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ABSTRACT

We consider the problem of locating and orienting a network of unattended sensors that has been deployed in a scene
with unknown sensor locations and orientation angles, when no “anchor” nodes are present. Many localization problems
assume that some nodes have known locations and propagate location information about other nodes using triangulation
procedures. In our formulation, we do not require such anchor nodes, but instead assume prior probability density function
for the nominal locations of a subset of the nodes. These nominal locations typically have high uncertainty, on the order
of tens of meters. The self-calibration solution is obtained in two steps. Relative sensor locations are estimated using
noisy time-of-arrival and direction-of-arrival measurements of calibration source signals in the scene, and absolute location
calibration is obtained by incorporating prior nominal location knowledge. We consider a Bayes approach to the calibration
problem and compute accuracy bounds on the calibration procedure. A maximum a posteriori estimation algorithm is
shown to achieve the accuracy bound. Experiments using both synthetic data and field measurements are presented.
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1. INTRODUCTION

Collaborative sensing has becoming increasingly important in many military and civilian applications.1–4 The basic concept
is to deploy a large number of low-cost, self-powered sensor nodes that acquire and process data. Typical sensors may
include one or more acoustic microphones as well as seismic, magnetic, or imaging sensing capability. The collaborative
sensing goals are to detect, track, and classify objects in the environment. An RF communication network links the
sensors to one another and to a Central Information Processor, which in turn communicates with a higher-level information
processing center (see Figure 1).
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Figure 1. Sensor network architecture. A network of low-cost sensors are deployed in a region. Each sensor communicates to a local
Central Information Processor, which relays information to a higher-level information processing center.

In order to fuse information acquired by individual sensors, one generally needs to know the location and orientation of
each sensor. However, accurate prior knowledge of sensor locations and orientations is often not available. These sensors
are placed in the field by persons, by an air drop, or by munition launch, and in each case the location and orientation
of the placed sensor has high uncertainty. One could equip every sensor with a GPS and compass to obtain location and
orientation information, but this adds to the expense and power requirements of the sensor and increases its susceptibility
to detection or jamming. Thus, there is interest in developing methods to self-localize the sensor network with a minimum
of additional hardware, processing, or communication.
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Self-localization in sensor networks is an active area of current research.5–7 Savvides et al.8 consider iterative
multilateration-based techniques, and Bulusu et al.5, 9 consider low-cost localization methods that employ beacon signals
at known locations. Cevher and McClellan10 consider sensor network self-calibration using a single acoustic source that
travels along a straight line. Bearings-only localization methods11 have also been considered.

Many self-calibration techniques require knowledge of the absolute locations of some nodes. In particular, the above
techniques assume exact knowledge of a small number of “anchor nodes”. Such information is often not available, or
is costly to provide. In this paper we consider an approach to sensor network self-calibration using a combination of
calibration sources and uncertain prior location information. The proposed self-calibration approach entails placing a
number of signal sources in the same region as the sensors (see Figure 2). Neither the source locations nor their signal
emission times are assumed to be known. Each source generates a signal that is detected by some of the sensors, and
each sensor measures the time-of-arrival (TOA) and, if possible, direction-of-arrival (DOA) of the source signal. These
measurements permit estimating the relative locations and orientations of the sensors.
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Figure 2. Sensor self-localization scenario. Sensors are placed in the field at unknown locations and orientations. Calibrations sources,
also at unknown locations, generate signals time-of-arrival and direction-of-arrival measurements at the sensors are used for network
self-calibration.

In addition, we assume uncertain prior location information for some of the sensors. Uncertain prior information about
sensor location may be available in practice from aimpoints of munition-deployed sensors, or from aircraft location at
the point of an air drop of a sensor. Although the aimpoints may be known, the actual sensor location typically has high
uncertainty (on the order of tens of meters) from this aimpoint.

We develop maximum a posteriori (MAP) estimates of the absolute locations and orientations of the sensors from the
prior location information along with the source-to-sensor TOA and DOA estimates. We also derive bounds on localization
accuracy. We parameterize the localization problem as a sum of two parts: an absolute location and orientation of the
entire sensor network, and the relative location and orientation of each sensor with respect to this absolute location. We
compute the Cramér-Rao bound for the relative location parameters and derive the uncertainty of the MAP absolute location
estimate. The relative location errors are typically (much) smaller than the prior location uncertainties.

Finally, we present experimental results on both synthetic data and field measurements to demonstrate the effectiveness
of the proposed techniques.

2. SELF-LOCALIZATION PROBLEM FORMULATION

Assume we have a set of A sensors in a plane, each with unknown location {ai = (xi, yi)}A
i=1 and unknown orientation

angle θi with respect to a reference direction (e.g., North); see Figure 2. We consider the two-dimensional problem in
which the sensors lie in a plane and the unknown reference direction is azimuth; an extension to the three-dimensional
case is possible using similar techniques.



In the sensor field are also placed S point calibration source signals at locations {sj = (x̃j , ỹj)}S
j=1. The source

locations are in general unknown. Each source emits a finite-length signal that begins at time tj ; the emission times are
also in general unknown.

Define the parameter vector α containing the sensor and source unknown parameters:

α = [βT , γT ]T (3(A+ S) × 1) (1)

β = [x1, y1, θ1, . . . , xA, yA, θA]T (3A× 1) (2)

γ = [x̃1, ỹ1, t1, . . . , x̃S , ỹS , tS ]T (3S × 1) (3)

Here, β contains the sensor unknown parameters and γ contains the unknown nuisance source signal parameters. Let
nα = 3(A+ S) denote the length of α.

We assume that some prior information about α is available. Typically the prior information encodes the nominal
locations and uncertainty of some of the sensors or sources. We express this this prior information probabilistically as a
prior probability density function f0(α). As an example, one can assume f(α) is Gaussian distributed with known mean
and covariance, so

f0(α) = N (α0,Σ0) (4)

where α0 and Σ0 are given.

2.1. Absolute and Relative Calibration

It is useful to express the location parameters in terms of a relative location and orientation with respect to the sensor-source
centroid. To this end, define the centroid location and orientation, αc(α) = [xc, yc, θc]T , by

xc =
1

A+ S


 A∑

i=1

xi +
S∑

j=1

x̃j


 yc =

1
A+ S


 A∑

i=1

yi +
S∑

j=1

ỹj


 θc =

1
A

A∑
i=1

θi (5)

We see that αc = Bα for a (3 × nα) matrix B with elements defined in (5).

For any parameter vector α, define the corresponding relative location vector αr by transforming the points in α such
that Bαr = 0. The transformation is defined as follows for a vector α with centroid αc = [xc, yc, θc]T . For the ith sensor
with parameters (xi, yi, θi), which are the 3(i− 1) + 1st to 3(i− 1) + 3rd elements of α, the corresponding elements of
αr are given by 

 xi,r

yi,r

θi,r


 =


 cos θc sin θc 0

− sin θc cos θc 0
0 0 1





 xi − xc

yi − yc

θi − θc


 (6)

Similarly, for the jth source with parameters (x̃j , ỹj , tj) (which are the 3(A+ j− 1)+1st to 3(A+ j− 1)+3rd elements
of α, the corresponding elements of αr are given by


 x̃j,r

ỹj,r

tj,r


 =


 cos θc sin θc 0

− sin θc cos θc 0
0 0 1





 x̃j − xc

ỹj − yc

tj


 (7)

From the above definitions, it is clear that there is a one-to-one relationship between a parameter vector α and the two
vectorsαr andαc. Note that tj remains unchanged by the transformation. The inverse transformations are readily obtained
from (6)–(7). We remark that even though the centroid αc can be computed linearly (αc = Bα), the transformation of a
vectorα to obtainαr is nonlinear because all locations have to be rotated by θc. We will useα and (αr, αc) interchangeably
in the remainder of the paper.



2.2. Calibration Measurements

Each emitted source signal is detected by all of the sensors in the field, and each sensor measures the time-of-arrival and
direction-of-arrival for that source. We denote the measured TOA at sensor i of source j as tij and the measured DOA as
θij . The DOA measurements are made with respect to a frame of reference local to the sensor. The times of arrival are
measured with respect to a known, common time base. The time base can be established, for example, by using them RF
communication network linking the sensors. The time base needs to be accurate to on the order of the sensor’s time of
arrival measurement uncertainty (which is 1 msec in the examples considered in Section 6).

The set of 2AS calibration measurements are gathered in a vector

X =
[

vec(T )
vec(Θ)

]T

(2AS × 1) (8)

where vec(M) stacks the elements of a matrix M columnwise and where

T =




t11 t12 . . . t1S

t21 t22 . . . t2S

...
...

. . .
...

tA1 tA2 . . . tAS


 , Θ =




θ11 θ12 . . . θ1S

θ21 θ22 . . . θ2S

...
...

. . .
...

θA1 θA2 . . . θAS


 (9)

Each sensor transmits its 2S noisy TOA and DOA measurements to a Central Information Processor (CIP), and these 2AS
measurements, along with the measurement uncertainty and prior uncertainty f0(α) form the information with which the
CIP computes the sensor calibration. The communication cost to the CIP is low, and the calibration processing can be
entirely performed by the CIP.

We denote the true TOA and DOA of source signal j at sensor i as τij(α) and φij(α), respectively, and include their
dependence on the parameter vector α; they are given by:

τij(α) = tj + ‖ai − sj‖/c (10)

φij(α) = θi + � (ai, sj) (11)

where ai = [xi, yi]T , aj = [x̃j , ỹj ]T , ‖ · ‖ is the Euclidean norm, � (ξ, η) is the angle between the points ξ, η ∈ R2, and c
is the signal propagation velocity.

Each element of X has measurement uncertainty; we model the uncertainty as

X = µ(α) + E (12)

where µ(α) is the noiseless measurement vector whose elements are given by equations (10) and (11) for values of i, j
that correspond to the vector stacking operation in (8), and where E is a random vector with known probability density
function.

The self-calibration problem, then, is: given the measurement X , estimate β. The parameters in γ are in general
unknown and are nuisance parameters that may also need to be estimated.

Significantly, the measurements in X provide information about the relative sensor and source locations but not about
the centroid. Thus, X enables us to estimate αr but provides no information about αc.

3. BAYESIAN SELF-CALIBRATION

We consider α as a random vector with prior probability density function (pdf) f0(α). The measurement vector informs
us about α as quantified by the posterior probability f(α|X). From Bayes’ rule,

f(α|X) =
f(X|α)f0(α)

f(X)
(13)



We choose as our estimate maximum a posteriori (MAP) estimate, which is the value of α that maximizes the posterior
probability density of α:

α̂ = arg max
α

f(α|X) = arg max
α

f(X|α)f0(α) (14)

Note that the measurements X are independent of absolute location; thus, f(X|α) = f(X|αr). Combining this fact with
the negative logarithm of equation (14) yields

α̂ = arg min
(αr,αc)

[− ln f(X|αr) − ln f0(α)] (15)

where αc = [xc, yc, θc]T is a 3 × 1 centroid vector.

3.1. Gaussian Measurement Uncertainty

If we assume the measurement uncertainty E in equation (12) is Gaussian with zero mean and known covariance ΣX , then

f(X;α) =
1

(2π)AS |ΣX |1/2 exp
{

−1
2
Q(X;α)

}
(16)

Q(X;α) = [X − µ(α)]T Σ−1
X [X − µ(α)] (17)

A special case is when the measurement errors are uncorrelated and the TOA and DOA measurement errors have variances
σ2

t and σ2
θ , respectively; equation (17) then becomes

Q(X;α) =
A∑

i=1

S∑
j=1

[
(tij − τij(α))2

σ2
t

+
(θij − φij(α))2

σ2
θ

]
(18)

If we further assume that the prior information is Gaussian with mean α0 and covariance Σ0, then

f0(α) =
1

(2π)3(A+S)/2|Σ0|1/2 exp
{

−1
2
[α− α0]T Σ−1

0 [α− α0]
}

(19)

Note that some elements of α may have no prior information, in which case the above pdf will be reduced in dimension
accordingly.

For the case of Gaussian priors and Gaussian measurement errors, equation (15) yields

α̂ = arg min
(αr,αc)

[X − µ(α)]T Σ−1
X [X − µ(α)] + [α− α0]T Σ−1

0 [α− α0] (20)

Equations (15) and (20) both involve minimization of a nonlinear function ofα; for the Gaussian case, (20) yields a nonlinear
least squares minimization problem. In the next section we discuss various approaches to solve this minimization problem.

4. ALGORITHMS FOR SELF-CALIBRATION

First, we write (15) as
α̂ = arg min

(α,c)
[J1(αr) + J2(αr, c)] (21)

where J1(αr) = − ln f(X|αr) and J2(αr, c) = − ln f0(α).

In developing algorithms for minimizing (21), it is useful to consider separately the case for which some prior infor-
mation on α is known with relatively high accuracy and the case for which the prior information has high uncertainty. For
the former case, one can use the high-accuracy prior information to efficiently determine an initial α to form the starting
point for the nonlinear minimization. For example, if we know the prior location of at least two sensors with high accuracy,
then the techniques developed in Moses et al.12 can be used to initialize the locations orientations, and emission times of
the sources and sensors.



The more difficult case is the one for which the prior location information has high uncertainty. In this case, we form
an initial estimate by making the following approximation: we assume that αr that minimizes (21) is approximately equal
to α̂r, where

α̂r = arg min
(αr)

J1(αr) (22)

Next, consider the minimization of J1(αr). We proceed as follows. First, note that there is a one-to-one correspondence
between a parameter vector αr and a parameter vector α1 for which x1 = y1 = θ1 = 0. This is not surprising, since in
both cases there are three degrees of freedom removed from a parameter vector α. One can compute αr from α1 using
equations similar to (6)–(7). Thus, one method for finding α̂r is to find

α̂1 = arg min
α1

J1(α1) (23)

where α1 satisfies x1 = y1 = θ1 = 0, and then to convert α̂1 to a corresponding α̂r using this one-to-one transformation.
An algorithm for finding α̂1 in (23) is given in Moses et al.12

Once α̂r is obtained from (22), finding α̂ that solves (21) remains. This generally involves a nonlinear minimization
over the parameters in α. Initial estimates for αr have already been computed, so we need to initialize the 3 × 1 constraint
vector αc. One way to initialize αc is to find the translation components xc and yc to align the centroid of the sensor and
source locations to centroid of the prior location information. For example, if the prior information f0(α) is Gaussian with
mean α0, and covariance Σ0 = kI for some constant k, one finds that the ML estimate of the centroid given αr is found
by setting (xc, yc) to the centroid of the known sensor and source locations given in α0. In practice, it may be that prior
location information for only a subset of sensors or sources is known; in this case one would set the centroids equal only
on the subset for which prior information is known. The remaining centroid parameter, θc, can be initialized by a coarse
brute-force search on the interval [0, 2π). For Gaussian prior locations with general Σ0, the solution for xc and yc that
minimizes (21) can be found in closed form as the solution to a 2 × 2 matrix equation.

Once an initial estimate of αc is found, one can find α̂ from (21) using an iterative descent procedure. In our
implementation we used the Matlab function lsqnonlin.

If the prior knowledge has high uncertainty, an approximate solution to (21), with lower computational cost, may be
found as follows. If the prior knowledge has high uncertainty, then J2 depends only weakly on αr, so the optimal αr

vector is approximately given by the solution to (22). Then, we can solve for the remaining three parameters in αc by
inserting α̂r into equation (21) and finding α̂c; that is:

α̂c = arg min
αc

[J1(α̂r) + J2(α̂r, c)] (24)

As discussed above, if the prior uncertainty model is Gaussian, the translation parameters xc and yc can be found in closed
form, and the minimization in (24) reduces to a search over the scalar parameter θc.

4.1. Uncertainty in Propagation Velocity

Thus far we have assumed that the signal propagation velocity, c, is known. In this section we discuss modifications to the
above approach when there is some uncertainty in c.

First, we note that the TOA and DOA measurements provide no information for estimation of c. Uncertainty in c
results in an uncertainty on the scaling of the overall source-sensor locations in αr. Thus, if c is unknown, we append c to
the set of unknowns in αc.

For the case of Gaussian prior information with uncorrelated and equal variance uncertainty in the sensor and source
x and y locations, equation (24) (where now αc = [xc, yc, θc, c] can be solved for in closed-form using a least-squares
estimate.13 Said another way, the conditional maximum likelihood estimate of c given αr is obtained by solving a linear
set of equations. It is interesting to note that a closed-form solution is possible when c is unknown but not when c is known.



5. ESTIMATION ACCURACY

In this section we establish the accuracy of both the maximum likelihood estimate ofαr for the case of no prior information,
and for the MAP estimate of α that incorporates both the TOA/DOA measurements and the prior location information. We
use the Fisher Information Matrix (FIM) and the Cramér-Rao Bound (CRB) as tools to analytically determine estimation
accuracy. The Cramér-Rao Bound (CRB) gives a lower bound on the covariance of any unbiased estimate of α. It is
a tight bound in the sense that α̂ML has parameter uncertainty given by the CRB for high measurement signal-to-noise
ratio; that is, as maxi(ΣX)ii → 0. Thus, the CRB is a useful tool for analyzing calibration uncertainty. It is computed
from the inverse of the Fisher Information Matrix when the inverse exists. In our case, the FIM for αr is singular, and a
pseudoinverse-based solution must be used. In the addition of prior information, we can compute the covariance of the
MAP α estimate.

5.1. Estimation Accuracy of Relative Location

First, we establish a lower bound on the covariance of an unbiased estimator of αr based on measurements X . In this
derivation, we assume no prior knowledge on α; that is, we assume α is a deterministic unknown parameter vector. Since
X provides no information about the centroid parameters, we find that the Fisher information matrix of α is singular; in
fact, the null space of the Fisher information matrix generally has rank three, corresponding to the three degrees of freedom
in an arbitrary translation and rotation of the sensor and source locations. However, the constraints imposed on αr are
such that its covariance estimate is nonsingular in all but degenerate cases. An example of a degenerate case is when all
sensors are collinear and a calibration source is collinear with the sensors and not between any two sensors.

The CRB can be computed from the Fisher Information Matrix. The Fisher Information Matrix of α is given by14

Iα = E
{

[∇α ln f(T,Θ;α)] [∇α ln f(T,Θ;α)]T
}

For the Gaussian estimation error case, the partial derivatives are readily computed from equation (16); we find that

Iα = [G′(α1)]T Σ−1
X [G′(α1)] (25)

where G′(α1) is the 2AS × nα matrix whose ijth element is ∂µi(α1)/∂(α1)j .

The Fisher Information Matrix is rank deficient due to the translational and rotational ambiguity in the self-calibration
solution.12 However, the CRB of αr is finite, and given by14, 15:

Cαr
= P [Iα]†P (26)

where (·)† denotes the Moore-Penrose pseudoinverse and where P is a projection matrix given by

P = I −M(MTM)−1MT (27)

M =
[
M1 M2 · · · MA M̃1 M̃2 · · · M̃S

]T
(28)

Mi =


 1 0 0

0 1 0
−yi xi 1


 , M̃j =


 1 0 0

0 1 0
−ỹj x̃j 0


 (29)

5.2. Accuracy of Maximum A Posteriori Absolute Location Estimate

When prior information is available, the covariance of the MAP estimate α̂ from (21) is found as follows. Since the prior
information and the measurement information are independent, the information matrix associated with both is the sum of
each. This total information matrix is given by

I0
α = Σ−1

0 + Iα (30)

where Iα is given by equation (25) and where we have assumed a Gaussian prior. The covariance of the MAP estimate is,
for high SNR, given by the inverse of this matrix (if it exists), so

cov(α̂) = [I0
α]−1 (31)
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Figure 3. Top: Example scene showing ten sensors A1–A10 (stars) and eleven sources S1–S11 (squares). Also shown are the 2σ
location uncertainty ellipses of the sensors and sources; these are on average less than 0.5 m in radius and show as small dots. Bottom:
enlarged views near sensors A6 and A8, showing 2σ location uncertainty ellipses along with location estimates from 200 Monte-Carlo
experiments.

6. EXPERIMENTAL RESULTS

This section presents numerical examples of the self-calibration procedure. First, we present a synthetically-generated
example consisting of ten sensors and eleven sources placed randomly in a 2 km×2 km region. Second, we present results
from field measurements using acoustic sources and sensors.

6.1. Synthetic Data Example

We consider a case in which ten sensors are randomly placed in a 2 km×2 km region. In addition, eleven sources are
randomly placed in the same region. In both cases the nominal locations of the sensors and sources are first randomly
chosen. Then, the actual locations are chosen as random Gaussian perturbations from the nominal locations, where the
perturbation is found by adding Gaussian noise with zero mean and standard deviation of 10 meters to each location. The
sensor orientations and source emission times are also randomly chosen. Figure 3 shows the actual locations of the sensors
and sources.

Next, TOA and DOA measurements are simulated. We assume every sensor detects each source emission and measures
the TOA and DOA of the source. The measurement uncertainties are Gaussian with standard deviations of σt = 1 msec
for the TOAs and σθ = 3◦ for the DOAs. Neither the locations nor emission times of the sources are assumed to be known.

Figure 3 also shows the two standard deviation (2σ) location uncertainty ellipses for the relative location estimates of
both the sources and sensors. The ellipses are obtained from the 2× 2 covariance submatrices of the CRB in equation (26)
that correspond to the relative location parameters in αr of each sensor or source. These ellipses appear as small dots in
the figure; enlarged views for two sensors are also shown.

The results of the maximum likelihood estimation of relative location are also shown in Figure 4. The ‘x’marks show the
ML location estimates from 200 Monte-Carlo experiments with randomly-generated DOA and TOA measurements. The
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Figure 4. Two standard deviation location uncertainty ellipses for sensors A6 and A8 from Figure 3.

Table 1. Average 2σ uncertainty radius for relative and absolute sensor calibration for the example presented

Theoretical Monte-Carlo
Value Simulation

Relative Location 0.47 m 0.43 m
Absolute Location 5.19 m 5.09 m

DOA and TOA measurement errors were drawn from Gaussian distributions with zero mean and variances of σt = 1 msec
and σθ = 3◦, respectively. The ellipse shows the 2-standard deviation (2σ) relative location uncertainty region as predicted
from the CRB. We find good agreement between the CRB uncertainty predictions and the Monte-Carlo experiments, which
demonstrates the statistical efficiency of the ML estimator for this level of measurement uncertainty.

We summarize the ten location uncertainty ellipses into a single quantity by first defining the sensor or source 2σ
uncertainty radius as the radius of a circle whose area is the same as the area of the 2σ location uncertainty ellipse. The 2σ
uncertainty radius for each sensor or source is computed as the geometric mean of the major and minor axis lengths of the
2σ uncertainty ellipse. We then average these uncertainty radii to obtain a single average location error quantity. Table 1
shows the average 2σ uncertainty ellipse radius for the ten sensors, as computed from the CRB, and also the estimated
average uncertainty ellipse computed from Monte-Carlo experiments. The Monte-Carlo results are found by estimating
αr for each of the 200 Monte-Carlo experiments. We also compute the true αr vector by transforming the true α vector
so that its centroid is zero. In each Monte-Carlo experiment we compute the average distance from each sensor to its
corresponding true relative location, then average this distance over all Monte-Carlo experiments. We see that the results
agree, and the average uncertainty radius is approximately 0.45 m for this example. Not shown in the figure are the sensor
orientation angles and their estimates; the 2σ angle error bound, predicted from the CRB, is 1.8◦ for each sensor, and the
Monte-Carlo estimates are close to this value as well.

We also estimate the absolute location and the average location error. In this case we compute α̂ for each of the
200 Monte-Carlo experiments and then compute the average distance from the true locations as above. We compare this
average 2σ error distance to the corresponding average error computed from cov(α̂) in equation (31). These results are
also shown in Table 1. We see that the absolute 2σ error is about 5 meters, approximately 1/4 the prior 2σ uncertainty of
20 meters for each sensor. The theoretical variance of 5.19 m in the table is typical; in another simulation we computed the
theoretical 2σ absolute distance error for 200 choices of true sensor locations and found the average of these 200 distances
to be 5.17 m.

This experiment shows that relative location calibration of the sensors to errors well less than 1 meter is possible. In
addition, even with weak prior information of sensor locations, as might be available from aimpoints for sensor placement,
absolute location uncertainties on the order of 5 meters can be obtained. It is significant that the relative location errors
are small — this means that beamforming or source location and tracking can be expected to have high accuracy. The
absolute location corresponds to uncertainty only in the translation or rotation of the entire sensor network. While this
leads to a corresponding uncertainty in, for example, a target being tracked by the network, the uncertainty lies largely in
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Figure 5. Actual and estimated sensor locations, and estimated source locations, using field test data. Error distances between actual
and estimated sensor locations are shown in parentheses.

the translation and rotation of the track. Other available information may be used to further correct for this location and
translation error. If a track is found to be slightly translated and rotated from a known road, for example, the absolute
orientation sensor network can be correspondingly adjusted.

6.2. Field Test Results

We present the results of applying the auto-calibration procedure to an acoustic source calibration data collection conducted
during the DUNES test at Spesutie Island, Aberdeen Proving Ground, Maryland in September 1999. In this test, four
acoustic sensors are placed at known locations 60-100 m apart as shown in Figure 5. Four acoustic source signals are also
used. Exact ground truth locations of the calibration sources are not known, but it is known that each source is within
approximately 1 m of a sensor. Each source signal is a series of bursts in the 40-160 Hz frequency band. Time-aligned
samples of the sensor microphone signals are acquired at a sampling rate of 1005.53 Hz. Times of arrival are estimated by
cross-correlating the measured microphone signals with the known source waveform, and finding the peak of the correlation
function. Only a single microphone signal is available at each sensor, so while TOA measurements are obtained, no DOA
measurements are available. Figure 5 shows the ML estimates of the relative sensor and source location, as compared to
the known relative locations of the sensors. The location errors of sensors A1, A2, A3, and A4, are 0.14 m, 0.18 m, 0.54 m
and 0.27 m, respectively, for an average error of 0.28 m. In addition, the source location estimates are within 1 m of the
sensor locations, consistent with our ground truth information.

7. CONCLUSIONS

We have presented a procedure for calibrating the locations and orientations of a network of sensors. The calibration
procedure uses source signals that are placed in the scene and computes sensor and source unknowns from estimated
time-of-arrival and direction-of-arrival estimates obtained for each source-sensor pair. These measurements can be used
to compute a maximum likelihood estimate of the relative sensor and calibration source locations, along with the relative
orientation of the sensors. Absolute sensor calibration is obtained by using these measurements along with probabilistic
prior location information of some of the sources. A maximum a posteriori calibration solution is proposed in this case.



An analytical expression for the Cramér-Rao lower bound on the relative sensor calibration error covariance matrix is
presented. In addition, a high measurement SNR expression for the posterior error covariance of the absolute calibration
method is derived. Experimental results on synthetic and measured data validate the theoretical expressions and show that
two-standard-deviation relative location accuracies of less than 1 meter can be obtained. Absolute location calibration
two-standard-deviation uncertainty of approximately 5 meters was obtained for the cases considered.

The calibration procedure requires low sensor communication and has reasonable computational cost. The algorithms
require low communication overhead as each sensor needs to communicate only two real values to the CIP for each source
signal it detects. Computation of the calibration solution takes place at the CIP. For the synthetic examples presented the
calibration computation takes on the order of 10 seconds using Matlab on a standard personal computer. For the field test
data, computation time was less than 1 second.
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