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Abstract

We present algorithms for self-localization of a network of sensors. We consider the case when
no “anchor” nodes with known locations are present. We use source signals in the scene, also
at unknown locations, to estimate time-of-arrival and direction-of-arrival between sources and
sensors. These measurements are used to compute maximum likelihood relative calibration
solutions, in which sensor nodes are localized and oriented with respect to one another. Prior
location information, in the form of uncertain aimpoints for a subset of the sensors, are then
be used to obtain maximum a posteriori estimates of absolute locations and orientations. We
derive analytical statistical performance bounds for the two estimators, and present examples
that illustrate the performance of the algorithms.

1. Introduction

Sensor networks are becoming increasingly important for distributed sensing in a large number of military
and nonmilitary applications [1]. A sensor network consists of a large number of low-cost, self-powered
sensors that are capable of sensing signals, processing those signals, and communicating with other sensors
or higher-level processing centers for data fusion and collaborative decision making.

In order to effectively fuse sensor information, it is often important to know the location and orientation
of each sensor in the network. However, accurate sensor location and orientation is difficult to provide in
many types of sensor deployment. Thus, there is interest in developing methods to find the locations and
orientations (that is, to self-calibrate the sensor network) after the sensors have been deployed.

Self-localization in sensor networks is an active area of current research (see, e.g., [2, 3, 4, 5] and the
references therein). Iterative multilateration-based techniques are considered in [5]. Bulusu et al. [2, 6]
consider a low-cost localization methods that use a number of beacon signals at known locations. Research
on blind beamforming considers a related problem of forming a maximum power beam to a source without
computing the source locations [7]. Cevher and McClellan consider sensor network self-calibration using



a single acoustic source that travels along a straight line [8]. Bearings-only localization methods for sensor
networks are considered in [9].

In many self-calibration approaches it is assumed that there are one or more “beacons”, which are signal
sources at known locations. The beacon signals are used to estimate the locations of some sensors; these
sensors can then become beacons for locating other sensors. In other cases, some of the sensors are assumed
to have known locations, and again other sensors are calibrated from these initially-known nodes. However,
in many applications, the assumption of even a few nodes or beacons with known locations is difficult to
satisfy. In military applications where sensors (and source signals) are deployed remotely, accurate location
of even a small number of sensors or sources is difficult or impossible to achieve.

This paper presents algorithms for self-calibration of sensors when no anchor nodes with known prior location
are available. We develop statistically optimal estimates for relative calibration of sensors, where relative
calibration refers to location and orientation of sensors with respect to one another. The self-localization
approach employs a set of "calibration" sources that have been placed in the scene, also at unknown locations.
These calibration sources may be signals of opportunity, or they may be signal sources designed for network
calibration. Each source emits a signature at an unknown time. The source is detected by each array, and
the time-of-arrival (TOA) and possibly also the direction-of-arrival (DOA) of that source is recorded. These
recorded measurements form the data from which the calibration solution is obtained.

In addition, we consider the case where uncertain prior knowledge of sensor or source locations are available.
Such prior information could be generated from an uncertain aimpoint used by the device that places the sensor.
We develop algorithms that use this prior aimpoint knowledge, coupled with the calibration measurements,
to obtain estimates of both the relative node locations and orientations, and the absolute locations and
orientations. The sensor locations and orientation estimates are found as the Maximum A Posteriori (MAP)
estimates from the available measurement data and prior aimpoint information.

We partition the solution into relative calibration and absolute calibration. Relative calibration is important
for such applications as locating and tracking targets. The relative accuracy of the sensor locations determine
the target location and track errors relative to the sensor network. If the calibration signals are correctly
designed, high relative accuracy can be achieved. Absolute calibration places the entire network scene on an
absolute frame of reference. The absolute location accuracy is to a large part determined by the accuracy of
the prior aimpoint information, and may be (much) less accurate than the relative calibration. On the other
hand, posterior knowledge (such as the association of a relative target track to a road) can be used to refine
the absolute calibration in a computationally efficient way.

We derive statistical uncertainty bounds on the localization estimates. The uncertainty analysis allows one
to analytically predict the calibration performance in a number of scenarios of interest. Uncertainty bounds
for both the relative and absolute calibration solutions are obtained.

Finally, we illustrate the proposed techniques with numerical examples, and explore the effect of sensor
density and prior knowledge on calibration accuracy.

2. The Self-Calibration Problem



We consider a sensor deployment architecture as shown in Figure 1. A number of low-cost sensors, each
equipped with a local processor, a low-power wireless communication transceiver, and one or more sensing
capabilities, is set out in a region. Sensor elements may collect acoustic, seismic, and/or image data. Each
sensor monitors its environment to detect, track, and characterize signatures. The sensed data is processed
locally, and the result is transmitted to a local Central Information Processor (CIP) through a wireless
communication network. The CIP fuses sensor information and transmits the processed information to
a more distant command center. The wireless communication network is capable of proving a reference
time base at each sensor. The CIP is also capable of computing a self-calibration solution from sensor
measurements.
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Figure 1: Sensor network architecture. A number of low-cost sensors are deployed in a region. Each sensor
communicates to a local CIP, which relays information to a higher-level information processing center.

Assume we have a set of A sensors in a plane, each with unknown location {ri = (xi, yi)}A
i=1 and unknown

orientation angle θi with respect to a reference direction (e.g., North). In the array field are also placed S
point source signals at unknown locations {r̃j = (x̃j , ỹj)}S

j=1. The sources may be co-located with sensors;
such would be the case if sensors are equipped with a signal generator. Each source emits a signal that begins
at time tj . The signal emission times are generally assumed to be unknown. However, the tj values could be
known in some applications, such as if the sources can be electronically triggered or if they are co-located
with sensors.

We each emitted source signal is detected by a subset of the sensors in the field. We assume that sensor
i, if it detects source j, obtains an estimate of the time-of-arrival (TOA) tij . The TOA is measured with
respect to a time base established across the sensor network using the RF communication link [] or by
synchronizing the sensor processor clocks before deployment. We assume that errors in the time base are
small compared to errors in the TOA estimates. The TOA estimate is obtained by using, for example, a
generalized cross-correlator [10].

We assume that some sensor nodes can also estimate the direction-of-arrival (DOA) of an incoming source
signal. In this case, if sensor i detects source j, we assume it estimates and direction-of-arrival (DOA) θij

of the source with respect to a local reference frame. The local reference frame could be, for example,
“counter-clockwise from microphone #1” for an acoustic sensor with several microphones. DOA estimates
cannot be made with respect to an absolute frame of reference because the orientation angle of each sensor
node is unknown (and must be estimated in the calibration procedure).



The set of TOA and DOA measurements are gathered in a measurement vector

X =

[
vec(T )
vec(Θ)

]T

(nx× 1) (1)

where vec(M) stacks the elements of a matrix M columnwise and where T and Θ contain the tij and θij

estimates for those source-sensor pairs for which a signal is detected. If all sensors detect all sources, then

T =




t11 t12 . . . t1S

t21 t22 . . . t2S
...

...
. . .

...
tA1 tA2 . . . tAS


 , Θ =




θ11 θ12 . . . θ1S

θ21 θ22 . . . θ2S
...

...
. . .

...
θA1 θA2 . . . θAS


 (2)

and nx = 2AS. In many cases, though, not all sensor nodes detect all source signals, so some elements of
T and Θ will be missing.

Each array transmits its TOA and DOA measurements to a central information processor, and these nx
measurements form the data with which the CIP computes the sensor and source locations, the sensor
orientations, and the source signal emission times. Note that the communication cost to the CIP is low, and
the calibration processing is entirely performed by the CIP. Alternately, decentralized calibration solutions
can be used [11] at the expense of higher intra-node communication costs.

Define the parameter vector

α = [x1, y1, θ1, . . . , xA, yA, θA|x̃1, ỹ1, t1, . . . , x̃S , ỹS , tS ]T (nα × 1) (3)

where nα = 3(A + S). If any parameters in α are known, they are removed from α and the vector size
reduces accordingly. For example, if we assume the sources and sensors are co-located, then xi = x̃i and
yi = ỹi, so α reduces to a 4A× 1 vector (3A× 1 if the tj’s are assumed to be known).

The actual TOA and DOA of source signal j at sensor i can be computed from α as

τij(α) = tj + ‖ri − r̃j‖/c (4)

φij(α) = θi + � (ri, r̃j) (5)

respectively, where ‖ · ‖ is the Euclidean norm, � (ξ, η) is the angle between the points ξ, η ∈ R2, and c is
the signal propagation velocity. We assume that the propagation velocity c is known; methods for estimating
c can be found in [7, 12].

Measurement Uncertainty: Each element of X has measurement uncertainty; we model the uncertainty
as

X = µ(α) + E (6)

where µ(α) is the noiseless measurement vector whose elements are given by equations (4) and (5) for
values of i, j that correspond to the vector stacking operation in (1), and where E is a random vector, giving
a measurement vector probability density function (pdf) denoted as fX(x;α).

We will adopt a Gaussian measurement error model; that is, we will assume that

fX(x;α) = N (µ(α),ΣX) (7)



where ΣX is a known covariance matrix. We justify this assumption by noting that for sufficiently high
signal-to-noise ratio, the TOA estimate is approximately Gaussian with standard deviation on the order of
the inverse of the signal bandwidth [13]. In addition, for these signal-to-noise ratios, most DOA estimators
are Gaussian. It is reasonable to assume that the TOA and DOA estimates computed at different sensors are
uncorrelated with each other, so we will often assume that ΣX is diagonal. We note that neither the Gaussian
assumption nor the diagonal covariance assumption is needed in the derivations that follow; however, they
make the exposition more concrete and they are the models employed in the simulations presented in Section 6.

Prior Information: In addition to the calibration measurements, one often has some prior information
about sensor or source locations. For example, if a subset of sources or sensors is equipped with GPS prior
location information for these sources or sensors is available. If sensors or sources are placed by air drop
or by artillery fire, an aimpoint location for these sensors, along with some aimpoint uncertainty, may be
available.

In most cases, the prior information contains uncertainty. For example, aimpoints of sensors have an associ-
ated uncertainty corresponding to the precision limit of the air drop or munition placement. GPS systems also
provide uncertain location information; for GPS units not operating in differential mode, this uncertainty can
be several meters. We quantify this uncertain prior information using a probability density function f0(α).
As an example, one can assume f0(α) is Gaussian distributed with known mean and covariance, so

f0(α) = N (α0,Σ0) (8)

where α0 and Σ0 are given. In this case, α0 encodes the aimpoints and Σ0 encodes the aimpoint uncertainty.

The self-calibration problem, then, is: Given the measurement vector X , measurement error pdf fX(x;α),
and prior information pdf f0(α), estimate α.

3. Absolute and Relative Calibration

We will partition the calibration solution into a relative calibration and an absolute calibration. Relative
calibration is location and orientation calibration of sensors (and sources) relative to one another, while
absolute calibration is the calibration with respect to an absolute frame of reference. This partitioning of the
problem is useful for several reasons:

1. In many cases the error covariance of α has high marginal variances and high correlation between
its entries, due largely to errors associated with translation and rotation of the entire network. By
partitioning this error into a relative and overall translation-rotation error, we find that the relative error
is smaller, has lower correlation among its entries, and is only weakly coupled to the translation and
rotation errors. The partitioning thus provides a convenient and intuitive decomposition of the error
into its primary components.

2. The TOA and DOA measurement used for calibration of the sensor network provide information about
relative calibration only.



3. For many military sensing applications, such as target localization and tracking, the performance
depends on how accurately the sensors are located with respect to each other; thus, relative calibration
is of interest when assessing target location or tracking errors due to sensor location uncertainties.

4. Absolute calibration can be updated using additional information which may not be available during
the initial sensor network calibration stage. As an example, associating a target track to a road may
result in absolute calibration refinement, leaving the relative calibration unaltered.

We decompose the calibration parameter vectorα into its relative and absolute components as follows. Define
the centroid location and orientation of the sensor nodes as, αc(α) = [xc, yc, θc]T , where

xc =
1
A

A∑
i=1

xi yc =
1
A

A∑
i=1

yi θc =
1
A

A∑
i=1

θi (9)

The mapping from a parameter vector α to αc can be written in matrix form as

αc = Bα (10)

where B is the (3 × nα) matrix defined as

B =
1
A
[ I3 I3 · · · I3︸ ︷︷ ︸

A

| 0 0 · · · 0︸ ︷︷ ︸
S

] (11)

and where I3 is the (3× 3) identity matrix and 0 is the (3× 3) matrix of zeroes. Given αc, the mapping from
α to αr is a translation and rotation such that

Bαr = 0 (12)

The transformation is defined as follows for a vector α with centroid αc = [xc, yc, θc]T . For the ith sensor
with parameters (xi, yi, θi), which are the 3(i − 1) + 1 to 3(i − 1) + 3 elements of α, the corresponding
elements of αr are given by 

 xi,r

yi,r

θi,r


 =


 cos θc sin θc 0

− sin θc cos θc 0
0 0 1





 xi − xc

yi − yc

θi − θc


 (13)

Similarly, the elements of αr corresponding to the jth source are given by
 x̃j,r

ỹj,r

tj,r


 =


 cos θc sin θc 0

− sin θc cos θc 0
0 0 1





 x̃j − xc

ỹj − yc

tj


 (14)

Thus, there is a one-to-one relationship between a parameter vector α and the two vectors αr and αc. Note
that tj remains unchanged by the transformation. The inverse transformations are readily obtained from
(13)–(14). We will use α and (αr, αc) interchangeably in the remainder of the paper.



4. MAXIMUM A POSTERIORI CALIBRATION ALGORITHMS

In this section we present algorithms for computing the relative and absolute calibration from TOA and DOA
estimates along with prior aimpoint information. Relative calibration refers to estimating αr, and absolute
calibration refers to estimating α, or equivalently, to estimating (αr, αc).

We consider α as a random vector with prior probability density function f0(α). The measurement vector
X informs us about α as quantified by the posterior probability f(α|X). From Bayes’ rule,

f(α|X) =
f(X|α)f0(α)

f(X)
(15)

We choose as our estimate maximum a posteriori (MAP) estimate, which is the value of α that maximizes
the posterior probability density of α:

α̂ = argmax
α

f(α|X) = argmax
α

f(X|α)f0(α) (16)

The calibration measurements X are independent of absolute location. Any translation or rotation of the
entire sensor-source scene results in no change to the distances from sources to sensor nor the relative angles
of sources from sensors. Thus, f(X|α) = f(X|αr). Combining this fact with the negative logarithm of
equation (16) yields

α̂ = arg min
(αr,αc)

[− ln f(X|αr) − ln f0(α)] (17)

Equation (17) is valid for any measurement and prior pdfs. For the case of Gaussian pdfs in equations (7)–(8),
equation (17) becomes

α̂ = arg min
(αr,αc)

[X − µ(α)]TΣ−1
X [X − µ(α)] + [α− α0]TΣ−1

0 [α− α0] (18)

If in addition the measurement errors are uncorrelated, and if the the TOA and DOA measurement errors
have variances σ2

t and σ2
θ , respectively, then

[X − µ(α)]TΣ−1
X [X − µ(α)] =

1
σ2

t

∑
(i,j)∈DT

(tij − τij(α))2 +
1
σ2

θ

∑
(i,j)∈DΘ

(θij − φij(α))2 (19)

where DT is the set of (i, j) pairs for which sensor i estimates the TOA of source j, and DΘ is the set of
(i, j) pairs for which sensor i estimates the DOA of source j.

Equation (18) gives the MAP estimate of α when both measurements and prior information are available.

We next consider the case in which no prior information is available. In this case we seek a maximum
likelihood (ML) estimate; that is, we find α ↔ (αr, αc) that maximizes f(X|α) = f(X|αr, αc). Note,
however, that this pdf is independent of αc, so

f(X|αr, αc) = f(X|αr) (20)



Thus, there are an infinite number of ML estimates, all with the same αr vector and differing only by their
centroid αc. We can thus find a unique relative calibration as the maximum likelihood solution

α̂r,ML = argmax
αr

f(X|αr) = argmin
αr

[− ln f(X|αr)] (21)

where αr is constrained to satisfy equation (12).

Both equation (18) and equation (21) involve minimization of a nonlinear function of α; for the Gaussian
case, these equations yield nonlinear least squares minimization problems. In the next section we discuss
various approaches to solve these minimization problem.

4.1 ALGORITHMS FOR SELF-CALIBRATION

4.1.1 Relative Calibration

Let us first consider the solution of equation (21). We can write this as

α̂r,ML = argmin
αr

J1(αr) subject to Bαr = 0 (22)

where
J1(αr) = − ln f(X|αr) (23)

In the Gaussian measurement error case, J1(αr) = 1
2 [X−µ(α)]TΣ−1

X [X−µ(α)]. The minimization can be
found by iterative descent of αr from an initial estimate; however, since there is no prior information about
αr, one must be careful to find an initial estimate that is in the attraction region of the global minimum of
J1(αr).

Our solution is based on an ML estimator described in [14, 15]. Note that there is a one-to-one correspondence
between a parameter vector αr and a parameter vector α1 for which x1 = y1 = θ1 = 0, and one can compute
αr from α1 using a rotation and translation such that Bαr = 0; the transformation equations are similar to
(13)–(14). We use the fact that if α̂ is an ML estimate of α and g(·) is a one-to-one mapping, then g(α̂) is an
ML estimate of g(α) [16]. Thus, an ML estimate of αr can be found by computing an ML estimate of α1 and
transforming it to its corresponding αr vector. An algorithm for finding the ML estimate of α1 is described
[15]. The algorithm includes an computationally efficient initialization followed by a nonlinear descent.

It is interesting to note that the ML estimate of the relative calibration can be found by assuming one sensor
node has known location and orientation and then finding the ML estimate of the remaining sensors.

4.1.2 Absolute Calibration

We next consider algorithms for finding the MAP absolute calibration estimate. We can write equation (17)
as

α̂ = arg min
(αr,αc)

[J1(αr) + J2(αr, αc)] (24)

where J1(αr) = − ln f(X|αr) and J2(αr, αc) = − ln f0(α). In the Gaussian case J1 and J2 are given by
the quadratic forms on the right side of equation (18), to within an additive constant.



Consider first the case for which the prior information on α is known with relatively high accuracy. In this
case one can exploit the prior information to determine an initial estimate α, which form a starting point
for the nonlinear minimization. For example, if we know the prior locations of at least two sensors with
high accuracy, then the techniques developed in [15] can be used to initialize the locations orientations, and
emission times of the sources and sensors. In essence, those nodes known with high accuracy form beacon
nodes from which other initial node locations and orientations can be estimated.

Next, consider the case in which which the prior location information has (very) high uncertainty. In this
case, J2 varies slowly as a function of αr in comparison with J1(αr). We can thus obtain an initial estimate
by minimizing J1 only. But this minimization is exactly the ML relative calibration solution given in
equation (22). Once α̂r is obtained, we need only to initialize the 3× 1 centroid vector αc. One way to do so
is to to find the translation components xc and yc to align the centroid of the sensor and source locations to
centroid of the prior location information, then to search over θc on the interval [0, 2π) to minimizeJ2(α̂r, αc).
Another approach that avoids the one-dimensional search is to find the rotation, translation, and scaling of
the nodes in αr that aligns them to aimpoint centroids of the corresponding nodes for which prior location
information is available. The solution can be solved for in closed-form using a least-squares estimate [17].
The rotation and translation estimates can be used as an initial estimate of αc.

In all cases above, once initial estimates of αr and αc are found, one can find α̂ from (24) using an iterative
descent procedure. In our implementation we used the Matlab function lsqnonlin.

If the prior knowledge has high uncertainty, an approximate MAP solution may be found by solving separately
for α̂r and α̂c in equation (24) as:

α̂r ≈ argmin
αr

J1(αr) (25)

α̂c ≈ argmin
αc

J2(α̂r, αc) (26)

Note that (25) is exactly the ML relative calibration solution, and (26) is a solution over only three parameters.

The decoupling of the αr and αc estimates as in equations (25)–(26) has another advantage. If additional
absolute location information becomes available after the calibration process, one can simply update αc =
[xc, yc, θc] without changing the calibration estimate of αr. An example of such additional information could
be an association of a target track with a nearby road. By placing the target on the road, one develops a
correction for the overall sensor network translation and orientation (that is, a correction for αc) that does
not affect αr. For such sensor network as target location and tracking, there is a natural and functional
argument for partitioning of the self-calibration problem into the internal (to the network) problem of relative
calibration and the external problem of absolute location of the entire sensor network, treated as a rigid body.

5. ESTIMATION ACCURACY

In this section we derive analytical lower bounds on the estimation variance for both the maximum likelihood
estimate of the relative calibration vector αr and for the MAP estimate of α that incorporates both the
calibration measurements and the prior location information. The bounds are tight in the sense that the ML
and MAP estimates achieve those bounds for high measurement signal-to-noise ratio.



5.1 Estimation Accuracy of Relative Location

We first derive a lower bound on the covariance of any unbiased estimator ofαr based on measurementsX . In
this derivation, we assume no prior knowledge on α, which is equivalent to assuming that α is a deterministic
unknown parameter vector [16]. SinceX provides no information about the centroid parameter vectorαc, we
find that the Fisher information matrix of α is singular and no (finite) variance lower bound exists. However,
we can compute a lower bound on the variance of αr, using the constrained estimator bounds presented in
[18, 19, 20, 21]. It turns out that the tangent space of the constraints imposed on αr correspond exactly to
the the null space of its Fisher information matrix, so a finite variance bound is obtained except in degenerate
cases. Degenerate cases occur with probability zero; an example is when all sensors are collinear and a
calibration source is collinear with the sensors and not between any two sensors; in this case, the location
variance bound of the sensors is finite, but the location bound of the collinear source is infinite in the collinear
direction.

The Fisher Information Matrix of α is given by [16]

Iα = E
{
[∇α ln fX(X;α)] [∇α ln fX(X;α)]T

}
For the Gaussian estimation error case, the partial derivatives are readily computed from equation (7) to give

Iα = [G′(α)]TΣ−1
X [G′(α)] (27)

where G′(α1) is the nx × nα matrix whose ijth element is ∂µi(α1)/∂(α1)j , computed from equations (4)
and (5).

The Fisher Information Matrix is rank deficient due to the translational and rotational ambiguity in the
self-calibration solution [15]. However, the CRB of αr is finite, and given by [20]:

E{[α̂r − αr][α̂r − αr]T } ≥ Cαr = U
(
UT IαU

)−1
UT (28)

where U is an nα × (nα − 3) matrix satisfying

UTU = I (29)

UUT = P⊥
M = I −M

(
MTM

)−1
MT (30)

and where M is the nα × 3 matrix defined by

M =
[
M1 M2 · · · MA M̃1 M̃2 · · · M̃S

]T
(31)

Mi =


 1 0 0

0 1 0
−yi xi 1


 , M̃j =


 1 0 0

0 1 0
−ỹj x̃j 0


 (32)

If
(
UT IαU

)
is singular in equation (28), more general bounds can be used [21].

When the CRB of αr is finite, it can be instead computed using an eigendecomposition of Iα. Let

Iα = [U1U2]

[
Λ 0
0 0

] [
UT

1

UT
2

]
(33)



where U2 is an (n× 3) matrix. Then the CRB of αr is given by the pseudoinverse of Iα:

Cαr = U1Λ−1UT
1 (34)

5.2 Covariance Bound for Absolute Location Estimation

For the case of Gaussian prior information, covariance of the MAP estimate α̂ from (24) is given by [16]

E
{
[α̂− α][α̂− α]T

}
≥ [Σ−1

0 + Iα]−1 (35)

where Iα is given by equation (27). For nonGaussian priors, a similar equation involving partial derivatives
of ln f0(α) can be obtained.

An interpretation of the above result is as follows. Since the prior information and the measurement infor-
mation are independent, the information matrix for α is the sum of the individual information matrices. The
Fisher information matrix for the Gaussian prior with covariance Σ0 is Σ−1

0 . The Fisher information from
the measurements is Iα, and equation (35) follows.

We note that equation (35) involves an expectation over both the random variable α and the random mea-
surement errors. If one is interested in the calibration error for a fixed realization of α, one can compute a
variance bound on αr to bound relative calibration for this realization, then include the (now fixed) centroid
errors for this realization.

6. Numerical Results

This section presents numerical examples of the self-calibration procedure. First, we present a synthetically-
generated example consisting of ten sensors and eleven sources placed randomly in a 2 km×2 km region.
Second, we present results from field measurements using acoustic sources and sensors.

6.1 Synthetic Data Example

We consider a case in which ten sensors are randomly placed in a 2 km×2 km region. In addition, eleven
sources are randomly placed in the same region. In both cases the nominal locations of the sensors and
sources are first randomly chosen. Then, the actual locations are chosen as random Gaussian perturbations
from the nominal locations, where the perturbation is found by adding Gaussian noise with zero mean and
standard deviation of 10 meters to each location. The sensor orientations and source emission times are also
randomly chosen. Figure 2 shows the actual locations of the sensors and sources.

Next, TOA and DOA measurements are simulated. We assume every sensor detects each source emission
and measures the TOA and DOA of the source. The measurement uncertainties are Gaussian with standard
deviations of σt = 1msec for the TOAs and σθ = 3◦ for the DOAs. Neither the locations nor emission times
of the sources are assumed to be known.
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Figure 2: Top: Example scene showing ten sensors A1–A10 (stars) and eleven sources S1–S11 (squares).
Also shown are the 2σ location uncertainty ellipses of the sensors and sources; these are on average less
than 0.5 m in radius and show as small dots. Bottom: enlarged views near sensors A6 and A8, showing 2σ
location uncertainty ellipses along with location estimates from 200 Monte-Carlo experiments.
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Figure 3: Two standard deviation location uncertainty ellipses for sensors A6 and A8 from Figure 2.

Figure 2 also shows the two standard deviation (2σ) location uncertainty ellipses for the relative location
estimates of both the sources and sensors. The ellipses are obtained from the 2×2 covariance submatrices of
the CRB in equation (34) that correspond to the relative location parameters in αr of each sensor or source.
These ellipses appear as small dots in the figure; enlarged views for two sensors are also shown.

The results of the maximum likelihood estimation of relative location are also shown in Figure 3. The ‘x’
marks show the ML location estimates from 200 Monte-Carlo experiments with randomly-generated DOA



Table 1: Average 2σ uncertainty radius for relative and absolute sensor calibration for the example presented

Theoretical Monte-Carlo
Value Simulation

Relative Location 0.47 m 0.43 m
Absolute Location 5.09 m 5.19 m

and TOA measurements. The DOA and TOA measurement errors were drawn from Gaussian distributions
with zero mean and variances of σt = 1msec and σθ = 3◦, respectively. The ellipse shows the 2-standard
deviation (2σ) relative location uncertainty region as predicted from the CRB. We find good agreement
between the CRB uncertainty predictions and the Monte-Carlo experiments, which demonstrates the statistical
efficiency of the ML estimator for this level of measurement uncertainty.

We summarize the ten location uncertainty ellipses into a single quantity by first defining the sensor or source
2σ uncertainty radius as the radius of a circle whose area is the same as the area of the 2σ location uncertainty
ellipse. The 2σ uncertainty radius for each sensor or source is computed as the geometric mean of the major
and minor axis lengths of the 2σ uncertainty ellipse. We then find the RMS value of these uncertainty radii
to obtain a single average location error measure. Table 1 shows the average 2σ uncertainty ellipse radius
for the ten sensors, as computed from the CRB, and also the estimated average uncertainty ellipse computed
from Monte-Carlo experiments. The Monte-Carlo results are found by estimating αr for each of the 200
Monte-Carlo experiments. We also compute the true αr vector by transforming the true α vector so that
its centroid is zero. In each Monte-Carlo experiment we compute the average distance from each sensor to
its corresponding true relative location, then average this distance over all Monte-Carlo experiments. We
see that the results agree, and the average uncertainty radius is approximately 0.45m for this example. Not
shown in the figure are the sensor orientation angles and their estimates; the 2σ angle error bound, predicted
from the CRB, is 1.8◦ for each sensor, and the Monte-Carlo estimates are close to this value as well.

We also estimate the absolute location and the average location error. In this case we compute α̂ for each of
the 200 Monte-Carlo experiments and then compute the average distance from the true locations as above.
We compare this average 2σ error distance to the corresponding average error computed from cov(α̂) in
equation (35). These results are also shown in Table 1. We see that the absolute 2σ error is about 5 meters,
approximately one-fourth the prior 2σ uncertainty of 20 meters for each sensor.

This experiment shows that relative location calibration of the sensors to errors well less than 1 meter is
possible. In addition, even with weak prior information of sensor locations, as might be available from
aimpoints for sensor placement, absolute location uncertainties on the order of 5 meters can be obtained. It
is significant that the relative location errors are small — this means that beamforming or source location and
tracking can be expected to have high accuracy. The absolute location corresponds to uncertainty only in the
translation or rotation of the entire sensor network. While this leads to a corresponding uncertainty in, for
example, a target being tracked by the network, the uncertainty lies largely in the translation and rotation of
the track. Other available information may be used to further correct for this location and translation error. If
a track is found to be slightly translated and rotated from a known road, for example, the absolute orientation
sensor network can be correspondingly adjusted.
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Figure 4: Detection probability of a source a distance r from a sensor, for three values of r0.

Partial Measurements

Next, we consider the case when not all sensors detect all sources. For a sensor that is a distance r from a
source, we model the detection probability as

PD(r) = exp−(r/r0)2 (36)

where r0 is a constant that adjusts the decay rate on the detection probability (r0 is the range in meters at
which PD = e−1). We assume that when a sensor detects a source, it measures both the DOA and TOA of
that source.

Three detection probability profiles are considered, as shown in Figure 4, and correspond to r0 = 800m,
r0 = 2000m, and r0 = ∞. Figure 5 shows the average 2σ uncertainty radius values, computed from the
inverse of the FIM, for each of these choices for r0. In this experiment we assume the locations of sensors A1
and A2 are known. The average number of sources detected by each sensor is also shown. For r0 = 2000m
we see only a slight uncertainty increase over the case where all sensors detect all sources. When r0 = 800m
the average location uncertainty is substantially larger, because the effective number of sources seen by each
sensor is small. This behavior is consistent with the average number of sources detected by each sensor,
shown in the figure. For a denser set of sensors or sources, the uncertainty reduces to a value much closer
to the case of full signal detection; for example, with 30 sensors and 30 sources in this region the average
uncertainty is less than 1 m even when r0 = 800m.

6.2 Field Test Results

We present the results of applying the auto-calibration procedure to an acoustic source calibration data
collection conducted during the DUNES test at Spesutie Island, Aberdeen Proving Ground, Maryland in
September 1999. In this test, four acoustic sensors are placed at known locations 60-100 m apart as shown in
Figure 6. Four acoustic source signals are also used. Exact ground truth locations of the calibration sources
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Figure 5: Left: Average 2σ location uncertainty for sensors in Figure 2 for three detection probability profiles.
Right: Average number of sources detected by each sensor in each case.
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are not known, but it is known that each source is within approximately 1 m of a sensor. Each source signal is a
series of bursts in the 40-160 Hz frequency band. Time-aligned samples of the sensor microphone signals are
acquired at a sampling rate of 1005.53 Hz. Times of arrival are estimated by cross-correlating the measured
microphone signals with the known source waveform, and finding the peak of the correlation function. Only
a single microphone signal is available at each sensor, so while TOA measurements are obtained, no DOA
measurements are available. Figure 6 shows the ML estimates of the relative sensor and source location, as
compared to the known relative locations of the sensors. The location errors of sensors A1, A2, A3, and A4,
are 0.14 m, 0.18 m, 0.54 m and 0.27 m, respectively, for an average error of 0.28 m. In addition, the source
location estimates are within 1 m of the sensor locations, consistent with our ground truth information.

7. CONCLUSIONS

We have presented a procedure for calibrating the locations and orientations of a network of sensors when
no sensors or calibration sources have known position. The calibration procedure uses source signals that
are placed in the scene at unknown locations. The sensors detect the source signals and obtain a noisy
measurement of the time-of-arrival and possibly also the direction-of-arrival of the source signal. These
measurements, along with uncertain prior aimpoint information for sensors or sources, are estimates obtained
for each source-sensor pair.

We consider both relative calibration and absolute calibration of the sensor networks. We partition the
calibration problem into a relative calibration and an overall translation and rotation of the sensor network



scene. In relative calibration, sensor and source signal locations and sensor orientations are computed with
respect to one another. Relative calibration requires no prior knowledge of sensor or source locations.
The absolute calibration involves computing an overall scene translation and rotation from prior aimpoint
information.

We present maximum likelihood solutions for the relative calibration, and show that it can be computed from
an earlier maximum likelihood calibration that assumes one sensor has known location and orientation. We
also present a maximum a posteriori estimate of the total calibration that combines calibration measurements
with prior aimpoint knowledge. We show that if the prior knowledge has high uncertainty with respect
to the measurement information, the total calibration partitions into separate relative calibration coupled
with a single scene translation and rotation estimate. The latter estimate can be refined if post-calibration
information, such as target track associations, are available.

We also derive statistical bounds on the calibration uncertatinty. We derive bounds for both relative calibration
and absolute calibrations. The relative calibration bounds are useful because it is relative sensor location
error that limits the location or track estimation accuracy in target tracking applications that employ the
sensor network.

Numerical results show that the calibration estimators essentially achieve their respective lower bounds for the
cases considered. Examples illustrating the effects of sensor density, partial detections of source signals, and
co-location of sensors on calibration accuracy are presented. An initial result based on field measurements
is encouraging.
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