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ABSTRACT

We consider the role of array geometry on the Direction of
Arrival (DOA) estimating performance of the array where
the impinging signal is wideband. We define the criteria un-
der which the planar and volume arrays are isotropic, and
derive the necessary and sufficient conditions on the loca-
tion of array elements so that the array has isotropic perfor-
mance. We also present several designs of isotropic planar
and volume arrays and give example geometries.

1. INTRODUCTION

The number and location of the elements in an array strongly
affects the DOA estimation performance of the array sys-
tem. There is a considerable amount of work done on the de-
sign of the optimal array (optimal in terms of cost, space, er-
ror variance or resolution limits etc.). Most of the emphasis
is devoted to linear arrays (or combination of linear arrays)
as they are simple to analyze, provide the maximum aper-
ture when the number of elements fixed and optimal DOA
estimation algorithms are available for such arrays. One of
the main problems with the linear arrays is the nonunifor-
mity of the performance: the DOA estimation performance
degrades considerably near endfire. In this paper, we con-
centrate on arrays that have uniform performance over the
whole field of view.

Several different performance and design criteria have
been introduced to be used in obtaining optimal arrays. In
[1], the authors introduce a measure of similarity between
array response vectors and show that the similarity measure
can be tightly bounded below. The array with the high-
est bound is optimum in the sense that it has the best am-
biguity resolution. In [2], a sensor locator polynomial is
introduced for array design. A polynomial is constructed
using prespecified performance levels, such as detection-
resolution thresholds and Cramér-Rao Bounds (CRBs) on
error variance, and its roots are the sensor locations of the
desired linear or planar array. In [3], differential geometry is
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used to characterize the array manifold and an array design
framework based on these parameters is proposed. Studies
regarding to arrays that have uniform performance with re-
spect to a certain criterion can also be found in the literature.
In [4], the asymptotic mean square angular error is used to
define an isotropic array. The authors derive the angle CRB
for a single far-field source and then derive conditions on the
sensor locations to ensure the azimuth and elevation errors
are uncoupled from each other in the bound.

In this paper, we study planar and volume array geome-
tries that have isotropic DOA estimation performance. For
planar arrays, the arrays are isotropic in the sense that the
CRB on the DOA estimation of a single source is uniform
for all source arrival angles from 0 to 2. For volume ar-
rays we use the bound on the Mean Square Angular Error
(MSAE) as the criterion. The MSAE is a scalar measure
of the error between true and estimated unit bearing vectors
pointing towards the source, and its bound is computed from
the CRB. The array is said to be isotropic if the bound on the
MSAE is constant for all azimuth and elevation angles in [0
2w]x[-Z Z]. Since the CRB and bound on the MSAE are
independent of any particular estimator and ML estimators
asymptotically achieve these bounds, they are useful criteria
for array design.

2. SYSTEM MODEL

We assume an array of N identical sensors located in space
at locations r; for ¢ € [1, N]. Following [5], we adopt a
system model describing a source impinging on the array.
A single far-field source s(t), which is in general wideband,
impinges on the array from direction § = [@,], ¢ denot-
ing the azimuth angle measured counterclockwise from the
z-axis on the z-y plane, and ¢ denoting the elevation an-
gle measured counterclockwise from the z-axis on the z-z
plane. The noise at the sensors is independent, zero mean
Gaussian noise, and independent of the source signal. The
observation time T is partitioned into K intervals of length
T4 and a J-point discrete Fourier transform is applied to
each interval. Assuming T} is long enough, we say the dis-
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crete Fourier coefficients are uncorrelated. Then,

i=14L.,J (1)
k=1,.,K

zr(wj) = Ag(wj)sk(wj) + nk(wj),

where zi(w;), ne{w;) are N x 1 vectors and sz (w;) is a
scalar. The elements of zx(w;), ni(w;) and sg(w;) are
the discrete Fourier coefficients of the sum of the sensor
outputs, the noise and the signal source at the discrete fre-
quency wj, respectively. Ag(w;) is given by

Ag(wj) = [e7widi(0) giwida(8) | edwidn(OT  (2)
where d(6) = ———h is the propagation delay associated
with the kth sensor c is the speed of propagation and u
denotes the unit vector pointing towards the signal source
(bearing vector).

3. PLANAR ARRAYS

In this section we consider the special case of a planar array
with elements at locations r; = [ry,,ry,]T. The array is
used to estimate the DOA of a wideband signal s(¢) which
is coplanar with the array or equivalently the bearing vector
u = [cos(¢),sin(@)]”. Here the signal arrives at an angle

For the system model described in Section II and un-
der the planar array-coplanar signal assumption, the CRB
for the source DOA estimate is given by eqn (2.24) in [5].
For the model given by (1) and (2), we can write the CRB
explicitly as

CRB(¢) = G(B,¢)™! (2 czN 2 :‘i”f (p_]z\’,% >) i

j=1 7
3
wT 6 o :
6(B.) = 55 B = [-sin(@),coste)] B o]
' 4
N
B= %;m = 1)l = )T ©)
where 7, is the centroid of the array, i.e.,
N .
=% ®)

i=1

p; 1s the signal power and n; is the noise power at frequency
interval j.

We see that the CRB is a product of a term G (B, ¢) that
depends only on the source DOA and the array geometry
and a term that depends on source and noise powers as a

function of frequency. This is an important property, be-
cause the impact of the array geometry on the CRB is the
same regardless of whether the source spectrum in narrow-
band or broadband, and regardless of the source signal and
noise spectral densities. Thus, the results that follow apply
to a broad class of array signal processing scenarios. More-
over, the CRB depends on the array geometry only through
the matrix B, which is the 2x2 “covariance” of the array
points. Thus, any two geometries that have the same covari-
ance matrix B will have identical CRB performance.

3.1. Isotropic Planar Arrays

Without loss of generality we can assume that the array is
centered at the origin, or equivalently, r, = [0,0]7. Under
this assumption, B in (5) simplifies to

1 T
B= N Z TiT; (7)

We are interested in planar geometries whose single-
source CRB is independent of signal arrival angle ¢. We
refer to such arrays as isotropic arrays. The following re-
sult characterizes the set of all isotropic arrays:

Theorem 1 :

(a) An N element planar array which is centered at the
origin (r. = [0,0]T) and represented by the 2-by-2 matrix
B = LN rixT, where r; = [ry,,ry,]7 is the location
of the it* sensor, is isotropic if and only if

B =kI, - (8)

where k is any positive constant and I denotes the 2x2
identity matrix.
(b) If the array is isotropic, then

1 N
G(B,¢)=k=3>_ Inll’ ©
i=1
Proof : See [8].

3.2. Planar Array Design Examples

In this section we present four design methods for generat-
ing planar arrays and give examples for each method.

Circularly Symmetric Geometries :

The immediate solution where both equatlons (7) and
(8) are satisfied is circularly symmetric geometries or any
superposition of circularly symmetric geometries, where we
define a circularly symmetric geometry as one in which N >
3 sensors are equally-spaced on a circle that has a radius
greater than 0, A single sensor located at the origin is also
in this class. An example geometry is shown Figure 1 (a)
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Rotated Geometries :

Consider an —’2‘1 element subarray, where N is even, with
arbitrary sensor locations. Define the origin as the centroid
of these points, and define a second -’2! element subarray
by rotating the first elements by either 90° or —90°. Su-
perposition of the original and rotated subarrays forms an
N -element isotropic planar array. For details and proofs see
[8]. An example array generated with this method is shown
in Figure 1 (b).

Completion of Arbitrary (N-2)-element Arrays :

Suppose locations of the sensors of an arbitrary (N —2)-
element array are given. By properly locating the remaining
two sensors along one of the eigenvectors of the B matrix
that represents the (N — 2)-element array, we can form an
isotropic planar array. For details and proofs see [8]. An ex-
ample geometry formed with this method is shown in Fig-
ure 1 (c).

X-shaped Isotropic Arrays

We can combine two or more X-shaped geometries so
that the resulting 4n-element array (n=2,3..) is isotropic.
An X-shaped geometry is a set of four sensors with radius
{I7|| and angles +a, +7 — a. A special case is the superpo-
sition of X-shaped geometries are those whose elements lie
along two lines. For example, the eight-element isotropic
array with elements having z-values of +1 is shown in Fig-
ure 1 (d). See [8] for a more detailed explanation.

4. THREE DIMENSIONAL ARRAYS

In this section, we consider an array that has elements lo-
cated in R? and is used to estimate the DOA of a single
wideband far-field source or equivalently the bearing vector
u = [cos(¢) cos(t), sin(¢) cos(v), sin(¥)]T. The source
direction is parameterized by 8 = [¢, %], where ¢ € [0, 27)
and ¢ € [-7F, %] denote, respectively, the azimuth and the
elevation of the source. The single source CRB for this sce-
nario is a 2-by-2 matrix ,

3 1 (2KN & N\
CRB(9) = G(B,6) 1( = ;;ipg<pﬂv’+n]))
(10

G(B,8) = Jo(u)T BJs(u) an

where Jy (u) is the 3-by-2 Jacobian matrix for u and is equal
to

— sin(¢) cos(1p)  ~ cos(¢) sin(y))
Jo=[3% 28] = cos(9)cos() —sin(g)cos()
v 0 cos(¢))

(12)

Once again, we see that the CRB is the product of a term
that depends only on the array geometry of source angle,

(a) . (®) .
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Fig. 1. (a) An isotropic planar array obtained as the super-
position of a 4 element (black spheres) and 3 element (gray
spheres) circularly symmetric array. (b) 6 element isotropic
array (black and gray spheres) formed from rotating a ran-
domly generated 3-element subarray (black spheres) by 90°.
(c) A 7-element isotropic array formed from an arbitrary
5-element subarray (black spheres) by adding 2 elements
(gray spheres). (d) An 8-element isotropic array formed by
combining two X-shaped geometries.

and a term that depends only on the signal and noise param-
eters. We also see that the CRB depends on array geometry
only through the 3 x 3 array covariance matrix B.

4.1. Performance Criterion

Estimating the azimuth and elevation corresponding to the
DOA of the signal is equivalent to estimating the vector u.
The Mean-Square Angular Error (MSAE) is introduced in
[6] as a scalar measure of estimator performance in estimat-
ing a geometrical vector. A derivation for the lower bound
of the MSAE and a detailed discussion of the conditions for
the applicability and tightness of the bound can be found
in [7]. The lower bound of the MSAE provides a perfor-
mance criterion for a set of estimators that satisfies certain
mild conditions, similar to those needed for the CRB. When
spherical coordinates are used, MSAE is bounded below by
MSAEg as

MSAE > MSAEgp = cos*())CRB(¢) + CRB(¥)
(13

For a geometrical interpretation of the MSAE g see [4].
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4.2. Isotropic Three Dimensional Arrays

We adopt MSAEpR as a performance criterion, and define
a three dimensional array to be isotropic if the associated
MSAEg is constant for all [¢,4]7 € [0,27) x [-F, F].
The following theorem defines the set of all isotropic three
dimensional arrays:

Theorem 2 :

(a) An N element array which is centered at the origin
(re = [0,0,0]T) and represented by the 3-by-3 matrix B =
& SN rirT, where r; = [rg,, 7y, 75T is the location of
the 5t» sensor, is isotropic if and only if

B=kI; 14

where k is any positive constant and I3 is the 3-by-3 identity
matrix.
(b) If (14) holds

G(B,$) = kI (15)

Proof : See [8].

We remark that (14) is also necessary and sufficient for
the 2x2 CRB matrix to be independent of source arrival
angle. In this case, the CRB in (10) is diagonal, and if it is
scaled to remove the latitudinal scaling of azimuth, the CRB
in the azimuthal and elevation directions are equal. That is,
an uncertainty ellipse in spherical angle is a circle whose
radius is independent of source arrival angle.

In [4], the authors give sufficient conditions on the array
geometry so that MSAEg is independent of the source sig-
nal DOA. The above theorem extends their results by prov-
ing that these conditions are also necessary.

4.3. Three Dimensional Isotropic Array Example

Regular Polyhedron :

It can be shown that arrays formed by placing the sensor
elements at vertices of any regular polyhedra, or a superpo-
sition of such arrays, result in three dimensional isotropic
arrays. We conjecture that the result also holds for the 13
semiregular polyhedra.

Completion of Arbitrary (N-3)-element Arrays :

Three elements can be added to an arbitrary (N — 3)-
element subarray to make the resulting /V-element array
isotropic. By properly locating the remaining three sensors
in the plane spanned by the two eigenvectors of the B matrix
of the (N — 3)-element subarray, we can form an N-element
isotropic array. For details and proofs see [8].

5. CONCLUSION

In this paper, we studied planar and three dimensional ar-
rays that have isotropic performance. For planar arrays, we
adopted the single source wideband Cramér-Rao bound as

the performance criterion and derived the necessary and suf-
ficient conditions on the location of sensor elements so that
the CRB is constant for all arrival angles. These conditions
are valid regardless of the source's frequency spectrum. We
presented four methods to design isotropic planar arrays.

For three dimensional arrays, we chose the asymptotic
Mean Square Angular Error as a measure for array isotropy.
We derived necessary and sufficient conditions on the ar-
ray geometry that ensure that the MSAEg is independent
of source azimuth and elevation arrival angle. When these
conditions are satisfied, the azimuth and elevation are un-
coupled in the CRB, and the CRB is independent of source
signal arrival angle.
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