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Abstract. Ad-hoc localization in multihop setups is a vital component
of numerous sensor network applications. Although considerable effort
has been invested in the development of multihop localization protocols,
to the best of our knowledge the sensitivity of localization to its different
parameters (network density, measurement error and beacon density)
that are usually known prior to deployment has not been systematically
studied. In an effort to reveal the trends and to gain better understanding
of the error behavior in various deployment patterns, in this paper we
study the Cramer Rao Bound behavior in carefully controlled scenarios.
This analysis has a dual purpose. First, to provide valuable design time
suggestions by revealing the error trends associated with deployment and
second to provide a benchmark for the performance evaluation of existing
localization algorithms.

1 Introduction

Ad-hoc node localization is widely recognized to be an integral component for a
diverse set of applications in wireless sensor networks and ubiquitous computing.
Although several ad-hoc localization approaches have been recently proposed in
the literature [2,4-7], the trends in localization error behavior in multihop se-
tups have not been studied in a systematic manner. The majority of previously
proposed localization approaches evaluate the ‘goodness’ of their solution with
randomly generated scenarios and comparison of the computed results to ground
truth. While this is a good starting point, it does not provide an intimate un-
derstanding of the different error components that come into play in multi-hop
localization systems.

Ideally node localization would result in error-free position estimates if sen-
sor measurements were to be perfect, and the algorithms were not to make any
approximations such as operating on partial information and ignoring finite-
precision arithmetic effects. In reality however, sensor measurements are noisy
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and produce in noisy location estimates. Zooming into the origins of these errors
we observe that measurement errors consist two main components, intrinsic and
extrinsic. The intrinsic component is caused by imperfections in the sensor hard-
ware or software. The extrinsic component is more complex and it is attributed
to the physical effects on the measurement channel such as obstructions or fad-
ing that vary significantly according to the deployment environment. Although,
the first type of error can be easily characterized in a lab setup, it is important
to note that it also induces additional error that affect both the network setup
aspects as well the choice of localization algorithms used.

This paper investigates the different aspects of the error induced by the in-
trinsic measurement error component in multihop localization setups. To explore
the different aspects of error trends we study the Cramér-Rao Lower Bound
(CRLB) behavior of carefully controlled deployment scenarios under different
configuration parameters. In particular, we study the effect of network density,
pre-characterized measurement accuracy, beacon (or other landmark density)
and network size. The analysis presented here serves a dual purpose. First, to
provide algorithm-independent design time insight in to the error trends as-
sociated with the different network setup parameters. This can help optimize
the multihop localization performance prior to deployment. Second, the CRLB
results can be used as an evaluation benchmark for multihop localization algo-
rithms.

The remainder of this paper is organized as follows. The next section mo-
tivates our work by providing an overview of the sources of error in multihop
localization systems. Section 3 provides the formulation of CRLB for multihop
localization and explains the scenario structures used in this evaluation. Section
4 presents our simulation results. Section 5 discusses the evaluation of existing
localization algorithms and section 6 concludes the paper.

2 Sources of Error in Multihop Localization Systems

2.1 Multihop Localization Problem Statement

Assume we have a set of A sensors in a plane, each with unknown location
{r; = (wi,yi)}{‘:l. In addition, a set of B beacon with known locations r; =
(zi,yi)9—_ g4, are placed in the plane. Each beacon node advertises its location
and this information is forwarded to the other nodes in the network. Further-
more, each sensor node and beacon node emits some known signals that allow
neighboring nodes to estimate their distance from the emitting node.

The distance measurements contain measurement error. We denote the error
as e;;, where

dij = dij + eij (1)
dij = Ilri = rll = \/ (i — )2 + (i — 9)? (2)

and where d;; is the true distance between nodes ¢ and j.
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In this paper we assume the measurement errors are independent Gaussian
random variables with zero mean and known variance ¢2; more general cases
are considered in [9]. We denote the availability of a measurement using the
indicator function I;; where I;; = 1 if node j receives a calibration signal from
node 4, and I;; = 0 otherwise.

The general localization problem statement is as follows: Given noisy mea-
surements of d;; and known locations r; for ¢ = —B + 1,...,0, estimate the
locations 7; fori=1,..., A.

2.2 A Classification of Error Components

As a first step in understanding the different sources of errors in multihop local-
ization systems we categorize them in three broad classes setup error, channel
error and algorithmic error.

Setup error is induced by intrinsic measurement error and it is reflected in
the network configuration parameters such as network density, concentration
of beacons (or other landmarks), network size and measurement error charac-
teristics known prior to deployment and certainty of beacon locations. For the
purposes of our discussion we assume that intrinsic measurement error can be
characterized in a lab setup to provide an indication of the measurement accu-
racy of a particular ranging technology. Table 1 lists the measurement accuracies
of four different ranging systems, an ultrasonic ranging system used in the AH-
LoS project [6], an ultra wide band (UWB) system [3], and RF Time-of-Flight
system from Bluesoft [1] and a SICK laser range finder [10].

Table 1. Accuracy of different measurement technologies

| Technology | System |Measurement Accuracy|Range|
Ultrasound AHLoS 2cm 3m
Ultra Wide Band PAL UWB 1.5m N/A
RF Time of Flight Bluesoft 0.5 m 100m
Laser Time of Flight|Laser range finder lem 75m

Channel error is a result of the extrinsic measurement error and represents
the physical channel effects on sensor measurements. Multipath and shadowing,
multiple access interference, the presence of obstructions that results in unpre-
dictable non-line of sight components, and fluctuations in the signal propagation
speeds are just a few of these effects that can introduce error into the computa-
tion of locations. The magnitude of these effects on the distance measurement
process is typically specific to the particular measurement technology and the
environment in which they operate; hence different considerations should be ap-
plied for each technology.

Finally, the multihop nature of the problem and the different operational
requirements introduce another level of complexity and subsequently more er-
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Fig. 1. Typical in network localization region

ror. Many settings that require the random deployment of low cost resource
constrained sensor nodes, calls for fully distributed operation that has limited
power consumption overhead. Such requirements may lead in approximate lo-
calization algorithms that have some additional error associated with them. The
distributed computation model of collaborative multilateration described in [7]
is an example of such an algorithm. In this case, the proposed fully distributed
algorithm is an approximation of a centralized algorithm that conserves com-
putation and communication energy. This design choice however introduces a
small, yet tolerable error. We refer to this error as algorithmic error.

Although the goal of our research is to explore all aspects of error by building
an operational ad-hoc localization system?®, in this paper we focus on setup er-
ror. The analysis presented here examines the setup error behavior inside specific
segments within a sensor network. These segments are comprised of a small num-
ber of beacon nodes surrounding a large number of sensor nodes with unknown
locations as shown in figure 1. These sensor nodes are expected to estimate
their locations by combining their inter-node distance measurements and bea-
con locations. We evaluate the error trends in such setups using the Cramér-Rao
Bound.

3 Localization Bounds in a Multihop Setup

3.1 The Cramér-Rao Bound

The accuracy for mean square location estimate can be evaluated using Cramér
Rao (CR) bound [9]. The CR bound is a classical result from statistics that

% We refer the reader to our project website http://nesl.ee.ucla.edu/projects/ahlos
for the details specific to our implementation including all released hardware and
software
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gives a lower bound on the error covariance matrix for an unbiased estimate
of parameter 6 (see, eg, [11]). The lower bound is given in terms of Fisher In-
formation Matrix J(#). Let 6 be any unbiased estimate of parameter 6 based

on observation vector X having a pdf of fx(z). The error covariance matrix is
defined as

C=E{@-6)6-0)T) (3)

This error covariance matrix is bounded below by the CR bound, which is given
by
CRB=[J(0)]"" (4)

where the matrix J(f) has elements given by

O — { {am(afg(m(x))} [am(ggn(x))] }

The matrix J(#) is called the Fisher Information Matrix (FIM).

(5)

3.2 Obtaining CRLB in multihop setups

In the multihop problem, the parameter vector € of interest is the 24 x 1 vector

0:[xlaylax%y%"'aanyA]T (6)

The measurement vector X is a vector formed by stacking the distance mea-
surements d;;. Since it is assumed that the measurement is white Gaussian, the
measurement, pdf is the vector Gaussian pdf

1

fx(z;0) = N(u(®), %) = Wex

p{ ~51X —HOF X - o)
)

where the mean vector u(f) is a vector of true distances whose elements are
given by 2. The covariance matrix in equation 7 is given by

X =0T (8)

where I is the 24 x 24 identity matrix and where o2 is the variance of each
measurement error e;; in 1. Note that for this application the pdf depends on 6
only through its mean value.

The vector X contains measurements of distances ciij stacked in some order,
and p(f) is a vector of d;; distances stacked in the same order. Let M denote
the total number of cfij measurements.

The CRB can be computed from the Fisher Information Matrix of 6 from
equation 5. The Fisher Information Matrix is given by

Jo = E{[Voln fx(X;0)][VoIn fx(X;0)]" }



6 A. Savvides et al.

The partial derivatives are readily computed from equations (2), (6), and (7);
we find that

Jo = —[G'(0)][G'(6)] (9)

where G'(6) is the M x 2A matrix whose mnth element is du,,(8)/96,,. Each
element of G'(0) is readily computed from equation 2. Let the mth element of
1(6) be d;; for some corresponding values of ¢ and j, and note that 6, is either
x4y or yy for some corresponding i’. Then from equation 2,

1
o2

0 ifi' £ and i' £ j
G (Omn = “a, - O =25 (10)
yld:jy] if 0n =Y

The CR bound is then given by the inverse of the FIM as in 4.

3.3 Scenario Setup

To evaluate the effects of density variation and measurement error on the overall
localization result, we generated a set of scenarios for which density and therefore
node connectivity can be controlled. For the purposes of our experiments we
define node density D to be the number of nodes per unit area. For N nodes
deployed on a circular area A, D = %. Given this we can control the radius L

of a circular field to be
[A | N
L=y\—=4/— 11
T Drn (11)

In a circular field, the probability of a node having d neighbors can be ex-
pressed as

ra = (" ) pac - Y (12)

where Ppg is the probability that a node is within transmission range R from
another node

TR? _ DrnR?
A~ N

As N goes to infinity, the binomial distribution in equation 12 converges to
a Poisson distribution (equation 14) with A = N Pg

Pr = (13)

A
P(d)zme A

Also from this the probability of a node having n or more neighbors is

(14)

n—1

P(d>n)=1-Y P(i)

i=0
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Fig. 2. Probability of n or more neighbors at different densities

In our simulation experiments sensor nodes have a 10-meter range. For this
range the corresponding probabilities of having n or more neighbors and for
different network densities are shown in figure 2. The scenarios used in this
study are generated on a circular plane following the above analysis. To ensure
even distribution of nodes per unit area, we divide the circle into rings of width
ﬁ. In each ring we generate node positions in polar coordinates by generating
a radius r and an angle 6 for each node. The number of nodes in each ring is
proportional to the area of the circle covered by the ring.

As it will be shown in section 4.1, this scenario pattern generation method
was chosen to isolate error incurred from bad geometry setups. These effects
arise when angles between beacons (or other anchor nodes) as seen by the node
trying to determine their location are very small. This effect can be prevented
when nodes are deployed using the circular pattern described above.

4 Simulation Results

Using the CRLB bounds derived in the previous section, we try to answer some
fundamental questions related to setup error. This evaluation is performed by
computing the Cramer-Rao bound on a comprehensive set of approximately
2,000 scenarios generated using the algorithm described in the previous section.

4.1 How does deployment geometry affect the solution?

Geometry setup alone can affect localization accuracy. This is a known effect fre-
quently referred to as geometric dilution of precision (GDOP). The same effects
come into play in a multihop setup where neighboring nodes with unknown posi-
tions help other nodes to estimate their locations by acting as anchor points. In
both cases, the best estimates can be obtained when the nodes are placed within
the convex hull of the beacons. These effects are demonstrated on a small set
of simple scenarios. Figures 3 to 6 show the CLRB bound on a 10 x 10 grid. In
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figure 3, four beacons are deployed on the vertices of a 8 x 8 square. The error is
maximum outside the square, and behind the beacons where the angles between
diagonally adjacent beacons is very small or zero. Figure 4 shows how the error
behaves if the beacon square is shrunk to 2 x 2. By scaling the beacon square
from 1 x 1 to 10 x 10 we note that the variance in the bounds at different points
on the grid changes significantly. This effect can be seen by comparing figures 3
and 4. This also explains or choice of scenario generation algorithms. By keeping
the beacons on the perimeter of the network we ensure that for the rest of our
experiments, we operate in the places where the variance of the bounds is more
uniform (i.e. similar to the flat region within the beacon square in figure 3.
Figures 5 and 6 show the error bounds when three beacons are used in a
triangular configuration. In the first case the beacons are found at locations
B1=3,3, B2 =3,8, B3 =5.5,5.5. In the second case the beacons are placed at
locations B1 = 3,3, B2 = 3,4, B3 = 3.2,5.5. These two cases show the effect of
geometry then the angles between each of the beacons as seen by a sensor node
change. The largest error occurs when the angles to each beacon are very small.

5
[
@
=
o

y coordinate x coordinate

Fig. 3. Effects of geometry on 8 x 8m square beacon pattern

4.2 How does network density affect localization accuracy?

Intuitively, one would expect that localization accuracy would improve as the
network density increases. This is because increasing network density, and sub-
sequently the number of neighbors for each node with unknown location adds
more constraints to the optimization problem. After some critical density, the
effect of density on location accuracy becomes less apparent. Our simulation
results in figure 7 verify this expectation. The critical point occurs in the case
where the majority of the nodes have at least 6 neighbors. For the particular
range used in our experiments, this takes place at a density of 0.35 nodes/m?.
This result is consistent for a test suite of more than 1,000 scenarios at different
ranging accuracies as shown in the figure.
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y coordinate x coordinate

Fig. 4. Effects of geometry on 2 x 2m square beacon pattern

RMS error

y coordinate x coordinate

Fig. 5. Effects of geometry on an isosceles beacon triangle

y coordinate x coordinate

Fig. 6. Effects of geometry on a flat triangle
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Fig. 7. Density trends at different values of measurement error variance o>
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Fig. 8. Density and range error scaling

Furthermore, we note that the different CRLB plots for different values of
ranging error o2 are scaled versions of one another. In figure 7 and in figures
from subsequent sections, our plots show the bounds at different ranging errors
to allow the user to associate these results to specific ranging technologies such

as the ones listed in table 1.

4.3 What is the best solution one can achieve with a given
measurement technology?

This question can be answered by observing the bounds on the same set of
scenarios as the previous subsection. In general based on our simulations we
not that if the network density is sufficient (6 or more neighbors per node), the
bound predicts that the localization error will be close to (slightly lower) than
the ranging error. The trend lines for different levels of ranging error are shown

in figure 8.
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Fig. 10. The effect of beacon density on localization, 100 nodes, 4-20% beacons

4.4 How does error behave as the network scales?

If the density is kept fixed, the error bound degrades very showly as the network
scales. A representative result from our experiments for different measurement
accuracies is shown in figure 9. In this experiment, the network size is varied
from 40 nodes to 200 nodes while the network density is kept constant at 6
neighbors per node, and 10% beacons.

4.5 What is the effect of beacon density on the computed solution?

To test the effect of beacon density on the localization bounds we used a set of
scenarios with fixed density (0.45) and fixed number of nodes (100 nodes). The
percentage of beacons was varied from 4% to 20%. The results are (shown in
figure 10) indicate that increasing the number of beacon nodes does not dramat-
ically reduce the localization bound. This is more profound when the ranging
error is very small. As shown in the figure, at a range error variance of 0.02m, us-
ing 4 beacon nodes on a 100 node network performs just as well as 20 beacons.
Also for higher levels of ranging error, adding more beacons yields a modest
improvement.
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5 A Case Study on Algorithmic Error: Collaborative
Multilateration

In this section we present a comparison of a specific multihop localization algo-
rithm, collaborative multilateration, and corresponding the Cramér-Rao bound.
The measurement error characteristics used for this evaluation are drawn from
the lab characterization of the ultrasonic distance measurement system described
in [6].

5.1 Collaborative Multilateration Overview

Collaborative multilateration is a method for performing node localization in
multihop setups. The algorithm, which is described in detail in [7] relies on a
small set of beacon nodes and inter-node distance measurements to estimate node
locations in multihop setups while trying to prevent error accumulation inside
the network. Collaborative multilateration supports two computation models,
centralized and distributed. The centralized model estimates node locations at
a central point in the network that has a global vantage point. All the inter-
node distance measurements and beacons locations are used to set up a global
non-linear optimization problem, which is solved using least squares.

Even though the centralized computation model can yield high quality esti-
mates, it is not always suitable for sensor networks. First, it requires significant
computation, which would require more processing and memory resources than
what low cost sensor nodes can accommodate. Second, a centralized approach
exposes a single point of failure in the network. Third, a centralized approach
also requires some routing protocol support to propagate measurements and lo-
cations to the central computation point (and sometimes to also propagate the
position estimates back to the nodes).

To address the issues of the centralized computation model, the distributed
collaborative multilateration computation model was designed to operate in a
fully distributed fashion. In this model, each node in the network is responsible
for estimating its own location using distance measurements and location infor-
mation from its one-hop neighbors. To compute an estimate of its location each
node uses its neighbors as anchors. If these neighbors do not have a final estimate
of their location, then an intermediate rough estimate of the node locations is
used. All nodes compute an updated estimate of their locations and they pass
it to their neighbors, which in turn use this information to update their own
location estimate. The process continues until a certain tolerance is met. In this
computation model, the estimate updates at each node happen in a consistent
sequence that is repeated until the convergence criteria are met. This forms a
gradient with respect to the global topology constraints that allows the nodes
in the network to estimate their location with respect to the global constraint
while computing their estimate locally.

The distributed computation mode of collaborative multilateration is an ap-
proximation of the centralized model that is designed to meet some of the opera-
tional requirements of a practical setup. This design decision however introduces
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Fig. 11. Algorithmic error in centralized and distributed collaborative multilateration
computation models

some algorithmic error in the location estimates. In the next subsection we com-
pare the error from the two approaches to the bounds.

5.2 Comparison to the Bounds

To evaluate the quality of location estimates of the two computation models
of collaborative multilateration, we compare the two computation models to
the CRLB bounds, using the same scenarios as the ones used in section 4.1.
For these scenarios the ranging error variance was set to 0.02m to match the
characteristics of the ultrasonic ranging system described in [6]. The results from
this comparison are shown in figure 11. The results shown here are averages from
10 different scenarios for each density.

From this comparison both computation models follow a similar trend to the
CRLB bound but we also note some differences, which we classify as part of the
algorithmic error. The critical density point has moved from 0.03 nodes/m? to
0.035 nodes/m?. This corresponds to the point where the majority of nodes have
8 neighbors instead of 6 as predicted by the bound. We also note the discrepancy
in the results of the distributed computation model. Although in most cases, the
location estimates provided by distributed collaborative multilateration are al-
most identical to its centralized counterpart, for some cases the averages shown
in figure 11 suggest that the position estimates are sometimes significantly differ-
ent. A closer examination of the simulation data has shown that this discrepancy
arises from very few isolated scenarios where the distributed process does not
converge. Repeating the experiments has shown that this discrepancy can be
prevented if some consistency checks are added to detect divergence. The dis-
tributed computation can converge it a different starting node is selected. This
choice however would also incur increased algorithm complexity. At densities of
12 or more neighbors, the results of the two computation models are consistent.
We attribute this to the fact that increased densities offer significantly more
constraints that keep the process from diverging.
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6 Conclusions

In this paper we explored some of the trends in localization error for multihop lo-
calization scenarios. Our simulation experiments have shown how intrinsic error
from the sensor measurements incurs additional error with respect to different
network parameters. This contributes some insight on what the deployment pa-
rameters should be for a multihop localization process to be successful. The
beacon nodes should be deployed on the perimeter of the network to ensure that
localization algorithms operate in the region where variance on the bounds is
minimal. We also noted that there is a critical density after which localization
improvement is much more gradual. By comparing this to collaborative multi-
lateration we concluded that algorithmic error should also considered prior to
deployment and deployment decisions should be more conservative than the ones
predicted by the bounds. Furthermore, the study of the bounds has shown that
multiple localization approaches are scalable and the position of a large number
of nodes can be determined with a very small number of beacons that are found
multiple hops away. As part of our future work, we plan to investigate the effects
of the extrinsic measurement error on location estimates and how can this be
handled at the network level by utilizing network redundancy and the trends
exposed in this paper.
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