects present in both images will cancel out in the subtraction. However,
due to slight variations in the flight path, image alignment errors, environmental changes, etc., stationary clutter
will not be completely cancelled in the change detection image. Density-fitting models, which fit distributions
directly to the change detection data, do not relate the collection variations in the single-pass images. Physically-
based clutter models are advantageous because they are able to take into account the system and environmental
changes.
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Figure 9. Comparison of measured data exceedance plots for several synthetic clutter models. (a) Proposed model with
σ2 = 1.29×10−4, λ = 0.0589, µt = −1.2664, σt = 0.46052; these parameters closely match the ground truth. (b) Proposed
model with σ2 = 1.29 × 10−4, λ = 0.025, µt = −0.85196, σt = 0.34539. (c) Best fitting Rayleigh model. (d) Best fitting
Log-Normal model (e) Best fitting Weibull model. (f) Assumed prior pdf of detection threshold to obtain quantitative fit
error numbers that are shown in the top left corner of (a)-(e).



5.1. Multi-pass clutter model

Although a complete characterization of the variations between radar passes is not known, we propose that a
synthetic change detection image may be produced by subtracting two synthetic single-pass images, where the
second image is a perturbation of the first. Section 3 described how to synthesize a single-pass clutter image.
Here, we present a formulation of a second, correlated image.

A second-pass image is formed from small changes to the model parameters in the first-pass model. Letting
a prime denote the second pass, the background representation becomes

B′
kl = α′

kl + jβ′
kl (12)

where α′
kl and β′

kl may be correlated with αkl and βkl such that(
αkl

α′
kl

)
,

(
βkl

β′
kl

)
∼ N

(
0,

[
σ2 ρσ2

ρσ2 σ2

])
(13)

for correlation coefficient ρ. For ρ = 0 the background is uncorrelated from pass to pass and may be generated
as independent complex Gaussian noise samples. However, the model above readily accommodates pass-to-pass
correlated background clutter statistics, and so ρ is included here. Using the same prime notation, the trees in
the second image are

T ′
j = {x′

j , y
′
j , A

′
j , φ

′
j}, j = 1, ..., N. (14)

The changes in tree magnitude scattering are described as

A′
j = Aj + γj , γ ∼ fγ(γ) (15)

and the phase term is modified as

φ′
j = φj + ζj , ζj ∼ fζ(ζ). (16)

In addition to variations in the scattering returns, the two single-pass images will also have some pixel misalign-
ment. A tree pixel in one image may be displaced in the second image. The tree displacement is(

x′
j

y′
j

)
=
(

xj

yj

)
+
(

δxj

δyj

)
,

(
δxj

δyj

)
∼ fδ(δ). (17)

Forming a second-pass image from the perturbation equations above simulates the system and environmental
changes between two measured images. Once the two single-pass images have been formed, one can obtain the
synthetic change detection image by either coherent or incoherent subtraction.

Although the above model has been generated for two related images, the model is easily generalized to the
case of three or more correlated images. Thus, the change detection model extends to multi-pass applications.

5.2. Change Image Simulation Example

We illustrate the above multi-pass model with example synthetic imagery. We take the first pass model to be
the single-pass example in section 4. A second, correlated model is generated as follows. We assume that the
difference in tree location between images is normally-distributed with zero mean and a standard deviation of
0.5m. The location change would primarily be due to registration errors of the two images. We assume the tree
magnitude varies by a zero-mean normal distribution with a standard deviation of 2.5% of the median magnitude
in the first image. Also, assume that phase changes are negligible so that equation (16) becomes φ′

j = φj . Finally,
let the background scattering between images be uncorrelated by setting ρ = 0 in equation (13).

After filtering the correlated, single-pass models with the SAR system model and downsampling, we obtain
the pair of synthetic clutter images shown in Figures 10a and 10b. The two single-pass images are subtracted
both coherently (Figure 10c) and incoherently (Figure 10d) to obtain change detection images. It is common in
change detection images to plot either the arrivals or departures from a scene. Arrivals are defined to be those



pixels corresponding to positive incoherent subtraction results, while departures are those pixels corresponding
to negative incoherent subtraction results. The synthetic change detection images in Figure 10 show arrivals
to the scene; departure images are similar. Ideally, large discrete clutter will completely cancel, leaving only
small residuals in the change detection images. However, Figure 10 clearly shows that amplitude and spatial
variations between the two single-pass images leave some large residual scattering in the change detection images.
A comparison of the exceedance plots for both the single-pass and change detection images (Figure 11) shows
that the peak magnitude of the residual scattering is approximately half the peak magnitude of the single-pass
scattering. We observe that the incoherent change detection image in this example has greater cancellation
than the coherent change detection image. Unfortunately, no publicly releasable change detection images were
available for comparison with the results in Figures 10 and 11.

6. CONCLUSION

In this paper, we have presented a physically-based clutter model that includes both distributed (background)
scatterers and large-amplitude discrete clutter, such as trees. A synthetic forest model is proposed. The model
parameters are obtained from a physical understanding of the scene. Tree size and forest thickness relate to the
tree RCS amplitudes. Background RCS is also taken into account. Synthetic SAR images of the model scene
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Figure 10. (a) Synthetic single-pass image. (b) Perturbation of the image in (a). (c) Coherent change detection image
formed from the images in (a) and (b). (d) Incoherent change detection image formed from (a) and (b).
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Figure 11. Exceedance plots for synthetic multi-pass and change detection images.

are generated by convolving the scene with the impulse response of the radar. An estimation method was given
for the case when the radar impulse response is unknown. We have shown that the single-pass synthetic clutter
images agree well with CARABAS SAR measurements. We have also extended the model to the case of change
detection images. Two-pass (or multi-pass) images may be modelled as correlated scenes, where the second image
is a perturbation of the first. Perturbation parameters model how large the changes are in environment and data
collection geometry between passes. Inclusion of these variations in the clutter model provides a physically-based
description of both single-pass and multi-pass images.
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