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Abstract

The problem of estimating the fundamental frequency and the amplitudes and phases of corresponding
harmonics is considered. Many battlefield vehicles generate coupled harmonic acoustics. These features are
useful in tracking and classifying battlefield targets. As discussed in [1], harmonic line association (HLA)
is a feasible approach to target identification in single or multiple target scenarios. In addition, the harmonic
line estimates may be useful in improving target tracking and counting. For distributed sensor networks,
the harmonic line estimates can also be used in conjunction with direction-of-arrival (DOA) estimates to
separate targets temporally and spatially. Once the coupled harmonic parameters are estimated, the residual
allows any broadband energy to be exploited.

This work investigates the case with a single source generating frequency coupled harmonics in the presence
of Gaussian noise. The parameters of coupled harmonics are estimated using nonlinear least-squares (NLS).
Previous works have assumed the number of harmonics is known [2, 3, 4, 5]. In this work, as with [6, 7],
the number of harmonics is assumed unknown. The NLS method is combined with order selection methods
(such as Rissanen’s minimum description length (MDL) [8]), to generate statistically efficient estimates in
white and colored noise.

1. Introduction

This document details a combined detection-estimation algorithm for determining the parameters of fre-
quency coupled harmonics. The coupled harmonics are related by a fundamental frequency (FF), denoted
ω0. Estimating the frequencies in harmonic models is a nonlinear process. Usually a frequency is assumed
and then linear techniques can be used to estimate the amplitude parameters. However, the accuracy of the
estimates depends on the assumed frequency.



Previous work by Dommermuth [6] has shown that the FF can be estimated accurately to within an integer
multiple or rational fraction of the true FF. Rational fractions and integer factors of the FF will be referred
to as sub-harmonics and super-harmonics, respectively. For estimators based on the minimization of the
squared error, the difficulty lies in the multimodal shape of the error (or loss) function. For the coupled
harmonic model, the loss function will have deep troughs at multiples of the true FF. The relative levels of
the troughs depend on the number of harmonics in the candidate signal and the amplitudes of the harmonics
(see,e.g., Figure 2). The mis-estimation of a FF as a sub- or super-harmonic results in large estimate
variances. The dependence of the loss function on the FF and the number of harmonics is a motivating
factor for this work.

Some previous works, [2, 3, 4, 5], assume the number of harmonics is fixed or known. In [6], combined
order selection and FF estimation is also considered. There, estimators are developed assuming a more
restrictive model of equal energy harmonics. Consequently, the problem of estimating the amplitudes and
phases is not considered. We develop an approach in which we also estimate the amplitudes and phases of
a more general coupled harmonic model. We also consider several order selection strategies.

Methods are proposed in [7], similar to those provided here, to jointly estimate the coupled harmonics and
autoregressive (AR) noise parameters and model orders. In contrast, we assume the noise power spectral
density (PSD) is stationary and known to within a constant level. Assuming the noise model is known
may have validity for battlefield acoustics. In some scenarios, long periods of inactivity allows sensors to
estimate the local noise properties to a higher degree of accuracy (i.e., large sample lengths) compared to
the shorter sample length estimates in [7]. In addition, the algorithms proposed here take advantage of the
shape of the loss function in order to reduce the computational complexity.

Algorithms are proposed in [3] and [4] to track the time-varying parameters of coupled harmonics. These
algorithms rely on accurate initial FF estimates and assume the number of harmonics is known. In appli-
cations where the parameters are slowly varying, the algorithms proposed here can be used to initialize and
periodically update the tracking algorithms.

Performance results using simulated data are presented in terms of bias and root-mean-squared error (RMSE).
The RMSEs are compared against the large-sample root Cramér-Rao lower bounds (root-CRLBs). Com-
parisons with the root-CRLBs are made as a function of SNR and number of harmonics. In addition, a
qualitative analysis is presented for field data.

The paper is organized as follows. In Section 2, the signal model is presented. In Section 3, the nonlin-
ear parameter estimation procedure is discussed under the assumption the number of harmonics is known.
Then, the order selection procedures commonly used to determine the number of narrowband components
in a signal are introduced in Section 4. In addition, the proposed combined detection-estimation algorithms
for coupled harmonics are presented. Some practical issues related to the algorithms are discussed. Sec-
tion 5 presents practical numerical examples that demonstrate the statistical properties of the algorithms. In
addition, results are compared between parameter estimates and the short-time Fourier transform (STFT) of
field measurement data. Finally, concluding remarks and observations are given in Section 6.
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Figure 1: Spectrogram from the acoustic signature of a heavy-tracked vehicle.

2. Signal Model

In this section, the sum-of-harmonics plus broadband noise model is presented. Many physical processes
contain periodic and broadband information. Periodicities evident in acoustics are due to, among other
things, rotating mechanical components or resonant vibrations. Broadband energy is partly due to the im-
pulsive nature of events or “noise-like” processes, such as turbine engines. Figure 1 is a spectral represen-
tation of the measured scalar acoustics of a heavy-tracked vehicle. In addition to the broadband signal, the
harmonic structure is evident. Assuming a perfectly calibrated acoustic sensor, the observed signal is

y(n) =
q∑

k=1

αk cos (kω0n + φk) + ε(n),

=
q∑

k=1

uk cos (kω0n) + vk sin (kω0n) + ε(n), (1)

whereω0 = 2πf0T is the FF satisfyingω0 ∈ (0, π/q), q is the number of harmonics present in the signal,
ε(n) is modeled as a zero-mean, additive Gaussian noise sequence,n is the sample index, andT is the
sampling period. The termε(n) can also represent noise and un-modeled broadband energy. It is of interest
to estimateω0, q, the amplitudes{αk}, and phases{φk}. The desired amplitudes and phases are calculated
from estimates of the cartesian amplitudes{uk} and{vk} by

αk =
√

u2
k + v2

k,

φk = arctan (−vk/uk) . (2)

As observed in Figure 1, the FF may be time-varying. Here, it is assumed the FF is constant over an
observation window. An observation window of one second is often used for acoustic measurements of
vehicles [9].



The observed signal may also be written in matrix form. Lety be a vector of sampled sensor data for sample
indicesn = 0,. . . ,N − 1. Using Equation (1), the harmonic model can be written as

y = C(ω0)u + S(ω0)v + ε, (N × 1)
= A(ω0)β + ε, (3)

where

u = [u1, . . . , uq]T , (q × 1)
v = [v1, . . . , vq]T , (q × 1) (4)

are the amplitude vectors, and the elements of the(N × q) matricesC(ω) andS(ω) are given by

[C(ω)]n,k = cos (kωn + ϕk) , 0 ≤ n ≤ N − 1
[S(ω)]n,k = sin (kωn + ϕk) , 1 ≤ k ≤ q (5)

wheren andk are the row and column indices, respectively, andϕk = kω(N − 1)/2. The phase term,
ϕk, defines the phase at the middle of the observation window and guaranteesC(ω)TS(ω) = 0. From the
second line in Equation (3), it follows thatA(ω) = [C(ω),S(ω)] andβ = [uT ,vT ]T . Amplitude and phase
vectors are defined as

α = [α1, . . . , αq]T , (q × 1)
φ = [φ1, . . . , φq]T . (q × 1) (6)

The cartesian amplitude vectorsu andv are viewed as the rectangular coordinates in the signal subspace
〈A(ω0)〉 spanned by the columns ofA(ω0). The rectangular coordinates are related to their polar counter-
parts by

u = α · cos(φ), (q × 1)
v = −α · sin(φ), (q × 1) (7)

wherex · z is the scalar product of (m × 1) vectorsx andz, andcos(x) = [cos(x1), . . . , cos(xm)]T with
sin(x) similarly defined.

The last term on the right hand side of Equation (3) is a vector of noise samples distributed asε ∼ N (0,Σ).
The harmonic signal and broadband noise are considered statistically independent. The noise is modeled as
a stationary autoregression. Formally, the AR noise is described as

ε(n) =
1

A(z)
e(n), (8)

whereA(z) is a stable, rational linear filter ande(n) is zero-mean white noise with varianceσ2
AR. The filter

A(z) has the form

A(z) = 1 + a1z
−1 + . . . + apz

−p, (9)

wherez−1 is the unit delay operator (e.g., z−px(n) = x(n− p)). The parameters ofA(z) are then given as

θAR = [a1, . . . , ap]T . (p× 1) (10)



If the AR parameters are not known, then they must be estimated. AR parameter estimation techniques are
treated in [10]. In some applications, the degree of accuracy of the AR parameter estimates is greater than
that of the signal parameter estimates (i.e., M À N , whereM is the data length used in estimatingθAR).
In this work, it is assumedθAR is known and the data is whitened prior to estimation. GivenθAR, the
whitened samples are generated by filtering the observations withA(z) (i.e., ỹ(n) = A(z)y(n)). After this
pre-whitening procedure, the harmonic model is given by

ỹ = C(ω0)ũ + S(ω0)ṽ + ε̃, (N × 1) (11)

whereε̃ ∼ N (0, σ̃2I). After computing the estimates ofũ andṽ, the estimates ofα andφ are determined
by using Equation (2) and then removing the effects of the whitening filter. It follows that the estimation
techniques for both cases, white or AR noise, share a common structure. Consequently, without loss of
generality, it is assumedΣ = σ2I in the following derivations.

3. Coupled Harmonic Parameter Estimation

It is desired to estimate the parameter vector

θpol = [ω0, α1, . . . , αq, φ1, . . . , φq]
T . (2q + 1× 1) (12)

However, the signal is a nonlinear function of the phase parameters,φ. Consequently, the estimators are
given in terms of the cartesian amplitudes. Defining the vector

θrect = [ω0, u1, . . . , uq, v1, . . . , vq]
T , (2q + 1× 1) (13)

the maximum likelihood estimate (MLE) ofθ = θrect is found by minimizing the negative log-likelihood
function given by

J(θ) =
N

2
ln (2π) +

1
2

ln (detΣ) +
1
2

(y − s(θ))T Σ−1 (y − s(θ)) , (14)

wheres(θ) = A(ω)β.

The number of parameters to be estimated in general sinusoidal summation models withq components (i.e.,
{ωk, vk, uk}q

k=1) is 3q. However, in the coupled harmonics model, the number of parameters is reduced to
2q+1 as all frequency components are described by a single parameter,ω0. The following section describes
the procedure used to estimateθ from N finite samples.

3.1 Maximum Likelihood Estimation

With the assumption of white noise(Σ = σ2I), the parameter vectorθ that minimizesJ(θ) also minimizes

L(θ) = ‖y − s(θ)‖2 ,

= ‖ε‖2 . (15)



Equation (15) is the squared norm of the difference between the measurement and the signal model. Note
that the constant term due to the noise variance is ignored since it does not impact the minimization of
J(θ). For the chosen model ofs(n), the estimation of the parameter vectorθ is a highly nonlinear process.
However, the minimization of Equation (15) can be achieved by the method of least-squares (LS) ifω0 and
q are assumed known. In practice, a grid search over candidateω is performed. For a candidateω and a
fixed q, the cartesian amplitude estimates are found by

{û(ω), v̂(ω)} = arg min
{u,v}

‖y −C(ω)u− S(ω)v‖2 . (16)

The LS solutions to Equation (16) can be decoupled and obtained by

û =
(
CTC

)−1
CTy,

v̂ =
(
STS

)−1
STy, (17)

where the dependance on the frequency has been suppressed to simplify the notation. Givenû andv̂, the
amplitude estimates{α̂k} and phase estimates{φ̂k} are found using Equation (2).

It is straightforward to show that the productATA must be block diagonal to ensure exact decoupling of
the amplitude estimates. Diagonality is guaranteed by defining the phase of the candidate signal at the
center of the observation window. Otherwise, the above product is approximately block diagonal for large
data lengths. As noted in [2], there is a computational benefit from decoupling the amplitude estimates.
AssumingN À q, the complexity of computing the LS estimates in Equation (17) isO(2Nq2). The
complexity more than doubles without decoupling.

Using the LS amplitude estimates of Equation (17), the loss function for fundamental frequency estimates
(FFEs) is given by

L(ω) = ‖y −Cû− Sv̂‖2 ,

=
∥∥y −C(CTC)−1CTy − S(STS)−1STy

∥∥2
,

=
∥∥y −A(AA)−1ATy

∥∥2
,

= yTP⊥y, (18)

whereP⊥ = I −A(ATA)−1AT = I − P projects the observation into the null space ofA. Finally, the
maximum likelihood (ML) FFE is given by

ω̂0 = arg min
ω

L(ω),

= arg min
ω

yTP⊥y. (19)

This minimization procedure is also known as the nonlinear least-squares (NLS) method. In determining
ω̂0, the estimator attempts to minimize (maximize) the energy in the null space (column space) ofA. Al-
though there are2q + 1 free parameters, the NLS method reduces the parameter search to a1-dimensional
(1-D) search. Oncêω0 has been computed, the ML cartesian amplitude estimates are simply given by
Equation (17).

Now, an approximation to the NLS method is considered. For large sample lengths (i.e., N → ∞) the
approximationsCTC ≈ N

2 Iq andSTS ≈ N
2 Iq, whereIm is the (m × m) identity matrix, are made.



Therefore, the loss function of Equation (18) can be approximated by

L(ω) ≈
∥∥∥∥y −

2
N

CCTy − 2
N

SSTy
∥∥∥∥

2

,

=
∥∥∥∥
(
I− 2

N
AAT

)
y
∥∥∥∥

2

. (20)

The FFEs from the minimization of Equation (20) for finite data lengths are not ML, but are however
asymptotically efficient in data length. Furthermore, the approximation to the ML FFE provides compu-
tational savings whenq > 2. The complexity of Equation (18) isO(2Nq2), whereas the complexity of
Equation (20) isO(4Nq).

As demonstrated by [11] for complex sinusoids and [12] for real sinusoids, the NLS method still gives
consistent, although no longer ML, parameter estimates in colored Gaussian noise without the pre-whitening
step. However, the order selection methods used here, as discussed below, require the noise be uncorrelated.
Therefore, pre-whitening is a necessary step in the proposed algorithm.

3.2 Craḿer-Rao Bounds

The Craḿer-Rao lower bound (CRLB) provides a good comparison tool for evaluating estimator perfor-
mance. The CRLBs, which bound the minimum achievable variance of unbiased estimators, have been well
developed for harmonic retrieval problems in white [2, 13, 14], and correlated [2, 11, 15] Gaussian noise.
The CRLBs for frequency coupled harmonics are developed in [2] and [14]. The CRLBs of coupled har-
monics are also given here. The finite- and large-sample (asN → ∞) CRLBs are developed in Appendix
A of [16]. The large-sample Craḿer-Rao lower bounds for unbiased estimators of the amplitudes, phases,
and FF are [2]

σ2
∞(α̂k) =

2σ2
k

N
, (21)

σ2
∞(φ̂k) =

2σ2
k

Nα2
k

, (22)

σ2
∞(ω̂0) =

12
N3

(
q∑

k=1

k2α2
k

2σ2
k

)−1

. (23)

In the case of white noise,σ2
k = σ2. For colored noise, the local variance is given byσ2

k = |H(ejkω0)|2σ2,
whereH(ejω) = |A(ejω)|−1∠A(e−jω).

The finite-sample CRLB for an individual parameter is denoted byσ2
N (·). The reason for usingσ2∞ in this

work is twofold: σ2∞ is easier to compute thanσ2
N , andσ2∞ approximatesσ2

N well when the minimum fre-
quency separation is sufficiently large [13]. The minimum frequency separation for multi-harmonic models
is ωmin > 2π/N [13]. For the coupled harmonic model, the critical value bounds the minimum resolvable
FF.
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Figure 2: Loss function for a noiseless signal and the system order set to (a)r = 2 (under-set order) and
(b) r = 5 (correct order) in estimating the FF. The actual number of harmonics isq = 5 with ω0 = 0.1
radians/sample and uniform harmonic signal amplitudes.

3.3 Loss Function Characteristics

The frequency estimate defined in Equation (19) is derived under the assumptionq is known. If the true
number of harmonic lines is not known, FFEs can be highly biased if the number of columns,r, in Equa-
tion (5) is set incorrectly (i.e., r 6= q). Here,r is referred to as the system order. The loss function defined
by Equation (18) is multi-modal. This property of the loss function gives rise to biased frequency estimates
when the system order is incorrect. Two examples that follow demonstrate this behavior.

Figure 2 shows two plots for the loss function of the frequency estimates of a noiseless signal. The true FF is
ω0 = 0.1 radians/sample and the true number of harmonics isq = 5. Also, the amplitudes of the harmonics
are set to unity and the phases are random. The simulated signals are generated from a 1 second window
with N = 512 samples. The loss function values for candidate frequencies at0.1 and0.2 radians/sample
are nearly equal when the system order is set tor = 2, as shown in Figure 2(a). In the presence of noise, the
global minimum of the loss function may well be2ω0 for this case. As a result, Equation (18) could give
highly biased FFEs. If the number of harmonics in the signal is known, then Figure 2(b) is representative of
the expected loss function for candidate frequencies. Here, the global minimum corresponds to the correct
FF. A similar situation occurs for other amplitude models [16]. As demonstrated in [16], the global minimum
may correspond toω0/2 for an over-set system order.

The frequency estimates using Equation (18), when biased, are multiples of the true FF for sufficiently high
SNR and frequency resolution. Conditions for the frequency resolution are discussed below. For the coupled
harmonic model, the initial estimates are given by the NLS solution for a reasonable choice ofr. Then, an
accurate estimate of the true FF can be determined by the use of order estimates.

As determined by [13], harmonics embedded in noise can be estimated very accurately given good initial
estimates. This is evident in the deep, narrow troughs in Figure 2. This also suggests that a rather fine search



grid is required to ensure a candidate frequency lands in a trough of the loss function. So, it is of interest to
determine an adequate frequency resolution. In what follows is a rudimentary guide to determine a suitable
frequency search grid spacing.

To simplify the analysis, it is assumed the coupled harmonics have unit amplitudes andq is known. Due
to sampling with a finite length window, each harmonic has an associated spectrum. For a rectangular
window, each harmonic will have asin(ωN/2)/ sin(ω/2) spectrum centered at the harmonic frequency.
Consequently, each spectrum has a corresponding main beam in which most of the energy is located. The
width of the main beam is defined here using the beamwidth between the first nulls (BWBN). The BWBN
for the spectrum of a rectangular window is4π/N .

When the candidate FF is offset from the actual FF byδω, the spectrum of thekth candidate harmonic is
shifted in frequency bykδω from that of thekth true harmonic. Whenkδω = 2π/N , thekth candidate
spectrum is orthogonal to the spectrums of the true harmonic frequencies (C(ω0)TC(ω0 + 2π/kN)k = 0
andS(ω0)TS(ω0 + 2π/kN)k = 0, whereC(ω)k andS(ω)k are thekth columns ofC(ω) andS(ω),
respectively). Consequently, no energy from thekth candidate harmonic contributes in minimizing the NLS
loss function. In addition, orthogonality for thekth harmonic also holds whenδω is an integer multiple of
2π/kN . So for example, whenq is even andδω = 4π/qN , the spectrums of the middle and last candidate
harmonics are orthogonal to each of those in the true signal. Incidentally, whenδω = 4π/qN , the spectral
main lobes from the last candidate and true harmonic no longer overlap. It follows that the loss function
evaluated at candidate frequencies in the vicinity of the true fundamental with increasing offset in the range
2π/qN < δω < 4π/qN will take on increasingly large values. As a result, the suggested frequency search
grid spacing is∆ω = BWBN/2q.

3.4 Comments

Dommermuth [6] proposed a loss function that averages the squared errors over possibly non-overlapping
time windows. However, time averaging may increase estimate variances because of the large sample re-
quirements for the NLS method and the increased potential for model mismatches. A similar but alternate
method could be used in sensor array applications. Instead of averagingL(ω) over data blocks, the loss
function can be averaged over sensors. It should be noted that this alternative averaging approach assumes
parameter estimation is done prior to beamforming.

4. Model Order Selection

In general, the number of significant harmonics is unknown. Therefore, it is of interest to use the model
order information to properly choose the correct FF. Several standard order selection techniques are well
suited to this task. These methods include Akaike’s information criterion (AIC), Rissanen’s minimum de-
scription length (MDL), and maximuma posteriori probability (MAP) [17]. AIC and MDL are derived
from Information Theoretic Criterion (ITC), whereas MAP is derived from asymptotic Bayesian decision
theory. Each method has a similar form with a data term and a penalty term. The penalty term accounts for
the reduced fit error when the model order is overestimated. For sinusoidal summation models, the order



selection criteria have the form [18]

q̂AIC = arg min
r

{
N lnJ(θ̂) + 3r

}
, (24)

q̂MDL = arg min
r

{
N lnJ(θ̂) +

3r

2
ln N

}
, (25)

q̂MAP = arg min
r

{
N lnJ(θ̂) +

5r

2
ln N

}
, (26)

whereJ(θ) is the negative log-likelihood function evaluated at the ML parameter vectorθ̂ and q̂ is the
estimate of the number of sinusoids. Each respective method is denoted by the corresponding subscript.
The number of free parameters in this case is3q. However, the coupled harmonic model has2q + 1 free
parameters. The MAP criterion penalizes each unknown amplitude and phase parameter by1

2 lnN and each
unknown frequency by32 ln N [17]. As a result, the order selection criteria for the coupled harmonic model
are

q̂AIC = arg min
r

{
N ln J(θ̂) + 2r + 1

}
= arg min

r

{
N lnJ(θ̂) + 2r

}
, (27)

q̂MDL = arg min
r

{
N ln J(θ̂) +

2r + 1
2

ln N

}
= arg min

r

{
N ln J(θ̂) + r ln N

}
, (28)

q̂MAP = arg min
r

{
N ln J(θ̂) +

2r + 3
2

ln N

}
= arg min

r

{
N ln J(θ̂) + r ln N

}
, (29)

whereJ(θ) is defined by Equation (14). The second equality in the three equations above are obtained by
removing terms that do not depend onr. Note that the MDL and MAP criteria are equivalent. They they
differ from AIC by a factor of12 ln N in the second term. The second term penalizes large model orders, so
in general AIC tends to give higher model orders than MDL.

The above decision rules were developed under a white Gaussian noise assumption. Another selection rule,
proposed by Wang in [19], for the colored noise case has the form

q̂COL = arg min
r

{
N lnJ(θ̂) +

cr

2
ln N

}
, (30)

wherec is a constant greater than a thresholdγ, which depends on the characteristics of the noise.

It was noted in [17] that Equation (30) can give inconsistent estimates based on the choice ofc. In addition, it
was determined in [20] that AIC produces inconsistent estimates and tends to overestimate the model order,
whereas MDL yields consistent estimates for large sample records. Due to the consistency of MDL, it is the
preferred order selection method considered here. The rule proposed by Wang is not examined further, but
is a possible extension of this work.

The combined detection-estimation algorithm for coupled harmonics has the form

{θ̂, q̂} = arg min
{θ,r}

{N ln J(θ) + r lnN} ,

= arg min
{θ,r}

{N ln L(θ) + r ln N} , (31)

where the MDL criteria represents the detection component andL(θ), given by Equation (15), represents
the estimation component. Since the estimation component can be reduced to a 1-D search it follows that



the combined algorithm can be reduced to a 2-D search. Thus, combining Equation (18) with Equation (31)
the FF and order estimates are found by

{ω̂0, q̂} = arg min
{ω,r}

N ln(yTP⊥y) + r lnN,

= arg min
{ω,r}

h(ω, r). (32)

Then, the amplitude estimates are generated using Equation (17) with the estimatesω̂0 andq̂. Whenq̂ = q,
ω̂0 is the MLE. Otherwise, when̂q 6= q, Equation (32) can still be used to generate statistically efficient
FFEs (i.e., var(̂ω0) = σ2∞(ω0)), as it will be shown through simulations. In the case of colored noise,y is
simply replaced bỹy in Equation (32).

4.1 Proposed Algorithm

It is important to estimate both the parameter set and model order together. Since the order selection methods
depend on the parameter estimates, the order estimates may be highly biased when the FF estimates are
biased. This frequency-order dependence is evident in Figure 3. The simulated signal is composed ofq = 7
harmonics withω0 = 0.1 radians/sample. The SNR, defined asρ = αT α/2σ2, of the simulated white noise
is set toρ = 3dB. Each curve in Figure 3 represents the loss function defined by Equation (32) evaluated
at a fixed frequency (preciselyω0/3, ω0/2, ω0, 2ω0, 3ω0) for a range ofr ∈ [2, min(32, rnyq)], where
rnyq < bπ/ωc satisfies the Nyquist criterion. As seen in Figure 3, the global minimum corresponds to the
correct FF and order. Notice that the minimum of the loss function for a frequency other than the correct
FF does not correspond to the correct order. Also apparent in Figure 3 is that the loss function evaluated at
ω0 has a range ofr such that, although not the global minimum, the function is less than the minimum at
candidate frequencies at the same order.

In practice, the procedure of Equation (32) requires a fine grid search over frequency and all possible integer
orders. This approach is computationally burdensome. However, it is possible to find the global minimum
with a reduced search grid. Recall the general pattern of the loss function versus frequency (no order
selection). As seen in Figure 2, deep, narrow troughs occur at the FF, sub- and super-harmonics. As noted
previously, this suggests that these frequencies, although not necessarily the true FF, can be estimated with
a high degree of accuracy. Withr properly set, an initial FF estimate, denotedω̂i, will likely correspond to
the true FF or multiple thereof. A reduced frequency search set can be defined using the initial frequency
estimate (e.g., ω ∈ {ω̂i/2, ω̂i, 2ω̂i, 3ω̂i}). Then, the loss function can be minimized over the new frequency
set and model order. This initialization and the combined order selection/estimation is the basis behind the
algorithms proposed in this paper. The first algorithm is detailed in Table 1. The algorithm is referred to as
the NLS-MDL method. The algorithm is basically a two stage procedure: first, generate an initial FFE, and,
second, generate the order and parameter vector estimates.

It is assumed that the signals are anti-alias filtered and any DC bias is removed. Therefore, the harmonics
must satisfykω0 ∈ (0, π) for k ∈ {1, . . . , q}. This requirement bounds above the model order corresponding
to each FF. However, high orders are possible for lower fundamental frequencies. Therefore, order searches
for lower frequencies require more computations than for higher frequencies. In general, the frequency and
order search regions would normally be confined by prior knowledge. For example, the frequency search
region for the simulations in this work is uniformly confined tof ∈ Λf = [2, 25] Hz, which is a relaxed
region based on prior knowledge on battlefield acoustics [1]. It has also been determined that a sampling
rate on the order of 0.5-1 kHz is sufficient [1, 9] for most acoustic vehicle detection and classification
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applications. On the other hand, order estimates presented here are upper bounded by the criterionrub =
min(rmax, rnyq), wherermax is chosen to minimize computations and as a practical limit. Alternatively,
to employ lessad hoc means, methods such as those proposed by [18] could be implemented to bound the
order search region.

The initial estimates in Steps 2 and 3 are generated using likely over-set system orders. Assumingrmax

is set properly, over-setting the system order ensures that initial FFEs have minimal variance and the mean
corresponds to the true FF or a sub-harmonic. Then, any large FFE bias is removed using order selection,
hence the procedure in Step 5.

Table 1: Summary of the NLS-MDL Algorithm.

1. Pre-whiten the samples if the noise is correlated using the known AR model byỹ(n) = A(z)y(n).
2. Obtain an initial estimate,̃ωi, of the FF using Equation (18) with a fine frequency search grid

from Λω andr set torub.
3. Compute a refined initial estimate,ω̂i, using an optimization technique (e.g., fminbnd in MATLAB),

Equation (18), andr set torub.
4. Create a new frequency search set from the refined estimate:

Λωi = {ω = αω̂i|α ∈ {1/b} ∪ {b}, b ∈ Z} ⊂ Λω.
5. Minimize Equation (32) overΛωi and candidate orders inΛr = {2, 3, . . . , rub} to getω̂0 andq̂.
6. Finally, use Equations (17) and (2) witĥω0 andq̂ to get estimateŝα andφ̂.
7. Remove the effects of pre-whitening from̂α andφ̂. If the noise is white, skip Steps 1 and 7.



A second algorithm, referred to as ANLS-MDL, utilizes the approximated NLS method of Equation (20).
The ANLS-MDL algorithm substitutes Equation (20) for (18) in Step 3 of the NLS-MDL algorithm. Also,
Equation (20) is combined with Equation (31), which is then substituted for Equation (32) in Step 5. It
was determined empirically that the estimate variance of ANLS-MDL is improved by repeating Step 3 with
Equation (20) andr = q̂ after Step 5. Repeating Step 3 after Step 5 for NLS-MDL does not provide any
noticeable improvement.

5. Numerical Results

5.1 Synthetic Data Results

The following are numerical examples that demonstrate statistical properties of the combined detection-
estimation algorithm. This study compares the NLS-MDL algorithm with ANLS-MDL and NLS with
known or fixed order. The algorithms are examined with simulated correlated Gaussian noise. Results
for simulations with white noise are presented in [16].

First, the performance of each algorithm is tested against the large-sample Cramér-Rao lower bounds of
Equations (21)-(23) on estimate variances versus SNR. Then, the algorithms are compared against the
CRLBs as the true number of harmonics vary. Comparisons are made between the estimate RMSEs and
the corresponding large-sample root-CRLBs (i.e.,

√
σ2∞(ω̂0)). The root-CRLBs will simply be referred to

as the CRLBs.

The simulation parameters common to the simulations are as follows:

• The sampling periodT is set to 1/512 s.

• The FF isω0 = 0.1 radians/sample.

• One amplitude model is examined:1/
√

ω. A uniform amplitude model is also considered in [16].

• The phases are set toφk = kπ/100.

• The maximum order in the search range is set torub = min(32, bπ/ωc).
• The frequency search range is set toω ∈ Λω = [π/128, 25π/256] radians/sample ([2,25] Hz) with a

frequency resolution ofπ/8N radians/sample (1/8 Hz).

• The simulation results are generated from 500 Monte-Carlo simulations.

5.1.1 Algorithm Performance versus SNR in Colored Noise

In this section, NLS-MDL and ANLS-MDL are compared with NLS with the correct order (i.e., r = q).
The NLS method withr = q will simply be referred to as NLS. The CRLBs in this case are calculated using
Equations (21)-(23) with the local noise variance defined asσ2

k = |H(ejkω0)|2σ2. The following results are
generated using pre-whitening in Step 1 of the NLS-MDL and ANLS-MDL algorithms.
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Figure 4: Magnitude (top) and phase (bottom) response of the coloring filter,H(ejω).

The noise is generated by filtering zero-mean, unit variance Gaussian noise with a fifth order AR coloring
filter given by

H(z) ≈ 1
1− 2.0z−1 + 1.57z−2 − 0.28z−3 − 0.36z−4 + 0.23z−5

, (33)

and then scaled byσ = (αT α/2ρσ2
AR)1/2 to achieve the desired SNR. The choice of this model is based

on measurements collected at Aberdeen Proving Grounds (APG). The lowpass filter represented by Equa-
tion (33) is specific to the local environment at the time in which the measurements were recorded. However,
a model needed to be adopted for these simulations. An extension of this work may include a performance
analysis with the use of bandpass and/or highpass coloring filters. The frequency response of the coloring
filter of Equation (33) is plotted in Figure 4.

For the1/
√

ω amplitude model, the absolute value of bias and the RMSE of the frequency estimates are
plotted in Figures 5(a) and (b). The RMSEs of the amplitudes and phases for the first harmonic are plotted
in Figures 5(c) and (d), respectively. In each figure of estimate RMSE the results are shown with the
corresponding root-CRLB.

As seen from Figure 5, the RMSEs from each algorithm correspond well with the CRLB for a large range
of SNRs. The estimation accuracy of the NLS-MDL and ANLS-MDL algorithms degrades rapidly below 4
dB SNR. The performance of the NLS algorithm does not diverge from the CRLB for decreasing SNR until
approximately 0 dB. Note that number of harmonics of NLS is set to the correct number. It follows that
the loss in performance of the NLS-MDL and ANLS-MDL between 0 and 4 dB SNR is mainly due to the
uncertainty in the unknown number of harmonics.

The 4 dB SNR threshold for the NLS-MDL and ANLS-MDL methods is the same for a uniform amplitude
model and is slightly higher than the threshold in the white noise case [16]. On the other hand, fewer than
1% of the FFEs from NLS-MDL and ANLS-MDL constitute outlying estimates at 0 dB SNR. As shown
in [16], the outlying FFEs correspond to outlying order estimates.
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Figure 5: Parameter estimate results for the 1/
√

ω amplitude model versus SNR in correlated noise: FFE
(a) bias and (b) RMSE, along with (c) amplitude and (d) phase estimate RMSEs for the1st harmonic. The
estimates are generated using (+) NLS-MDL, (◦) ANLS-MDL, and (/) NLS with r = q. The RMSEs are
plotted against the corresponding (-) root-CRLBs.
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ω amplitude model versus the true number of harmonics in correlated
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The RMSEs for the higher harmonics (i.e., α̂k and φ̂k, for k = {5, 10}), given in [16], are shown to
behavior similar to the RMSEs in Figures 5(c) and (d). Also, although the FFE bias evident in Figure 5(a)
is insignificant compared to the true value, it is shown in [16] that the bias decreases with increasing data
length.

5.1.2 Algorithm Performance versus the Number of Harmonics in Colored Noise

Now, the performance is compared to the CRLBs as a function of the true number of harmonics in colored
noise. The number of harmonics considered isq ∈ [2, 30] in increments of 2. The orders of the NLS method
are fixed atr = 10 and 16. The data length is set toN = 256. The noise variance is adjusted as described
in Section 5.1.1 for a desired SNR ofρ = 10 dB.

The bias and RMSE of the FFEs are plotted in Figures 6(a) and (b), respectively. From Figure 6(b), it is
observed that RMSEs of the NLS-MDL and ANLS-MDL methods correspond well with the CRLB when
q ≥ 8. However, only16.8% of the FFEs from ANLS-MDL and3.4% from NLS-MDL are close toω0/4
whenq = 6. Again, the outlying FFEs, which attribute to the increased RMSE, correspond to outlying order
estimates. These percentages are improved compared to the white noise case and worse than those in the
uniform amplitude case [16].

The NLS methods with fixed orders only perform well over a small range ofq. The estimate variances
coincide with the CRLBs only in the ranges6 ≤ q ≤ 10 for NLS with r = 10 and10 ≤ q ≤ 16 for NLS
with r = 16. Outside these ranges, the estimates become biased toward sub- and super-harmonics. This
suggests that the performance of the NLS method is comparable to the CRLB as long as the fixed order is
in the rangeq ≤ r < 2q.



5.2 Field Measurement Data

The following example is a comparison between the STFT and parameter and order estimates using ANLS-
MDL from measured data. The field data consists of noise due to the local environment and a single source
generating coupled harmonics and un-modeled broadband energy. The source is a heavy-tracked battlefield
vehicle. The data was collected at APG, as part of the U.S. Army Research Laboratory’s ATR acoustic
database, using a seven-sensor, circular microphone array.

The data was recorded atT = 1/1024 seconds/sample. The noise is assumed to be stationary and is
modeled as a fifth-order (p = 5) AR process. The AR parameters are generated using the first 10 seconds
(M = 10 240 samples) of data using the least-squares method given in [10]. The data length for the STFT
is N = 1024, whereas the data length for ANLS-MDL isN = 512. Non-overlapping rectangular windows
are used for both the STFT and ANLS-MDL. The frequency and order search regions are the same as those
itemized in Section 5.1. In contrast, the minimum allowable order is set tormin = 0. The frequency loss
function is averaged using data from all seven sensors, as briefly discussed in Section 3.4. Consequently,
amplitude and phase estimates are generated from each sensor’s data. However, only the results from Sensor
1 are presented.

The STFT of the raw data from Sensor 1 is represented by a spectrogram in Figure 7(a). In Figure 7(b),
the harmonic frequency estimates from each half-second data block are plotted along the vertical axis. The
horizontal axis represents the progression of time. The relative amplitudes of the spectral data are scaled in
decibels.

Up to approximately 200 seconds, ANLS-MDL estimates, for the most part, that there is no harmonic signal.
Beyond 200 seconds, it appears the ANLS-MDL frequency and amplitude estimates are well-related to the
measured harmonic source. The range of the source from the sensor array at 200 seconds is approximately
1 km. The closest point of approach (CPA) of the source occurs at 380 seconds. The estimates from ANLS-
MDL also appear to improve up to and beyond the CPA.

The parameters are generated using independent half-second blocks of data. Although the parameter esti-
mates are independent from block to block, there is an obvious continuity in the low to mid-range harmonics
over time, as seen in Figure 7(b).

Using a CLEAN type approach, the signal estimates are subtracted from the whitened data, resulting in the
residual signal. The spectrogram for the residual data is shown in Figure 8. As seen in the figure, most of
the remaining energy corresponds to un-modeled broadband energy and a pair of possibly coupled harmonic
lines.
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Figure 7: Spectrogram (a) and harmonic line estimates (b) of the acoustic signature from a single heavy-
tracked vehicle.
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Figure 8: Spectrogram of the residual whitened signal.

6. Conclusions

Two algorithms have been introduced which combine parameter estimation and order selection for coupled
harmonic signals in Gaussian noise. These methods and the standard NLS method with a fixed order were
evaluated in numeric simulations. The NLS method withr = q corresponds to the maximum likelihood
estimator. However, NLS with order selection (i.e., NLS-MDL) exhibits only slight loss in performance
compared to the MLEs, and at the expense of computational complexity. The loss in performance is ac-
credited to the uncertainty in the true number of harmonics. However, the performance differences quickly
diminish with increasing SNR and data length. Additionally, the ANLS-MDL method offers similar perfor-
mance to NLS-MDL with fewer computations.

Each algorithm has an associated SNR and sample length thresholds (data length thresholds are shown
in [16] to beN > 256 for ρ = 0 dB). For sufficient SNR and data length, the NLS method provides
statistically efficient estimates when the number of harmonics is known. However, when the number of
harmonics is not known, but the system order is fixed, the NLS method still provides statistically efficient
estimates providedq ≤ r < 2q. Also, when the number of harmonics is not known, the proposed algorithms
provide statistically efficient estimates for sufficient SNR, data length, and harmonic lines. In battlefield
acoustics, the number of harmonics is generally not known and the number can vary, as seen in Figures 1
and 7.

In conclusion, the proposed algorithms are efficient methods that can be used to extract features, such as
the FF or phase parameters, of single sources generating coupled harmonics. These features are useful in
target classification [1] or in DOA estimation. In addition, these algorithms can also be used to initialize
and periodically update algorithms designed to track time-varying parameters, which generally require prior
knowledge of the number of parameters to track. In the case of multiple sources, these algorithms can be
combined with beamforming to temporally and spatially separate targets.
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