
SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, JULY 2003 1

Three-dimensional Surface Reconstruction from

Multistatic SAR Images

Brian D. Rigling and Randolph L. Moses

Abstract

This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic SAR images. Techniques

for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and

stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR.

We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and from this

framework, we suggest a metric for use in planning strategic deployment of multistatic assets.
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I. Introduction

Recent developments in unmanned aerial vehicle (UAV) technology is spurring new interest in the fields of bistatic

and multistatic synthetic aperture radar (SAR) [1–8]. A low cost UAV may be teamed with a high-power transmitter at

a safe standoff distance to conduct passive ground surveillance using bistatic SAR. Receiving platforms may also exploit

illuminators of opportunity including overpassing satellites and local commercial broadcasters.

Several authors have considered bistatic SAR image formation (see, e.g., [9–12]). Soumekh [11, 13] suggests using

multiple receiving platforms with a single transmitting platform to form a multistatic system. A multistatic system can

be used to form a set of bistatic images. Additionally, the multiple bistatic images can be coherently or incoherently

combined to form a three-dimensional reconstruction of the imaged scene.

Earlier works involving multiple monostatic apertures have illustrated methods for height estimation, including

interferometric SAR [14–16] and stereo SAR [17, 18]. Interferometric SAR typically involves coherent processing of a

pair of images formed from data collected by two separate antennas on the same data collection platform, and has

proven to be effective at forming topological ground maps of smoothly varying terrain. However, at coarse resolution,

it typically lacks the height estimation accuracy necessary for three-dimensional reconstruction of targets of interest.

Stereo SAR requires two or more images formed by platforms separated in aspect angle. Height estimates are obtained

by measuring the lay over differences between the images [19,20]. As we will show, monostatic stereo techniques can be

generalized for application to images created by a multistatic system, incorporating multiple transmitting and receiving
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Fig. 1. Top view of a bistatic data collection geometry. The x-y plane is the ground plane.

platforms, and interferometric techniques may be applied to a pair of bistatic SAR images, formed by a receiver equipped

with two or more antennas.

This paper develops the theory required for performing three-dimensional surface reconstruction using a multistatic

SAR system. We derive the theory necessary for interferometric processing of two bistatic SAR images to obtain height

estimates, and we propose an algorithm which implements stereo processing of two or more bistatic images. Our results

generalize existing monostatic SAR algorithms. We provide a framework for predicting the performance of the stereo

SAR algorithm, and based on this framework, we propose strategies for coordinating the receiving platforms used in a

multistatic system.

An outline of the paper is as follows. In Section II, we state our model for bistatic phase history data collection

and bistatic SAR image formation. Based on these models, we illustrate how three-dimensional point scatterers are

projected into a two-dimensional bistatic SAR image. This projection is commonly known as lay over. In Section III,

we derive and demonstrate interferometric processing of a pair of registered bistatic SAR images. In Section IV, we

generalize monostatic stereo SAR processing to develop an algorithm which estimates the heights of surfaces in a scene,

based on the difference in lay over between two bistatic images formed at different look angles. In Section V, we extend

the stereo SAR concept to consider more than two bistatic apertures, and we provide a framework for predicting the

performance of this algorithm. Our performance prediction framework allows us to suggest strategies for coordinating

multistatic SAR systems. Finally, in Section VI, we state our conclusions and outline areas of future work.

II. Bistatic Phase History Data

Consider the bistatic SAR data collection geometry shown in Figure 1. The center of the scene to be imaged is

located at the origin of coordinates, and the ground plane is the x-y plane. A scatterer within that scene is located at

rm = (xm, ym, zm). At a given time τ , the location of the transmitter is rt(τ) = (xt(τ), yt(τ), zt(τ)), and the location of

the receiver is rr(τ) = (xr(τ), yr(τ), zr(τ)).
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As the transmitter moves along its flight path, the radiating antenna periodically transmits pulses of energy in

the direction of the scene center. We assume that transmitted pulses have uniform power over the frequency range

f ∈ [f0, f0 + B], where f0 and B represent the initial frequency and bandwidth of the transmitted pulse, respectively.

Each transmitted pulse travels from the transmitter to the scene of interest, where it is reflected by scatterers within

the area of illumination. Some of these reflected signals are observed by the antenna on the receiving platform, and are

recorded in the form of phase history data. We model this data in the frequency domain as the sum of the time-delayed

returns from all of the scatterers in the scene. This model [12] is written as

S(fi, τk) =
∑
m

Ame−j2πfi
∆Rm(τk)

c + w(fi, τk) (1)

where the sampled frequencies fi are spaced over [f0, f0 + B], and the sampled times τi are spaced over [−T/2, T/2].

The signal is corrupted by white Gaussian noise, represented by w(fi, τk). The complex scattering coefficient of the

mth scattering center is represented by Am. The time delay of the response from the mth scattering center is equal to

the bistatic differential range of that scatterer ∆Rm(τk) divided by the speed of light c. In the far-field, the bistatic

differential range is well approximated [12] by

∆Rm(τk) ≈ −xm cos φt(τk) cos θt(τk)− ym sin φt(τk) cos θt(τk)− zm sin θt(τk)

−xm cos φr(τk) cos θr(τk)− ym sin φr(τk) cos θr(τk)− zm sin θr(τk) (2)

where the variables φt(τ) and φr(τ) (θt(τ) and θr(τ)) denote the azimuth (elevation) angles of the transmitter and

receiver, with respect to the scene center at slow time τ .

Based on (1) and (2), one may form an image by assuming a scatterer is located at the center of each pixel and then

independently calculating the maximum likelihood estimate of each scatterer’s reflectivity. Thus, a ground plane image

(z = 0) may be formed by applying the matched filter

P (x, y) =
1

NfNτ

Nf∑

i=1

Nτ∑

k=1

S(fi, τk)

·e−j
2πfi

c [x(cos φt(τk) cos θt(τk)+cos φr(τk) cos θr(τk))+y(sin φt(τk) cos θt(τk)+sin φr(τk) cos θr(τk))] (3)

to the phase history data for each (x, y) pixel location.

We remark that the differential range in (2) is subject to errors caused by mis-measurement of the transmitter and

receiver positions. We assume that the phase errors induced by these discrepancies, as well as phase errors from other

sources, may be corrected to within a linear phase function, resulting in an unknown shift (x̃, ỹ) of the final image.

Techniques for correcting bistatic motion measurement errors are described in [21,22].

In (1) and (2), the (x, y, z) location of each scatterer is encoded in the observed differential range ∆Rm(τ) of that

scatterer. However, the matched filter (3) used in image formation assumes that all scatterers lie on the ground plane,

thus implying that a projection takes place in the image formation process. To understand the nature of this projection,

we will apply further approximations to our expression for the bistatic differential range. We first assume that the ground
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range and slant range of the transmitter, rt =
√

xt(τ)2 + yt(τ)2 and Rt =
√

xt(τ)2 + yt(τ)2 + zt(τ)2, are sufficiently

large such that they may be treated as constants with respect to slow time τ . We make the same assumption about

the ground range and slant range of the receiver, rr =
√

xr(τ)2 + yr(τ)2 and Rr =
√

xr(τ)2 + yr(τ)2 + zr(τ)2. Finally,

we assume that the transmitter and receiver fly linear flight paths at constant velocities and constant altitudes. The

locations of the transmitter and receiver at their aperture midpoints are given by (x̄t, ȳt, z̄t) and (x̄r, ȳr, z̄r), and the

transmitter and receiver velocity vectors are (vxt, vyt, vzt) and (vxr, vyr, vzr). Thus, we may approximate cos φt(τk) with

(x̄t + vxtτ)/rt, cos θt(τk) with rt/Rt, etc.. This allows the approximate differential range function in (2) to be further

approximated by a linear function of slow time

∆Rm(τk) ≈ −xm
x̄t + vxtτ

rt

rt

Rt
− ym

ȳt + vytτ

rt

rt

Rt
− zm

z̄t + vztτk

Rt

−xm
x̄r + vxrτ

rr

rr

Rr
− ym

ȳr + vyrτ

rr

rr

Rr
− zm

z̄r + vzrτk

Rr

= −
[
xm

(
x̄t

Rt
+

x̄r

Rr

)
+ ym

(
ȳt

Rt
+

ȳr

Rr

)
+ zm

(
z̄t

Rt
+

z̄r

Rr

)]

−
[
xm

(
vxt

Rt
+

vxr

Rr

)
+ ym

(
vyt

Rt
+

vyr

Rr

)
+ zm

(
vzt

Rt
+

vzr

Rr

)]
τk

, −β0 − β1τk. (4)

Equation (4) describes a transformation which relates the linear approximation of the differential range ∆R(τ) =

−β0 − β1τ to the actual location of a scatterer in the scene. This transformation may be written as


 β0

β1


 =




x̄t

Rt
+ x̄r

Rr

ȳt

Rt
+ ȳr

Rr

z̄t

Rt
+ z̄r

Rr

vxt

Rt
+ vxr

Rr

vyt

Rt
+ vyr

Rr

vzt

Rt
+ vzr

Rr







xm

ym

zm




, Q




xm

ym

zm




. (5)

In contrast, the image formation process implicitly assumes that scatterers are located on the ground plane (z = 0), and

thus defines a transformation

 x̂m

ŷm


 =




x̄t

Rt
+ x̄r

Rr

ȳt

Rt
+ ȳr

Rr

vxt

Rt
+ vxr

Rr

vyt

Rt
+ vyr

Rr



−1 

 β0

β1


 , P


 β0

β1


 (6)

relating the linear approximation of the differential range to an (x, y) pixel location. It is at this approximate pixel

location (x̂m, ŷm) that a point response will appear, corresponding to the original scatterer located at (xm, ym, zm).

Thus, using (5) and (6), we define the linear operation that projects three-dimensional point scatterers into a 2-D image

as

 x̂m

ŷm


 = PQ




xm

ym

zm




. (7)

Note that if z̄t = z̄r = vzt = vzr = 0 then PQ = [I 0] and scatterers project vertically onto a ground plane image. The

SAR imaging phenomenon represented by the projection operation in (7) is commonly known as lay over. Equation

(7) forms the basis of both the interferometric and the stereo height estimation techniques developed in the next two

sections.
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III. Bistatic interferometric SAR

A. Theory

We now consider a bistatic interferometric system involving a transmitting platform and a single receiving platform

equipped with two physically separated receiving antennas. This allows formation of two coherent bistatic SAR images,

one from the phase history data from each receiving antenna. The differences between these two images, caused by the

physical separation of the receiving antennas, allows height estimation to be accomplished interferometrically. Given

the geometric configuration of the bistatic system, we can compute the projection matrices (18)-(19) for the two bistatic

apertures; then, the ideal lay over in each image due to a scatterer height of one meter is


 ∆xmi

∆ymi


 = PiQi




0

0

1




i = 1, 2.. (8)

To examine the effect of lay over on images formed via matched filtering, we first rewrite equation (3) as

P (x, y) =
1

NfNτ

Nf∑

i=1

Nτ∑

k=1

S(fi, τk)e−j
2πfi

c ∆Rxy(τk)

= e−j 2πfc
c ∆Rxy(τk) · 1

NfNτ

Nf∑

i=1

Nτ∑

k=1

S(fi, τk)e−j
2πδf (i−Nf /2)

c ∆Rxy(τk)

= e−j 2πfc
c ∆Rxy(τk)H(x, y) (9)

where we have factored out a constant phase shift corresponding to the center frequency fc of our collected data. The

spacing between frequency samples is given by δf , and the two-dimensional differential range function ∆Rxy(τk) is given

by equation (2) with zm = 0. The envelope of the imaged point scatterer is represented by H(x, y), and its phase is

given by exp{−j 2πfc

c ∆Rxy(τk)}.
We now make a narrow band assumption about our data, assuming that our frequency samples are close to the

center frequency fc = f0 + B/2 and that our samples in slow time are close to τ = 0. Using (4), (8), and (9), we may

then approximate the effect of lay over on each ground plane bistatic SAR image as

P ′1(x, y) ≈ H1(x− zm∆xm1, y − zm∆ym1) exp
{

j
2πfc

c
zm

[
∆xm1

(
x̄t

Rt
+

x̄r1

Rr1

)
+ ∆ym1

(
ȳt

Rt
+

ȳr1

Rr1

)]}
(10)

P ′2(x, y) ≈ H2(x− zm∆xm2, y − zm∆ym2) exp
{

j
2πfc

c
zm

[
∆xm2

(
x̄t

Rt
+

x̄r2

Rr2

)
+ ∆ym2

(
ȳt

Rt
+

ȳr2

Rr2

)]}
, (11)

where the response of the mth scatterer is assumed to be dominant at (x, y). Equations (10) and (11) show that the

principal effects of a non-zero height are to shift the envelope H(x, y) to the laid over position and to shift the image

phase at that position. Given a sufficiently small separation between the two receiving antennas, we now make the

following assumptions:

1. ∆xm1 −∆xm2 is small relative to the image resolution

2. ∆ym1 −∆ym2 is small relative to the image resolution
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3. H(x− zm∆xm1, y − zm∆ym1) = H1(x− zm∆xm1, y − zm∆ym1) = H2(x− zm∆xm2, y − zm∆ym2)

4. xr1 ≈ xr2, yr1 ≈ yr2 and Rr1 ≈ Rr2.

These assumption are analogous to those used in monostatic IFSAR. The product of the first image and the complex

conjugate of the second image may thus be approximated as

C(x, y) = P ′1(x, y)P ′2(x, y)

≈ |H(x, y)|2 exp
{

j
2π

λc
zm

[
(∆xm1 −∆xm2)

(
x̄t

Rt
+

x̄r1

Rr1

)
+ (∆ym1 −∆ym2)

(
ȳt

Rt
+

ȳr1

Rr1

)]}
, (12)

where λc = c/fc. Examining the phase of C(x, y)

∠C(x, y) =
2πzm

λc

[
(∆xm1 −∆xm2)

(
x̄t

Rt
+

x̄r1

Rr1

)
+ (∆ym1 −∆ym2)

(
ȳt

Rt
+

ȳr1

Rr1

)]
, (13)

we see that the height of the dominant scatterer in an imaged pixel may be estimated as

zm =
λc∠C(x, y)

2π

[
(∆xm1 −∆xm2)

(
x̄t

Rt
+

x̄r1

Rr1

)
+ (∆ym1 −∆ym2)

(
ȳt

Rt
+

ȳr1

Rr1

)]−1

. (14)

Thus, interferometric height estimates may be computed from two bistatic SAR images by computing the complex

product of (12), taking the phase of this product and inserting it into (14). The maximum and minimum unambiguous

heights may be calculated by substituting ∠C(x, y) = ±π into (14).

B. Algorithm

Interferometric SAR processing begins by forming two bistatic SAR images, one from each of the receive antennas.

These images may in general suffer from differing geo-location errors, thus requiring image registration to be applied

in post-processing. A constant false alarm rate detector [23] is then applied to both images. For each pixel whose

amplitude exceeds the detection threshold, the complex product of (12) is computed, and the phase resulting from this

product is used in (14) to compute a height estimate for a scatterer which has laid over into that pixel. Given a height

estimate, we may also estimate the true (x, y) location of a scatterer by removing the shift due to lay over using (7) and

(8). Specifically, if a scatterer is observed in the first image at [x̂m1 ŷm1]T and has estimated height ẑ
(m)
12 , then the

true (x, y) location of that scatterer may then be computed as


 x̂

(m)
12

ŷ
(m)
12


 =


 x̂m1

ŷm1


− P1Q1




0

0

ẑ
(m)
12




. (15)

This calculation is commonly known as ortho-rectificaion. Equation (15) represents a bistatic generalization of corre-

sponding monostatic orthorectication equations found in, e.g., [19, 20].

To demonstrate, we generated two images of a scene illuminated by a transmitter with a flight path centered on and

orthogonal to the positive x-axis. A simulated receiving platform was located at an azimuth angle of φr = −20◦ and

observed the scene at broadside with two antenna. The two receiving antenna were given a vertical separation of 10

meters. Figures 2a and 2b show the two bistatic images formed from each receiving antenna; their magnitudes are nearly
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Fig. 2. The transmitter aperture is centered at φt = 0◦. a) Image formed by a receiver with aperture centered at

φr1 = −20◦. b) An image with an identical envelope formed by a second receiver, displaced 10 meters vertically from

the first. c) Topographical image formed interferometrically from the two bistatic images. (d) True locations of the

simulated point scatterers. The parameters used to generate this example are given in Table I.

identical, in keeping with assumptions (A-1)–(A-4) above, and differences in their phases encode scatterer height. All of

the scattering centers shown were equal in amplitude, and they were scaled prior to addition of white Gaussian noise in

order to yield a peak signal-to-noise ratio (SNR) of 30 dB. The above algorithm was used to coherently process the two

images in Figures 2a and 2b to yield height estimates for each point scatterer in the scene. The parameters used in this

example are given in Table I. Fusing these height estimates with one of the original images yields the 3-D reconstruction

shown in Figure 2c. The true locations of the simulated point scatterers are shown in Figure 2d. Note that Figure 2c

gives height estimates only at the point scatterer locations, due to the pixel-by-pixel processing of IFSAR, and does not

give the surface effect that we will see in stereo processing.
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C. Performance

The accuracy of interferometric height estimates is typically predicted by assuming an uncertainty in the phase of

(12). Here, we assume that this uncertainty, written as

Var {∠C(x, y)} , σ2
ψ =

σ2

|C(x, y)|2 + σ2
s , (16)

is dependent on the sum of two components. The first term corresponds to the phase noise induced in each image by

the measurement noise represented in (1) by w(fi, τk) ∼ N(0, σ2). The second term σ2
s models the phase scintillation

observed in SAR images with slightly different look angles. It is expected that σ2
s will decrease as Fourier resolution

improves. This is based on the assumption that phase scintillation is caused by the interference of multiple scatterers

within a resolution cell. The RMS height estimation accuracy expected, given a phase uncertainty of σ2
ψ, is simply

σz =
λcσψ

2π

[
(∆xm1 −∆xm2)

(
x̄t

Rt
+

x̄r1

Rr1

)
+ (∆ym1 −∆ym2)

(
ȳt

Rt
+

ȳr1

Rr1

)]−1

. (17)

The images of Figures 2a and 2b contain point scatterers with a signal-to-noise ratio of 30 dB. For each pixel with

an SNR above 20 dB, we compared the estimated height of that pixel in Figure 2c to the actual scatterer height, yielding

an RMS height estimation accuracy of 30.6 centimeters. Inserting the parameters shown in Table I into equation (17)

predicts an accuracy of σz = 29.3 centimeters, where σ2
s has been assumed to be zero. In practice, both the simulated

and predicted performance would be worsened by the effects of scintillation.

TABLE I

Bistatic geometry parameters corresponding to Figure 2.

∆xm1 −∆xm2 -0.0613 cm

∆ym1 −∆ym2 0.0133 cm

(x̄t, ȳt, z̄t) (30 km, 0 km, 10 km)

(x̄r1, ȳr1, z̄r1) (7.5 km, -2.7 km, 3 km)

(x̄r2, ȳr2, z̄r2) (7.5 km, -2.7 km, 3.01 km)

λc 2.64 cm

σψ 0.081

IV. Stereo Height Estimation from Two Bistatic Apertures

A. Theory

We now consider a system wherein two receiving platforms, each with a single antenna, are teamed with a trans-

mitting platform. The first receiving platform traverses a linear flight path with (x̄r1, ȳr1, z̄r1) as its midpoint and
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(vxr1, vyr1, vzr1) as its velocity vector. Similarly, the flight path of the second receiving platform is defined by (x̄r2, ȳr2, z̄r2)

and (vxr2, vyr2, vzr2). Based on these parameters, we may define projection matrices for the first and second bistatic

apertures as

Qi =




x̄t

Rt
+ x̄ri

Rri

ȳt

Rt
+ ȳri

Rri

z̄t

Rt
+ z̄ri

Rri

vxt

Rt
+ vxri

Rri

vyt

Rt
+ vyri

Rri

vzt

Rt
+ vzri

Rri


 , i = 1, 2 (18)

and

Pi =




x̄t

Rt
+ x̄ri

Rri

ȳt

Rt
+ ȳri

Rri

vxt

Rt
+ vxri

Rri

vyt

Rt
+ vyri

Rri



−1

, i = 1, 2. (19)

Using (18–19), the locations of the mth scatterer in the scene as observed by the first and second receivers, respectively,

are


 x̂m1

ŷm1


 = P1Q1




xm

ym

zm




+


 x̃1

ỹ1


 (20)

and


 x̂m2

ŷm2


 = P2Q2




xm

ym

zm




+


 x̃2

ỹ2


 (21)

where the vectors [x̃1 ỹ1]T and [x̃2 ỹ2]T represent shifts in the imaged scene due to uncompensated motion measure-

ment and geo-location errors. We note that a scatterer at a non-zero height will project differently into the two 2-D

images formed from the two bistatic apertures, due to the difference in their lay over geometries and their individual

platform motion measurement errors. By measuring the difference in this projection, we may estimate a height for that

scatterer. We represent the lay over offset of the mth scatterer with

ûm =


 x̂m1

ŷm1


−


 x̂m2

ŷm2




= P1Q1




xm

ym

zm



− P2Q2




xm

ym

zm




+


 x̃1

ỹ1


−


 x̃2

ỹ2




= (P1Q1 − P2Q2)




0

0

zm




+ ũ12

, uzzm + ũ12 (22)

where ũ12 is the registration error induced between the two images due to their differing motion measurement errors.

Furthermore, we do not assume coherency of the image phases for the derivation below, and in practice, it would be

difficult, but not impossible, to maintain image phase coherence across two different platforms.
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From (22), we may compute a height estimate for the mth scattering center as

ẑ
(m)
12 =

uT
z ûm

‖uz‖2
=

uT
z (uzzm + ũ12)

‖uz‖2
= zm + z̃12. (23)

The lack of perfect geolocation prevents us from recovering an absolute estimate of zm. However, all of the scatterers in

the scene will suffer from the same height estimate offset z̃12. This implies that relative height measurements, between

two scattering centers, may still be meaningful. Given a point of reference with a known height, the offset z̃12 may be

removed to yield absolute height estimates for each scatterer in the scene.

B. Algorithm

We will now describe an algorithm for performing multistatic stereo SAR height estimation. This implementation

faces two impediments. First, it is possible that multiple scatterers of different heights may lay over into the same image

location, thus complicating one’s ability to make accurate observations. Second, scatterers observed in the two images

must be correctly associated, and adding to this difficulty, some scatterers may be visible in one image but not the other.

To circumvent these complications, we make the following assumptions.

(B-1) Scatterers lie on a surface h(x, y) that is smoothly varying, such that multiple scatterers do not lay over into

the same image location.

(B-2) This surface is locally flat.

(B-3) Multiple scatterers on a locally flat area of this surface may be correctly associated by cross-correlation of

sub-images extracted from the two bistatic images.

Our basic algorithm for multistatic SAR stereo height estimation is then as follows. Two bistatic SAR images are

formed on the same pixel grid. Given these two images, we first apply a constant false alarm rate detector [23] to the

first image to obtain the pixel locations of strong scatterer returns. We then apply a peak finding algorithm, such that

out of a cluster of adjacent detections only the pixel with the largest magnitude is returned. This effectively reduces the

complexity of the algorithm by limiting the number of detected pixels corresponding to each point scatterer response in

the image.

We now iterate through the list of peak detections and attempt to find the shift in location between each detection

in the first image and the corresponding return in the second image. To do this, we extract a square sub-image, centered

about the current peak detection, from the first image, and we extract a larger square sub-image, centered about the

same pixel location, from the second image. The sub-image taken from the first image should be large enough to possess

distinct features, which will sufficiently differentiate it from other areas of the scene. The size of the second sub-image is

determined by the size of the first sub-image, the maximum shift expected due to lay over differences, and the maximum

shift expected due to geo-location errors. We now compute the two-dimensional cross-correlation of the magnitudes of

the two sub-images. By extracting the location of the peak cross-correlation, we obtain the relative shift between the

two sub-images. After determining relative shifts for all of the peak detections, we compute height estimates using (23)

and orthorectify using (15).
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The following two examples demonstrate the above algorithm. In the first example, we generated two images of

a scene illuminated by a transmitter with a flight path centered on the positive x-axis and two receivers located at

azimuth angles of φr1 = −20◦ and φr2 = 5◦. The elevation angles of all three platforms are approximately 20◦, and

all three platforms view the scene at broadside. The scene contains 190 point scatterers, configured in the shape of a

target. As in the interferometric examples, the amplitude of all of the scattering centers were set equal, and they were

scaled before adding white Gaussian noise in order to yield a peak SNR of 30 dB. The two original images both with

square 4-inch resolution cells are shown in Figures 3a and 3b. Note that a lateral separation (in x-y) was maintained

between scatterers at different heights. This prevents ambiguities due to overlapping lay over, thus artificially satisfying

assumption (B-1) above.

We applied the above algorithm twice, alternating which image is used as the first image and using 1 meter squared

sub-images, thus obtaining two sets of height estimates {ẑ(m)
12 } and {ẑ(m)

21 }. Using (15), we then shifted the sub-images

of the first image to their true locations, as indicated by the {ẑ(m)
12 }, and shifted the sub-images of the second image as

indicated by the {ẑ(m)
21 }. We then averaged the magnitudes of these two height registered images and fused the result with

the extracted height estimates. The resulting 3-D reconstruction is shown in Figure 3c. The 3-D target reconstruction

is fairly accurate, except in areas corresponding to the shadow boundaries of each image. Shadow boundaries were

simulated by assigning, on a pulse-by-pulse basis, an amplitude of 1 to scatterers with azimuth angles

φm = arctan
(

ym

xm

)
(24)

within 90◦ of the transmitter and receiver look angles, and by assigning an amplitude of 0 to all other scattering centers.

In the second example, the same data collection geometry was implemented, but the simulated scattering centers

were arrayed in a tighter configuration in x-y. The second set of example images is shown in Figures 4a and 4b,

where geometry and scatterer configuration used for the image shown in Figure 4a is identical to that which was used

for Figure 2a. Stereo processing of these images gives the 3-D reconstruction shown in Figure 4c. One may observe

that regions containing scatterers laid over from both simulated heights are subject to greater variance in their height

estimates. The accuracy of this reconstruction is lower than that of Figure 3, but the 3-D shape of the object is still

recognizable.

C. Performance

The accuracy of stereo height estimates depends entirely on the accuracy of the relative shift estimates between the

extracted sub-images. Image resolution, scatterer scintillation, sub-image decorrelation, and interpolation accuracy all

affect the accuracy of the cross-correlation. If one assumes that the shift estimates {ûm} have Gaussian errors with zero

means and covariance Kxy, then from (23) the variance of the relative height estimate is

σ2
z12 =

uT
z Kxyuz

‖uz‖4
(25)

where the unknown offset due to geolocation errors z̃12 has been omitted. The variance of the shift estimate errors (the

diagonal elements of Kxy) will decrease with improved resolution and will increase with increasing clutter and noise
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Fig. 3. The transmitter aperture is centered at φt = 0◦. a) Image formed by a receiver with aperture centered at

φr1 = −20◦. b) Image formed by a receiver with aperture centered at φr2 = 5◦. c) 3-D surface reconstruction formed

from (a) and (b). Lateral separation between scatterers at different heights prevents ambiguous height estimates.
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Fig. 4. The transmitter aperture is centered at φt = 0◦. a) Image formed by a receiver with aperture centered at

φr1 = −20◦. b) Image formed by a receiver with aperture centered at φr2 = 5◦. c) 3-D surface reconstruction formed

from (a) and (b). Tightly spaced scatterers lay over onto the same image regions, thus hindering stereo height estimation.
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powers in the image. The covariance Kxy can be written as

Kxy = e1e
T
1 σ2

e1 + e2e
T
2 σ2

e2 (26)

where σ2
e1 is the variance of shift estimates in the e1 direction, and σ2

e2 is the variance of shift estimates in the e2

direction. The unit vectors e1 and e2 correspond to nominal range and azimuth directions, such that σ2
e1 and σ2

e2 are

related to range and azimuth resolution values. In images with square resolution cells, Kxy will be diagonal.

To test the above assertions, we synthesized multistatic phase history data for the return from a single point

scatterer. The transmitting platform was located at (φ̄t, θ̄t) = (0◦, 20◦), and the two receiving platforms were located

at (φ̄r1, θ̄r1) = (5◦, 20◦) and (φ̄r2, θ̄r2) = (−20◦, 20◦), respectively. All three platforms viewed the scene at broadside.

In each of 200 Monte Carlo simulations, two bistatic SAR images were formed, one corresponding to the phase

history data from each receiver. Within each image, a point scatterer was randomly placed, and white Gaussian noise,

commensurate with the SNR under study, was added. The relative shift of the scatterer between images was then

estimated and subtracted from the actual shift, to yield a shift estimate error. After all Monte Carlo simulations for

a particular SNR and resolution had been completed, the ensemble of shift estimate errors was used to compute an

estimate of Kxy in (26), which was then input to (25) to obtain an estimate of σ2
z12. This value predicts the variance of

height estimates from a pair of bistatic SAR images with a given SNR, a given resolution, and the described geometric

configuration. Simulations were performed at SNRs ranging from 15 to 30 dB, and with 4-inch (0.1 meter) and 12-inch

(0.3 meter) square Fourier resolution cells.

Figure 5a (without the thick line) compares the σ2
z12 computed via simulation to the accuracy predicted by an

approximated Cramér-Rao Lower Bound (CRLB) [24]. The CRLB is a well documented means for computing optimal

achievable performance of unbiased estimators. The CRLB for a parametric model gives the minimum variance that an

unbiased estimator of that model can achieve in the presence of additive noise under a given distribution. The details

involved in deriving our approximation of the CRLB are given in the appendix of this paper. For moderate SNR the

algorithm provides performance close to the CRLB. At low SNR the algorithm deviates from the CRLB because of

estimation errors in the correlation peak finding process. At high SNR, the deviation in algorithm performance is due

to bias errors that result from using simple interpolation methods and images that are less than twice over-sampled;

generation of highly over-sampled images, and use of better interpolation methods in the peak-finding algorithm, would

reduce the bias, at the expense of greater computational complexity.

Figure 5b shows the RMS height accuracy values using the scenario from Figure 3, but with differing SNR values. At

each SNR, the RMS height error is computed over all of the detected scattering centers in the image. These results are

not directly comparable to the simulation errors or bounds in Figure 5a, because in this case we have multiple scattering

centers in each sub-image. However, the observed performance for this complex scene has RMS height errors that are

close to the CRLB prediction and simulation. We hypothesize that the lower RMS error at low SNR (compared to the

CRLB in Figure 5a) is due to a boosted SNR in some sub-images, resulting from multiple scattering centers in the same

sub-image. At higher SNR, we hypothesize that the higher RMS values in Figure 5b are caused by interference between
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Fig. 5. (a) Predicted RMS accuracy of stereo height estimates (dotted lines) and observed RMS accuracy (solid lines)

for a single, isolated point scatterer. Two radar image resolutions are considered. (b) Observed RMS height error for

the example in Figure 3, for various SNR values.

the multiple scattering centers in a sub-image.

V. Coordination Strategies for Multistatic SAR

The performance prediction framework developed in Section IV may be extended to consider the availability of more

than two bistatic apertures. As each aperture will result in a scene shifted by that aperture’s motion measurement errors,

these geo-location errors add a new layer of complexity to the problem. Thus, for the remainder of our discussion, we will

assume that all of the multistatic images produced by our system are perfectly registered; therefore, the shift observed

between sub-images from different apertures is solely due to the lay over differences between those apertures. In section

IV, we demonstrated that the accuracy of stereo height estimates from a pair of bistatic apertures is dependent on the

variance of relative shift estimates, via Kxy in (25).

Note that σ2
z12 in (25) is inversely proportional to ‖uz‖2, indicating that adding geometric diversity to increase the

norm of uz will enhance the quality of height estimates. However, the variance expressed in (25) is based solely on the

geometry of the respective bistatic apertures. It does not take into account variations in the visibility of scatterers in the

scene and other scintillation effects. By viewing a given target from two bistatic look angles separated greatly enough

in azimuth, one would naturally expect that the resultant images would be largely decorrelated, and thus it would be

impossible to accurately measure a relative shift. Therefore, we propose a quality measure defined as

Qij =
W (φ̄bi − φ̄bj)

σ2
zij

(27)

where the quality of the height estimates obtained from the ith and jth images improves as Qij increases. The function

W (φ̄bi− φ̄bj) models the degree to which images formed from two given bistatic look angles are correlated. The variables

φ̄bi and φ̄bj are the bistatic look angles of the ith and jth apertures. Zebker and Villasenor propose a triangular model
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for image decorrelation in [25]

W
(
φ̄bi − φ̄bj

)
= 1− |φ̄bi − φ̄bj |

a
for |φ̄bi − φ̄bj | < a. (28)

In our experiments, we found that the above model and a Gaussian model

W
(
φ̄bi − φ̄bj

)
= exp

{
−2

(
φ̄bi − φ̄bj

)2

a2

}
(29)

behaved similarly.

The quality metric given in (27) may also be applied to multistatic scenarios involving more than a pair of bistatic

apertures. Before evaluating the accuracy of height estimates from such multistatic systems, we must define a means

of estimation. One simple method of computing a height estimate from multistatic measurements is to first compute

a height estimate from each of the possible pairings of apertures and then to linearly combine these estimates. The

number of possible pairings in a system consisting of Nap apertures is
(
Nap

2

)
. Based on the parameters of each pair of

apertures, one may use the methods of Section IV to compute a height estimate ẑ
(m)
ij from the ith and jth apertures

and to compute a variance σ2
zij for that estimate. A linear esimator of the true height, given independent estimates,

may then be calculated as

ẑ(m) =

∑Nap−1
i=1

∑Nap

j=i+1 ẑ
(m)
ij σ−2

zij∑Nap−1
i=1

∑Nap

j=i+1 σ−2
zij

, (30)

and the quality of this aggregate estimate is computed as

Q =




Nap−1∑

i=1

Nap∑

j=i+1

W (φ̄bi − φ̄bj)σ−2
zij



−1

. (31)

In actuality, the estimates ẑ
(m)
ij will be correlated to some degree, depending on the azimuth spacing of the bistatic

apertures. This implies (31) will function as an upper bound on the achievable height estimate quality.

Using (31) as a metric for predicted performance, with σ2
zij defined by (25), we may propose strategies for coordinating

multistatic systems. We first consider an example requiring placement of a second receiver, given the location of the

transmitter and the first receiver, such that the height estimation quality Q12 is maximized. We assume a Gaussian

decorrelation model, as in (29), with a spread of a = 20◦. The transmitter is located at φt = 0◦, and the first receiver

is located at φr1 = −10◦. The transmitter and receivers view the scene at broadside, and the elevation angles of the

receivers and the transmitter are fixed at 20◦. Figure 6a shows the height estimation quality, computed using (27), as

a function of the azimuth location of the second receiver. As one might expect, the height estimation accuracy at first

improves as the receiver separation increases; however, the scene decorrelation model eventually begins to dominate and

worsens the predicted performance. As shown in Figure 6b, positioning the second receiver at φr2 = −40◦ or φr2 = 20◦

gives the best predicted height estimation quality.

As a second example, we add a third receiver to the scenario of the first example. Now, two receivers with identical

and fixed elevation angles must be placed in azimuth in order to best complement each other and the original receiver.

Figures 7a and 7b show the height estimation quality Q, computed using (29) and (31), as a function of the azimuth
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locations of the two added receivers. Figures 7c and 7d show two candidate receiver configurations that are predicted

to give high quality height estimation. The peaks of this plot are consistent with maintaining roughly 20◦ separation

between receivers and alternating which of the three receivers is in the middle.

VI. Conclusions

In this paper, we generalized the theory behind monostatic stereo processing and interferometric processing of SAR

images, in order to develop three-dimensional surface reconstruction algorithms for multistatic SAR systems. As in

earlier treatments of interferometric processing, estimation of surface heights from a pair of bistatic SAR images on a

pixel-by-pixel basis is highly sensitive to the SNR and scintillation of individual scattering centers. While stereo SAR

is more robust with respect to SNR, it relies heavily on the assumption that scatterers will be observable by multiple

synthetic apertures. In an attempt to capture this effect, we proposed a height estimate quality metric, dependent

on both geometric diversity and image decorrelation. Future work will necessarily involve further development of this

performance prediction theory, and development of algorithms for accurate and efficient sub-image shift estimation. One

might also further study the effect of signal-to-noise ratio and resolution on stereo and interferometric height estimation

accuracy.

Appendix

Derivation of the Cramér-Rao lower bounds on the variance of 3-D scatterer position estimates

from bistatic stereo SAR data

The method for computing a CRLB, as detailed in [24], is as follows. First, one must construct the Fisher’s

information (FI) matrix for the given parametric model and noise distribution. A FI matrix is square with number of

rows equal to the number of parameters in the model. The elements of this matrix are defined as

Fpq = E

{(
∂ log p(Y |Θ)

∂θp

)T (
∂ log p(Y |Θ)

∂θq

)}
(32)

where E{·} represents the expected value, θp ∈ Θ is the pth model parameter, and log(p(Y |Θ)) is the log-likelihood

function of the observed random signal Y given the parameter vector Θ. Once the FI matrix has been constructed, the

CRLB is found as the inverse of the FI matrix. The diagonal entries of the CRLB are the minimum achievable variances

for any unbiased estimator of these parameters under the given noise conditions. By using the CRLB, one can predict

the efficacy of a parametric model under noisy conditions, and in our case at a given resolution.

The simulated bistatic SAR images used in the Monte Carlo simulations of Section IV-C are well approximated

by [21]

Si(x, y; Ai, ψi, xi, yi) = Aie
jψi

sin
[
2πBx

c

(
(x− xi) cos φ̄bi + (y − yi) sin φ̄bi

)]

sin
[

2πBx

cNx

(
(x− xi) cos φ̄bi + (y − yi) sin φ̄bi

)]

·
sin

[
2πBy

c

(
(x− xi) sin φ̄bi − (y − yi) cos φ̄bi

)]

sin
[

2πBy

cNy

(
(x− xi) sin φ̄bi − (y − yi) cos φ̄bi

)] + wi(x, y),

i = 1, 2 (33)
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where φ̄bi is the bistatic SAR look angle of the ith receiver, and wi(x, y) is circular white Gaussian noise with zero

mean and variance σ2. The laid over position of a scatterer, with 3-D location (xm, ym, zm), in the ith image is

[xi yi]T = PiQi[xm ym zm]T . The image is assumed to be supported by spatial frequency data in x and y with Nx

and Ny samples over bandwidths Bx and By, respectively. At high SNR, a Rician distribution [26] is well approximated

by a Gaussian. This allows approximation of the amplitude of (33) with

Si(x, y; Ai, xi, yi) = Ai

∣∣∣∣∣∣
sin

[
2πBx

c

(
(x− xi) cos φ̄bi + (y − yi) sin φ̄bi

)]

sin
[

2πBx

cNx

(
(x− xi) cos φ̄bi + (y − yi) sin φ̄bi

)]

·
sin

[
2πBy

c

(
(x− xi) sin φ̄bi − (y − yi) cos φ̄bi

)]

sin
[

2πBy

cNy

(
(x− xi) sin φ̄bi − (y − yi) cos φ̄bi

)]
∣∣∣∣∣∣
+ vi(x, y),

i = 1, 2 (34)

where vi(x, y) is assumed to be white Gaussian with zero mean and variance σ2/2.

We now wish to compute a lower bound on the variance of estimates of the parameters θp ∈ Θ = {A1, A2, xm, ym, zm}
from the aggregate data set y = [S1(x, y;A1, x1, y1) S2(x, y;A2, x2, y2)]. For convenience, we define the dummy variable

s(Θ) = y − [v1(x, y) v2(x, y)], and we reformat the data such that y and s(Θ) are one-dimensional vectors of length

N = NxNy. Thus, the likelihood function for y is

p(y|Θ) =
1

(πσ2)N/2
exp

(
− (y − s(Θ))T (y − s(Θ))

σ2

)
, (35)

and the log-likelihood function is

log p(y|Θ) = −N

2
log

(
πσ2

)− 1
σ2

(y − s(Θ))T (y − s(Θ)) (36)

where y is a noisy realization of the signal with mean s(Θ) and variance of σ2/2 on each frequency sample. Taking the

derivatives of our log-likelihood function with respect to θp ∈ Θ = {A1, A2, xm, ym, zm} yields

∂ log p(y|Θ)
∂θp

=
2
σ2

(y − s(Θ))T

(
∂s(Θ)
∂θp

)
(37)

which can be computed for each element of Θ. Next, we compute each entry of the Fisher matrix

Fpq = E

{(
∂ log p(y|Θ)

∂θp

)T (
∂ log p(y|Θ)

∂θq

)}

=
4
σ4

(
∂s(Θ)
∂θp

)T

E
{
(y − s(Θ))(y − s(Θ))T

}
)
(

∂s(Θ)
∂θq

)

=
2
σ2

(
∂s(Θ)
∂θp

)T (
∂s(Θ)
∂θq

)
. (38)

The derivatives for the model of equation (34) with respect to θp ∈ Θ = {A1, A2, xm, ym, zm} may be computed

analytically or numerically. Finally, the CRLB of our parameter set is defined to be the inverse of the Fisher matrix,

CΘ = F−1; the lower bound on the variance of each parameter is given by the corresponding diagonal element of F−1,

such that var (θii) ≥
[
CΘ

]
ii
.
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