OPTIMAL APPROXIMATE STOCHASTIC PARTIAL REALIZATION

Randolph L. Moses
Measurement and Control Group
Department of Electrical Engineering
Eindhoven University gf Technology
Eindhoven, The Netherlands

We consider the problem of determining a stochastic realization from a
given set of autocovariance samples. No structure (such as positive
definiteness) is assumed on these given autocovariances. We present a
method for determining a stable state space model whose output covari-
ances minimize a weighted quadratic error function. The solution
technigue requires the use of an iterative minimization procedure, and
a Gauss-Newton method is employed. Connections with Maxiumum Likeli-
hood estimates are discussed, and a procedure for adaptively choosing
an optimal gquadratic error weight is described.

INTRODUCTION

This paper considers the following apﬁroximate stochastic partial realization

(ASPR) problem: Given a sequence {Rk}o of autocovariance "measurements", and an
integer n < M/2, find an n-th order state space model such that, when driven by
white noise, its output covariances {rk} are "close to" Rk for 0 £ k < M in some
well-defined sense.

Specifically, we wish to find (A,B,C,D) in the n-th order state space model
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where {w(k)} is white noise with zero mean and variance I. The function we wish
to minimize is
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and where Q is a non-negative definite weighting matrix.

It is important to note that the realized system is implicitly constrained to be
asymptotically stable since the output seqguence is assumed to be wide sense stat-
ionary. Also, note that no structure is assumed on the given {Rk} samples. In
particular, {Rk} need not be non-negative definite, and need not fit sa higher
order linear model.
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There are several important applications in which this ASPR problem arises. If
{Rk} is the covariance sequence associated with an ideal digital filter impulse
response, then (A,B,C,D) realize an optimal n-th order filter design. In remote
sensing and optical signal processing problems, one often wishes to obtain a spec-
tral estimate or linear model based on noise-corrupted autocovariance measure-
ments. Finally, in many time series analysis or stochastic system identification
methods, one first estimates autocovariances from given data, then attempts to
find a linear model which fits these covariances.

Several methods for obtaining approximate stochastic realizations have been pro-
posed. However, many of these methods assume some structure on the given {Rk}
sequence, e.g. that it is exactly represented by a high order linear model or that
it is part of a non-negative definite sequence [1-2]. If these restrictions are
not met (as is often the case in practice), then such procedures generally do not
guarantee stability of the realization. Also, they do not guarantee the existence
of a solution to a Riccati equation (or, equivalently, they do not guarantee that
an estimate of the power spectrum is factorable) [3—4]. Even if stability or
factorability is ensured, no well-defined criterion is minimized. On the other
hand, the solution to the optimal ASPR problem does guarantee stability and fac~
torability while minimizing a quadratic error criterion; thus it can serve as a
benchmark to which these suboptimal methods can be compared.

This paper first discusses the solution to the optimal ASPR problem for the case
that Q in (1.2) is given. For simplicity we first consider the scalar output
case. Since F. is a nonlinear function of the state space parameters, an
iterative minimization procedure is employed. Sakai, et. al. [5] considers a
similar problem, but restricts attention to an AR model. Gerdin [15] also treats
a similar problem but uses a parameterization which does not guarantee spectral
factorability.

Next, we consider the statistical properties of the ASPR estimate when the given
autocovariance sequence is generated by a system of the form (1.1). We address
the problem of adaptively determining Q in (1.2) so that minimization of F, yields
asymptotically efficient estimates. This is accomplished by a three-step algo-
rithm similar in concept to those in [8]. First a minimization of F for some
given Q is performed. The realization obtained is used to determine an estimate
of the optimum Q, and this new Q is used in a second minimization to obtain
asymptotically efficient estimates. This procedure is applicable when the
asymptotic covariance of the given covariance estimates are known functions of the
state sgpace parameters; in particular, it is applicable when the autocovariances
are estimated from data. In the latter case this stochastic realization method
can serve as an alternative to a maximum likelihood estimate that is obtained
directly from time series data. For some problems, estimating autocovariances
from data and then performing an optimal ASPR is a nearly efficient estimator that
is less computationally burdensome than direct maximum likelihood methods.
Finally, we discuss extensions to multivariable systems.

AN ITERATIVE SOLUTION PROCEDURE ;

In this section we develop a solution for the ASPR problem when Q is given. We
first parametrize the state space quadruple. A Gauss-Newton minimization proce-
dure employed, and equations for computing Ty and its partial derivatives are
derived. BAn alternative parametrization using reflection coefficients is intro-~
duced to enable stability monitoring: in particular, asymptotic stability of the
stochastic realization is ensured by simple bound constraints on the reflection
coefficients.

Consider the state space model in (1.1) where w(k), y(k)€& R. Then the impulse



response of this system is

D . k=0
h = (2.1)
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The covariance of {y(k)} is given by

>

e = Elvy; vyl = Z BBk (2.2)

Alternatively, we can express the covariance function in the frequency domain.
Defining

H(z)

)} h 2" (2.3)

D(z)

E r z“k (2.4)

it follows that
o(z) = H(z) H(z"l) (2.5)
In order to minimize F, it is necessary to express r, as a function of a minimal

set of parameters. Thé parametrization of the state space representation we will
use 1is the observer form,

: B,

A= B={ " c=[10...0] (2.6)

For this parametrization the transfer function H(z) can be written as

loo+b1z"1+...+bnz"n B(z)

H(z) = = (2.7a)
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where

ai = —ai i=1,2,¢e.4n (2.7b)
b0 =D (2.7¢c)
b, = DB,~a, i=1,2,....n (2.74d)

From (2.7) it is clear that there is a 1-1 correspondence between the {ai,bi}
coefficients and the state-space parameters {ai,Bi,D}. It suffices to minimize FQ
as a function of § where

R T
8 =la, a, «es @ by b, .. b ] (2.8)

Since F. 1s nonlinear in 8, an iterative minimization technigue is employed. We
will use the Gauss-Newton method; the k+1st minimization is then given by



o1 = oF + (sTes)"1 sTg [R,- EM(QF)] (2.9a)

where BM and I, are given in (1.2) and

or,
1
[s]ij i (m+1) x (2n+1) (2.9b)
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An initial 60 vector can be obtained from a standard realization method as in

[4] [6], for example. This initial estimate may require modification to ensure
stability.

In order to apply (2.9), we need only find Ty and S a function of 6. The re-
presentation of Ty for 0 <« k € n is given by [7]

r, =R BA b (2.10a)
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For k > n, the covariances satisfy
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= - g (2. 11
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Note that A;1 is lower triangular Toeplitz, and is given by
°. 0
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é see C c
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Formulas for the derivatives of rk, 0 < k < n,
relation
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From (2.10a) and (2.13) we get
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The two derivative matrices are readily computed.
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The derivative of C is Toeplitz and
computed by
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may be computed recursively.

(2.12b)

follow directly from (2.10) and the

(2.13)
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It follows from (2. 10c¢) that

(2.15)

lower triangular, and can be recursively

(2.16)
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From (2.11) we have

n (2.18)
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The above algorithm does not impose stability on the realization. Moreover, the
minimum of Fn is not unique in the b; coefficients because reflecting a zero of
B(z) in or out of the unit circle does not affect F.. Both problems can be cir-
cumvented by reparameterizing FQ in terms of reflection coefficients.

The reflection coefficients are defined from a vector

a = a

T
Zn [an,1 n,2 " an,n]

by the following recursion.

For m=n,n-1,...,1:
k = a (2.20)
m

m,m
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The inverse recursion is:

For m=1,2,.e¢,n

a =k (2.21)
m,m m

a , = a .+ k a .oy 1=1,2,¢..,m-1
m,i m-1,1 m m-1,m-1

It is well-known that a polynomial A(z) is stable (i.e. A(z) = 0 =|g]< 1) if and
only if Iki|< 1 for i=1,2,...,n. Thus, stability constraints are simple bound
constraints using the reflection coefficients as parameters.

Define the new parameter vector as

6" = [kq +vr X, Dy +-. b )T (2.22)

where {k1 oo kn} are the reflection coefficients corresponding to {a1... an} in
(2.8). (The bi coefficients may be replaced by reflection coefficients in a
similar manner if it is desired to ensure a minimum phase realization.

Clearly, r(8') may be computed using (2.20) and (2.21). To compute S in terms of
6' we need the Jacobian matrix corresponding to the transformation (2.20). If we
define

6ri
[s'], =
i d8 ",
3 3
then
s' = 8 J 0 (2.23)
0 I ,
where J is the Jacobian matrix
aai
[J]ij = a_k;— (nxn)

It is readily found from (2.21) that
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The above equations completely specify an iterative solution technique for the
minimization of F, for fixed Q. This minimization produces a state-space realiz-
ation of the form (1.2) (after transforming 6 or 8' by use of (2.21) and (2.7)).
Stability of the realization is assured by iﬁbosiﬁg bound constraints on the ki
coefficients. Moreover, the spectral factorization problem (or Riccati eguation
solution) is eliminated by parametrizing so that no spectral factorization need be
computed (or no Ricatti eguation need be solved).

MAXTIMUM LIKELIHOOD ESTIMATES

In the previous section we derived a stochastic realization algorithm that uses a
given, fixed weighting matrix Q. 1In this section we discuss the choice of Q and
its relation to maximum likelihood (ML) estimates. Throughout this section we
assume that the given autocovariances are obtained from a system of the form
(1.1), i.e. that the given data is generated by a system in the model set.

Let us first assume that the given R, seguence is a noisy sample of an n-th order
state-space realization, where the noise is Gaussian with zero mean and known
variance W, i.e.

BM— £M ~ N(0,W) (3.1)

Then the log-likelihood function for Iy is given by

M+1 1 1
= - —— 1 - — - —
L(EM) n2n 5 In det W Z(BM

T -1 _
. ) Wl (Rr) (3.2)

“In
L is maximized by minimizing F. where Q = wol, Moreover, since there is a one-to-
one correspondence between r and 6 (assuming minimum phase B(z), for example),
minimization of Fw_l corresponds to an Mi-estimate of the parameters of the state-
space realization given the "data" vector Ry+ Even if Ry is not Gaussian, mini-
mization of Fy-1 yields the minimum variance estimate for a large class of probab-
ility distributions.

In many cases of interest, however, the above assumptions are very restrictive.
Generally, W is not known and it is not independent of the model parameters.
Below we consider a less restrictive case, motivated by a similar problem in [8].
Assume that the Ry values are estimated from N data samples y(1),...,y(N). Assume
further that
'
T (Ryr) > N(0,W(E)) (3.3)

where W is a known function of 6. Let W be a consistent estimate of W(6), such
that W-W is O(1//ﬁ) (i.e. the covariance of W-W is asymptotically P/N). These
assumptions on BM and W are not restrictive; nearly all consistent estimates
satisfy these order properties by the central limit theorem.



The normalized log-likelihood function for r 6 is from (3.3)
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10L(B) _ T -1 _
N o5 =SV (Ry=x, (8)) + oCi/N) (3.5)

Asymptotically (as N»») ML estimates are obtained by finding 6 such that

S W-1(5Mf£M(e)) = 0. Such a 9 is found by minimizing Fw_l. Thus, an
asymptotically efficient estimate QAML for data satisfying (3.3) can be obtained
by:

1. Obtaining a consistent estimate 9 of 8§ (using, e.g. a non-iterative
technique or by minimizing FQ for some fixed Q).

2. Computing W = W(6).
3. Minimizing F&_l using the Gauss-Newton algorithm to obtain QAML‘

Even though the repetition of steps 2 and 3 is unnecessary in the limit, repeating

steps 2 and 3 for finite N may improve the variance of 8,,;. Also, for finite N
the particular initial estimate of step 1 can affect the variance of QAML'

Note that the above procedure performs a minimization on M+1 "data” rather than
the y(1), «..,¥(N) samples, which can significantly reduce computations if N >> M.
Although QAML is an asymptotically eff1c1ent estimate baged on _M’ Ry is not in
general a sufficient statistic for {y(k)} . The obtained QAML estimate may be
"close enough" to an efficient estimate 1f the information lost in reducing from
data samples to Ry is sufficiently small. One measure for the relative efficiency
of ML estimates based on and ML estimates based on {y(k)}? is the relative
information index (RII) defined as [9]

F(R )

R,
P(Y)

RII(6,M) = (3.6)

where F(Ry,) and F(Y) denote the Fischer information matrices corresponding to Ry,
and data, respectively. It has been shown that 0 < RII < 1, and that RII = 1 if
and only if Ry is a sufficient statistic for {y(k)}§ [9]. If RIT is "close to" 1
then efficient estimates based on Ry are "nearly" efficient estimates with respect
to the data.



As before, we must choose a state space parametrization © such that:

(1 stability constraints can be (easily) imposed and
(2) the covariances can be expressed as an explicit function of 9.

Previously used paramterization [11—12] do not fulfill both of these requirements.
A more appropriate parametrization for this problem is the form where

1 0 1 0

A = diag e , P , m =-% (4.1)

P10 Pqyq Py Py

The last element "p" of A appears only if n is odd. The matrices B and C are free
with the exception that one element in each column of C (or row in B) is fixed, to
one, say [14]. If the element fixed to one should be zero, then other elements in
B or C will become large in magnitude during the minimization process, and the
constraint can be changed to another element. The D matrix is lower triangular
with positive diagonal elements. This representation is generically a feasible
model . Note that the realization is stable if and only if each 2x2 block is
stable (and p < 1 if n is odd). By parametrizing each block into two reflection
coefficients, the stability constraints become bound constraints.

We also need to express r as a function of the state space parameter vector 6.
Note that we can write -

¥(z) = [c(z1-a)"! B+D] U(z2) (4.2)
2 a(z) Y(z) = [C adj(zI-A)B + Da(z)] U(z)

where a(z) is the characteristic polynomial of A. Since A is block diagonal,
a{z) is the product of the characteristic polynomials of the blocks in A;
moreover, adj(zI-A) is easy to evaluate. Thus, from (4.2) we can find A, and B.
in the relation

n n
) Ay, .= ) Bw . , By =TI (4.3)
10 i“k-i =0 3 k-3

From (4.3) we can find an expression similar to (2.10). Following the
derivation in [7], we get
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12k LR
0 k <0



Note that (4.4) can be solved in g steps by solving for the i-th columns of the r
matrix and the r! matrix in (4.4) at the i-thr step. Also, from (4.2)-(4.4) we can
compute the first derivatives of r with respect to 6 for use in a Gauss~Newton
iteration. M -

The methods of section 3 can also be applied to the multivariable case. What is
needed is an estimate of the optimal weighting matrix W and a relative information
index for the specific problem at hand.

CONCLUSIONS

We have presented a method for obtaining stochastic realizations from a set of M+1
autocovariance "estimates™. These estimates can come from data, direct (noisy)
measurement, or high order models; however, no structure is assumed on them.
Moreover, the realization obtained is one which minimizes a weighted guadratic
error criterion and which is guaranteed to be stable. The algorithm incorporates
an iterative Gauss-Newton minimization procedure.

Also discussed was the use of this algorithm in obtaining maximum likelihood and
asymptotically efficient estimates. Specifically, when a large number of data
samples are available, one can compute sample covariances and then obtain a stoch-
astic realization from them instead of from data. The advantage of such a scheme
is that it may be computationally faster than direct maximum likelihood methods.
Moreover, the information lost in reducing the data to sample covariances can be
measured and controlled, so one can obtain realizations whose variances are
asymptotically as close to efficient as desired.
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