AN AUTO-CALIBRATION METHOD FOR UNATTENDED GROUND SENSORS

Randolph L. Moses, Dushyanth Krishnamurthy, Robert Patterson

Department of Electrical Engineering, The Ohio State University
2015 Neil Avenue, Columbus, OH 43210 USA
{randy,krishnad,pattersr } @ee.eng.ohio-state.edu

ABSTRACT

We present an algorithm for locating and orienting a set of
sensor arrays that have been deployed in a scene at unknown
locations and orientation angles. This self-calibration prob-
lem is solved using a number of source signals also de-
ployed in the scene. We assume each array can estimate
the time-of-arrival and direction-of-arrival of every source.
From this information we compute the array locations and
orientations. We consider four subproblems, in which the
source signals or emission times are either known or un-
known. We develop necessary conditions for solving the
self-calibration problem and provide a maximum likelihood
solution and corresponding location error estimate.

1. INTRODUCTION

Unattended Ground Sensors (UGSs) are becoming increas-
ingly important for providing situational awareness in bat-
tlefield deployments [1]. The basic concept is to deploy a
large number of low-cost, self-powered sensors that acquire
and process data. The sensors typically consist of an array
of microphones to detect, track, and classify acoustic signa-
tures. Each sensor is equipped with a local processor and
a low-power communication transceiver. The sensed data
is processed locally, and the result is transmitted to a local
Central Information Processor (CIP) through a low-power
communication network. The CIP fuses sensor information
and transmits it to a more distant command center.

In order to fuse sensor information at the CIP or com-
mand center, knowledge of each sensor's location and orien-
tation is vital. Ground sensors are placed in the field by per-
sons, air drop, or artillery launch. Except for careful hand
placement, it is difficult or impossible to know accurately
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the location and orientation of each sensor. Adding a GPS
and compass adds to the expense and power requirements
and may increase susceptibility to jamming. Thus, there
is interest in developing methods to self-calibrate the sensor
array with a minimum of additional hardware or processing.

We consider an approach to array self-calibration using
a number of signal sources deployed in the same region as
the sensors. Each source emits a unique signature that is de-
tected by the sensors. From the time-of-arrival (TOA) and
direction-of-arrival (DOA) of each source signal, we com-
pute the unknown locations and orientations of the sensors.
We consider four related subproblems: (i) the source loca-
tions and emission times are known; (ii) source locations
are known and emission times are unknown; (iii) the source
locations are unknown and emission times are known; and
(iv) the source locations and emission times are unknown.

Several researchers have considered the problem of ar-
ray calibration, but less work is devoted to calibrating net-
works of sensors. A number of papers have considered cali-
bration of both narrowband and broadband arrays of sensors
to improve direction-of-arrival estimation accuracy [2,3]. A
recent paper considers sensor self-calibration using a single
acoustic source that travels in a straight line [4].

2. THE SELF-CALIBRATION PROBLEM

Assume we have a set of A sensors, each with unknown lo-
cation {a; = (i, y;)}{., and unknown orientation angle 6;
with respect to a reference direction (e.g., North). We con-
sider the two-dimensional problem in which the sensors lie
in a plane and the unknown reference direction is azimuth;
an extension to the three-dimensional case is possible using
similar techniques. In the array field are also placed .S point
source signals at locations {s; = (£;,7;)}5-,. The source
locations may be known or unknown. Each source emits
a finite-length signal that begins at time ¢;; the emission
times may be known or unknown. We thus consider four
related subproblems, depending on the prior knowledge of
the source locations and their emission times.

We initially assume each emitted source signal is de-
tected by all of the sensors in the field and that each sensor
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measures the TOA and DOA for that source. We denote the
measured TOA of source j to sensor i as ¢;; and the mea-
sured DOA as 6;;. .

The DOA measurements are made with respect to a lo-
cal frame of reference. The times of arrival are measured
with respect to a known, common time base which can be
established either by using the electronic communication
network linking the sensors or by synchronizing the sensor
processor clocks before deployment.

The set of 2AS measurements are gathered in a vector

T
= [ Zgzgg% ] (248 x 1) )

where vec(M) stacks the elements of a matrix M column-
wise, T = [t;;],0 = [0;;], withi =1,..., A;5 = 1,..., 5.
Define the parameter vectors

a = BT (3(A+8)x1) €))
B = [z1,y1,01,...,24, ¥4, 047 (BAx1) (3)
Y = [jl’ gl,tlv"'ajSa 551 tS]T (3S><1) (4)

We denote the actual TOA and DOA of source signal j
at sensor ¢ as 7;;(a) and ¢;;(ax), respectively, and include
their dependence on the parameter vector «; they are com-
puted as:

Tij(@) = tj+lla;i —sjll/c ©)
¢ij(a) = ;i + L(as,s5) (6)
where || - || is the Euclidean norm, Z(£,7) is the angle be-
tween the points £, € R2, and c is the signal propagation

velocity.
Each element of X has measurement uncertainty; we
model the uncertainty as

X=ula)+E M

where u(a) is the noiseless measurement vector with ele-
ments given by equations (5) and (6) for values of i, j that
correspond to the vector stacking operation in (1), and E is
a random vector with known probability density function.

The self-calibration problem, then, is given the measure-
ment X, estimate 8. Note that none, some, or all of the
parameters in v may be known depending on the particular
subproblem of interest.

3. EXISTENCE AND UNIQUENESS OF
SOLUTIONS

In this section we address the existence and uniqueness of
solutions to the self-calibration problem and establish the
minimum number of sensors and sources needed to obtain a
unique calibration solution. We give the self-calibration al-
gorithms for the minimal cases that provide initial estimates
to an iterative descent algorithm for the practical case of
non-minimal, noisy measurements presented in Section 4.

Case 1: Known source locations and emission times.

A unique solution for § can be found for any number of
sensors as long as there are S > 2 sources. The location
of the ith sensor, a;, is found from the intersection of two
circles with centers at the source locations and with radii
(tin — t2)/c and (2 — t1)/c. The intersection is in gen-
eral two points; the correct location can be found using the
sign of ;5 — 6;1. We note that the two circle intersections
can be computed in closed-form. From the known source
and sensor locations and the DOA measurements, the sen-
sor orientations can also be uniquely found.

Case 2: Known source locations, unknown emission times.
For S > 3 sources, the location and orientation of each sen-
sor can be computed in closed form. Consider the pair of
sources (s1,82). Sensor 7 knows the angle 6;5 — 6;; be-
tween these two sources. The set of all possible locations
for sensor 7 is an arc of a circle whose center and radius can
be computed from the source locations. Similarly, a second
circular arc is obtained from the source pair (s1,s3). The
intersection of these two arcs is a unique point. Once the
sensor location is known, its orientation is readily computed
from any of the three DOA measurements.

A solution for Case 2 can also be found using S = 2
sources and A = 2 sensors. The solution requires a one-
dimensional search of a parameter over an finite interval.
The known location of s; and s, and the known angle 611 —
612 means that array a; must lie on a known circular arc. At
exactly one position along the arc, the emission times are
consistent with the measurements from the second sensor.

Case 3: Unknown source locations, known emission times.
In this case and in Case 4 below, the calibration problem

can only be solved to within an unknown translation and ro-
tation of the entire sensor-source scene since the ¢;; and 6ij
measurements do not change. To eliminate this ambiguity,
we assume the location and orientation of the first sensor are
known; without loss of generality we setz; = y; = 6; = 0.
We solve for the remaining 3(A — 1) parameters in 3.

A unique solution for § is computable in closed form
for § = 2 and any A > 2 (the case A = 1 is trivial).
From sensor a; the range to each source can be computed
from r; = (t1; — t;)/c, and its bearing is known, so the
locations of the two sources can be found. The locations
and orientations of the remaining sensors is then computed
using the method of Case 1.

Case 4: Unknown source locations and emission times.

For this case it can be shown that an infinite number of cal-
ibration solutions exists for A = § = 2, ! but that a unique
solution exists in almost all cases for either A = 2, S =3
or A =3, S = 2. In some degenerate cases, not all of the

INote that for A = S = 2 there are 8 measurements and 9 un-
known parameters. The set of possible solutions in general lies on a one-
dimensional manifold in the 9-dimensional parameter space.
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« parameters can be uniquely determined, although we do
not know of a.case for which the 3 parameters cannot be
uniquely found. . :

Calibration solutions for this case require a two-dimen-
sional search. We outline a solution that works for either
A=2andS >3o0rS =2and A > 3. Assume sensor a;
is at location (z1,y1) = (0, 0) with orientation §; = 0. If
we knew the two source emission times ¢, and ¢,, we can
find the locations of sources s; and s; as in Case 3. All re-
maining sensor locations and orientations can then be found
using the procedure in Case 1, and all remaining source lo-
cations can be found using triangulation. The solutions will
be inconsistent except for the correct values of ¢; and 5.
The calibration procedure, then, is to iteratively adjust ¢,
and ¢, to minimize the error between computed and mea-
sured time delays and arrival angles.

4. MAXIMUM LIKELIHOOD SELF-CALIBRATION

In this section we derive a maximum likelihood (ML) es-
timator for the unknown array location and orientation pa-
raméters. The algorithm involves the solution of a set of
nonlinear equations for the unknown parameters (and the
unknown nuisance parameters in 7). The solution is found
by iterative minimization of a cost function; we use the
methods in Section 3 to initialize the iterative descent. Also,
we derive the Cramer-Rao Bound (CRB) for the variance of
the unknown parameters in «; the CRB also gives high-SNR
parameter variance of the ML parameter estimates.

4.1. The Maximum Likelihood Estimate

We assume the measurement uncertainty F in equation (7)
is Gaussian with zero mean and known covariance %. In
this case the likelihood function is

L 1
W exp {“iQ(X,a)} ®)
X~ p@ S X —p@)] O

f(X;0) =

. Q(X50)

Il

A special case is when the measurement errors are uncorre-
lated and the TOA and DOA measurement errors are Gaus-
sian with zero mean and variances o and o2, respectively;
then equation (9) becomes

A S (a2 o — b (a))?
Q(X;a) :ZZ [(tij _;-;J( ) + (6: j-)é]( ) ]
i=1 j=1 t

(10)

In the four cases considered in Section 3, some of the
parameters in a are known. We denote a; to be the un-
known parameters in a: and a2 to be the known parameters.

Using this notation along with equation (8), the maximum
likelihood estimate of vy is

é1,m1 = argmax f(X, az; @) = argmin Q(X; a)
[+31 o1

4.2. Nonlinear Least Squares Solution

The solution of (4.1) involves solving a nonlinear least squares
problem. A standard iterative descent procedure can be
used, initialized using one of the solutions in Section 3. In
our implementation we used the Matlab function 1sgnonlin.

The straightforward nonlinear least squares solution we
adopted converged quickly (in several seconds for all ex-
amples tested) and displayed no symptoms of numerical
instability; however, alternative methods for solving equa-
tion (4.1) may reduce computation [5, 6].

4.3. Estimation Accuracy

The Cramer-Rao Bound (CRB) gives a lower bound on the
covariance of any unbiased estimate of c;. It is a tight
bound in the sense that 6, ar7, has parameter uncertainty
given by the CRB for high signal-to-noise ratio; that is, as
max; X;; — 0. Thus, the CRB is a useful tool for analyzing
calibration uncertainty.

The CRB can be computed from the Fisher Information
Matrix (FIM) of a;. The FIM is given in [7]. The par-
tial derivatives are readily computed from equations (8), (5),
and (6); we find that

Iy = [G'(a1)]"Z7Y[G ()] (11)

where G’ (o) is the 2AS x dim(a; ) matrix whose 7;th el-
ement is Au;(a1)/0(c1);.

For Cases 3 and 4, the FIM is rank deficient due to the
translational and rotational ambiguity in the self-calibration
solution in those two cases. In this situation, two approaches
can be taken. First, one can assume some of the sensor pa-
rameters are known. Let &; denote the vector obtained by
removing these assumed known parameters from «;. To
compute the CRB matrix for &;, we first remove all rows
and columns in I,, that correspond to the assumed known
parameters, then invert the remaining matrix [7].

The second approach is to compute the CRB of the pa-
rameter vector ¢ subject to knowledge of the translation
and rotation. We compute an eigenvalue decomposition of

Iy,:
T
oJlar] o

Except in degenerate cases, it can be shown that Us has
3 columns and that its columns span the subspace corre-
sponding to overall scene translation and rotation. Then
the constrained CRB of the parameter vector a; subject to

A
I, = [hUs)] { 01
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knowledge of the translation and rotation is given by the
pseudoinverse of I, [8].

4.4. Partial Measurements

In this section we assume each emitted source signal is de-
tected by a subset of the sensors in the field and that a sensor
that detects a source may measure the TOA and/or DOA for
that source. We denote the availability of a measurement
using two indicator functions I fj and Ifj. If sensor i mea-
sures the TOA (DOA) for source j, then If; = 1 (If; = 1);
otherwise, the indicator function is set to zero. Furthermore,
let L denote the 2AS x 1 vector whose kth element is 1 if
X is measured and is 0 if X} is not measured; L is thus
obtained by forming A x S matrices I'* and I and stacking
their column into a vector as in equation (1). Finally, define
X to be the vector formed from elements of X for which
measurements are available, so X}, isin X if Ly = 1.

The maximum likelihood estimator for the partial mea-
surement case is similar to equation (4.1) but uses only those
elements of X for which the corresponding element of L is
one. Thus (assuming uncorrelated measurement errors as in
equation (10)),

éa,m1, = argmin Q(X; a) 13)
(=3}

.o A S T (ks — 733 (a))? 4 — i3 ())?
Q(X;a)zzz[(tw 2](0‘)) Ifj+(6] ¢2( ) Iiaj

O O
(14)

The FIM for this case is similar to equation (11), but in-
cludes only information from available measurements; thus

oy, = [G'(a)]TZ7[G ()] (15)
o _ Opi(ar)
[G (al)] i =Ly 3(a—1)]~ (16)

5. NUMERICAL RESULTS

We present numerical examples of the self-calibration pro-
cedure. Ten sensor arrays and eleven sources are randomly
placed in a 2 kmx2 km region with random sensor orienta-
tions and source emission. We assume every sensor mea-
sures the TOA and DOA of each source. The measure-
ment uncertainties are Gaussian with standard deviations of
o; = 1 msec for the TOAs and oy = 3° for the DOAs.

Setting the locations of sensor arrays A1 and A2 as known,

we compute for each sensor the equivalent 2o uncertainty
radius, defined as the geometric mean of the major and mi-
nor axis lengths of the 20 uncertainty ellipse. For this exam-
ple the average of the 20 uncertainty radii for all ten sensors

is 0.80 m. In a second case we assume that both the location
and orientation of sensor A1 is known. We get much larger
uncertainty ellipses for the sensors. The average 20 uncer-
tainty radius is 3.28m. The high tangential uncertainty is
due to the DOA measurement uncertainty. We see that it is
more desirable to know the locations of two sensors than to
know the location and orientation of one sensor. For these
examples, an average 20 uncertainty radius of 1-3 meters
is obtained when more than five signal sources are used for
calibration.

6. CONCLUSIONS

‘We have presented a procedure for calibrating the locations
and orientations of a network of sensors using source sig-
nals that are placed in the scene. We present maximum
likelihood solutions to four variations on this problem. We
also discuss existence and uniqueness of solutions and al-
gorithms for initializing the nonlinear minimization step in
the maximum likelihood estimation. An analytical expres-
sion for the sensor location and orientation error covariance
matrix is also presented. A maximum likelihood calibration
algorithm for the case of partial calibration measurements
was also developed. The algorithms require minimal com-
munications from the sensors to a CIP, and computation of
the calibration solution takes about ten seconds using Mat-
lab on a personal computer for examples considered.
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